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The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work
for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods
which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the
model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional
size of stiffening ring, and spacing between stiffening rings) on penstock critical external pressure during huge thin-wall procedure
of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external
pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize
sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of
stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation
results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural
network.

1. Introduction

Penstock is one of the important compositions in the hydro-
electric power station building. It is arranged between reser-
voir and underground power station house [1]. In recent
years, along with the construction of the large-capacity
pumped storage power station and the application of high-
strength materials, the structure of the penstocks is turning
to huge thin-walled structure. For this structure, its stabil-
ity problem under external pressure has been particularly
prominent. At home and abroad, there are a lot of cases
due to external pressure caused penstock buckling failure.
Stability problem of hydroelectric power station penstock
under external pressure has become one of the main control
conditions of penstock design.

Stability analysis of stiffened penstock under external
pressure includes computing of tube shell and the critical
external pressure of stiffening ring. At present, the calculated
method of tube shell critical load uses mainly Mises formula

[1]. Mises considered that when the instability failure tube
shell between stiffen rings takes place, there will be more
wave-numbers, but the amplitude is relatively small. Since
there are many initial cracks between stiffened penstock and
its outside concrete, the outside concrete has a smaller con-
straint for tube shell. The calculating of critical external load
of embedded stiffened penstock can adopt the computational
formula of exposed penstock and the safety coefficient can be
appropriately reduced.

Actually, due to penstock exists initial defects and asym-
metrical cracks, buckling penstock does not meet Mises
assumption in some ways. Reference [2] proposed a calcula-
tion formula about critical load of penstock under external
pressure. In the procedure of formula derivation, Lai and
Fang adopted some basic assumptions, such as elastic theory,
known wave numbers, and stiffener ring stiffness infinity.
The formula does have a unique novelty, but due to those
assumptions the application of formula is limited (when
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the ring spacing is relatively large, the calculated value is
16.9% smaller than the measured value).

In some literatures, [3–6], the derivation of penstock crit-
ical external pressure formula did not consider the influence
of the external stiffened ring equivalent flange width on the
critical pressure, which resulted in the computation accuracy.
Liu andMa presented a semianalytical finite element method
to analyze the instability problem of the stiffened penstock
[7]; it is a more objective computational method, and it can
better meet the actual situation.

In this paper, a nonlinear relationship between tube
shell critical external pressure and its influence factors is
established by artificial immune neural network model and
engages the elastic ring theory; we have studied the effects of
some factors on the critical external pressure of huge thin-
walled penstock (such as the pipe diameter, the pipe wall
thickness, the sectional size of stiffening ring, and stiffened
ring spacing) and have revealed the bearing capacity of huge
thin-walled penstock plummeting reason and drastically
reducing interval. By optimizing sectional size of stiffened
ring and spacing among stiffened rings, we have presented
an optimal design method of the bearing capacity of stiffen-
ing rings, penstock bearing capacity coordination, penstock
external pressure stability, and its strength safety coordinated.

The rest of the paper is arranged as follows. In Section 2,
we briefly introduce how to solve the critical load of the
penstock using semianalytical element method. Section 3
discusses the simulating of the critical pressure of penstock.
Section 4 studies the computation of the critical external
pressure of stiffened ring. Section 5 provides one case study
of one practical project. Finally, the main conclusions of the
paper are inducted.

2. Semianalytical Finite Element Method for
Stability Analysis of Penstock

In 1990, Liu and Ma proposed a semianalytic finite element
computation method (SA-FEM) for the stability analysis of
the penstock under external pressure [7].Thismethod adopts
the analytical method along circumferential direction and
the discrete finite element method along the axial direction,
respectively.The penstock is divided into the finite cylindrical
shell elements which are connected using the node circle. A
typical cylindrical shell element is shown in Figure 1, where
𝑡, 𝑅, and 𝐵 denote the shell thickness, node circle radius,
and element axial direction length, respectively. To facilitate
study, we select the axial direction of shell middle curved
surface as the 𝑥 coordinate (the dimensionless coordinate
is 𝜉), the circumferential direction as the 𝑦 coordinate (the
dimensionless coordinate 𝜑), and the normal directions as
the 𝑧 coordinate and providing positive 𝑧 is pointing to the
direction of the curvature center.The displacement of a point
in middle curved surface is𝑊. The displacements of nodal 𝑖
and 𝑗 are represented by𝑊

𝑖
, 𝜃
𝑖
,𝑊
𝑗
, and 𝜃

𝑗
, respectively.

Defining the node displacement vector is as

{𝛿} = [𝑊𝑖 𝜃𝑖 𝑊𝑗 𝜃𝑗]
𝑇
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Figure 1: Cylindrical shell element.

Introducing the Hermite interpolation polynomial vector
[𝐻] is as

[𝐻] = [𝐻1, 𝐻2, 𝐻3, 𝐻4] , (2)

where 𝐻
1
= 1 − 3𝜉
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2
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3
); we can express the cylindrical

shell element radial displacement function𝑋(𝜉) along the𝑋-
axis as follows:

𝑋(𝜉) = [𝐻] {𝛿} . (3)

Accordingly, the radial displacement function𝑊(𝜉, 𝜑) of
any point on cylindrical shell element middle surface can be
written as

𝑊(𝜉, 𝜙) = 𝑋 (𝜉) cos (𝑛𝜙) , (4)

where 𝜑 is central angle (radians) and 𝑛 is the unstable wave
number along circumferential direction.

According to constraint conditions, we can see that there
is neither the tensile deformation along the axial nor the
shear deformation on the cylindrical shell middle surface.
Therefore, from the deflection function 𝑊, we can derive
displacement 𝑈 and 𝑉 of any point on the middle surface,
so that the displacement function {𝑓} can be expressed as
follows:

{𝑓} = {𝑈 𝑉 𝑊}
𝑇
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(5)

where [𝐻󸀠] is the first order derivative of polynomial vector
[𝐻].
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According to the strain displacement relations of cylin-
drical shell with large deflection, we can obtain geometric
equation of cylindrical shell element:
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(6)

where {𝜀𝐿} denotes the linear strain item and {𝜀𝑁} denotes the
nonlinear strain item resulted by large deflection.

According to the constitutive relationships of materials
and equilibriumequations of cylindrical shell element, we can
set up the matrix equation of the cylindrical shell element.
The stiffnessmatrix is composed of the elastic stiffnessmatrix
and the equivalent geometric stiffness matrix. The elastic
stiffness matrix formula of cylindrical shell element is as
follows:
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𝐸
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where 𝐸 is the modulus of elasticity (N/mm2), 𝜇 is Poisson
ratio, and the other symbols are the same as previous. The
equivalent geometric stiffness matrix formula of cylindrical
shell element is represented as follows:
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After integration operation, we found that [𝑘
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where 𝑞𝑒 is the radial external pressure of the element.
Adopting stiffness integration methods, penstock, we

can obtain, respectively, the elastic stiffness matrix and
the equivalent geometrical stiffness matrix of the overall
structure. In the structural stiffness equation, introducing
boundary constraint conditions, in the structural stiffness
matrix, crossing out the rows and columns associated with
the displacement constraints, we can get the force-balancing
equation of the overall penstock as follows:

([𝐾
𝐸
] + 𝑞 [𝐾

∗

𝐺
]) {Δ} = {𝑃} , (11)

where [𝐾
𝐸
] and [𝐾∗

𝐺
] are, respectively, elastic stiffness matrix

and equivalent geometrical stiffness matrix; [𝐾
𝐸
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/𝑞)[𝐾

∗
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]
𝑒, and 𝑒 is element number; 𝑞 is external

pressure of structure; {Δ} and {𝑃} are, respectively, vectors of
the nodal displacement and load of the structure.

It is known from structure stability theory that char-
acteristic equation to describe structure stability is that
determinant of the overall stiffness matrix is equal to zero;
that is, det([𝐾

𝐸
] + 𝑞[𝐾

∗

𝐺
]) = 0. Thus, stability problem is

transformed to solve the largest eigenvalue problem of real
matrix (−[𝐾

𝐸
]
−1
[𝐾
∗

𝐺
]). The reciprocal of the largest eigen-

value is critical stable load.
From the above discussions, we can see that using SA-

FEM to solve the critical pressure of the penstock is very
complicated. Actually, in practical engineering design and
structure analysis, an analytical explicit formula to describe
the relationship between critical pressure and structure
parameters is more welcome. In order to meet this request,
we provide a realization method based on neural network.
Firstly, we acquire a group of the samples that adopt SA-
FEM to calculate critical pressure of different penstocks.
Then using nonlinear mapping ability of neural network
to get nonlinear relationship between critical pressure and
related parameters, namely, penstockmaterial, pipe diameter,
thickness of the penstock wall, the spacing among stiffener
rings, and so forth.

3. Penstock Critical Pressure Calculating
Based on Neural Network

It is well known that neural network can approach com-
plicated nonlinear map with very high accuracy. Immune
algorithm is an evolutionary method that reflects immune
system characteristic of living organisms [8, 9], and it can
avoid the drawbacks of traditional neural network learning
algorithms. The main idea of adopting immune algorithm
to design neural network is neural network structures and
connection among neurons as an antibody of biological
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Table 1: Connection relationship table of neural nodes.

To From
1 2 ⋅ ⋅ ⋅ 8 9

1 × × ⋅ ⋅ ⋅ × ×

2 × × ⋅ ⋅ ⋅ × ×

3 × × ⋅ ⋅ ⋅ × ×

4 𝑤
41

𝑤
42

⋅ ⋅ ⋅ × ×

5 𝑤
51

𝑤
52

⋅ ⋅ ⋅ × ×

6 0 0 ⋅ ⋅ ⋅ × ×

7 𝑤
71

0 ⋅ ⋅ ⋅ × ×

8 0 0 ⋅ ⋅ ⋅ 𝑤
88

×

9 0 0 ⋅ ⋅ ⋅ 𝑤
98

𝑤
99

1

2

3

5

4
6

7
9

8

Input layer

Output signal

Output layer

Input signal

Hidden layer

Figure 2: The schematic diagram of neural network.

immune system. Selection based on antibodies concentra-
tion and self-adaptive mutation operator makes antibody
population continuously optimized and finally finds the best
antibodies. Immune algorithm is characterized by diversity
distribution of solution group and it can better overcome
the shortcomings of that network structure and cryptic layer
numbers defined difficultly.

3.1. Neural Network Design. In the paper, the neural network
structure adopted is shown in Figure 2.The network neurons
have no significant hierarchical relationship. In addition to
input neurons, there are no restriction connections among
neurons; each network node is assigned a serial number; the
serial number of node is only used to distinguish beginning
and end of directed link [10].

Deletion of Connection Edges. If the connection weights value
of a connection edge is less than specified threshold range
[−0.001, 0.001], its weights value is set to zero; that is, in the
same neuron numbers circumstances, different connection
form composes different network structure.

Neurons Removed. If all weights values of connection with a
neuron are less than specified threshold range, deleting this
neuron. The network structure and connection weights can
be expressed as an equivalent matrix as Table 1. Concate-
nating each element of matrix constitutes an antibody. An
antibody expresses a neural network structure.

3.2. Design Steps of Neural Network Based on
Immune Algorithm

(a) Fitness Function.The antibodyw𝑖 constitutes the objective
function of network:

𝐸 (w𝑖) =
𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑦
𝑗

󵄨󵄨󵄨󵄨󵄨
, (12)

where 𝑡
𝑗
is objective output of network, 𝑦

𝑗
is actual output,

and 𝑛 is sample number in training sets.
Fitness function can be expressed as

𝐹 (w𝑖) = 1

𝐸 (w𝑖) + 𝐶 (w𝑖)
, (13)

where 𝐶(w𝑖) reflect impact of network complexity; it is
the sum of network nodes and connections among nodes;
𝐶(w𝑖) = 𝑠(w𝑖) + 𝑙(w𝑖); 𝑙(w𝑖) and 𝑠(w𝑖) represent, respectively,
network connections and network nodes.

(b) Immune Selection Algorithm Based on Similarity and
Vector Distance.Assuming that in a population each antibody
can be represented by a one-dimensional array of𝑚 elements,
antibodies similarity is calculated as follows: assuming that
w1 = {𝑤

1

1
, 𝑤
1

2
, . . . , 𝑤

1

𝑚
} and w2 = {𝑤

2

1
, 𝑤
2

2
, . . . , 𝑤

2

𝑚
} are any

two antibodies of an antibody population with size 𝑛, the
similarity of w1 and w2 is 𝑑(w1,w2):

𝑑 (w1,w2) = √
𝑚

∑

𝑖=1

󵄨󵄨󵄨󵄨
𝑤
1

𝑖
− 𝑤
2

𝑖

󵄨󵄨󵄨󵄨
, (14)

where 𝑛 antibodies constitute a nonempty immune setW, the
distance of two antibodies is defined as

𝐷(w𝑖) =
𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

𝑑 (w𝑖,w𝑗) . (15)

The concentration of antibody can be expressed as
Density(w

𝑖
):

Density (w𝑖) = 1

𝐷 (w𝑖)
. (16)

From formula (16) we can see that the more the similarity
antibodies, the greater the antibody concentration and on the
contrary, the smaller the antibodies concentration.

The population Update Based on Antibody Concentration.
After the parents generated offspring through mutation,
according to the selection probability, random selection of
individuals from the population and offspring constitutes a
new population. The probability selective function is defined
as follows:

𝑃
𝑠
(w𝑖) = 𝛼 × density (w𝑖)(1 −

𝐷 (w𝑖)
∑
𝑛

𝑖=1
𝐷(w𝑖)

)

+ 𝛽

𝐹 (w𝑖)
∑
𝑛

𝑖=1
𝐹 (w𝑖)

,

(17)
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where 𝛼, 𝛽 is adjustable parameter in (0, 1) interval, its value
determined based on experience. In this paper alpha and
beta value is set to 0.5, meaning that antibody concentration
and fitness have equal status during the update process of
antibody population. 𝐹(w𝑖) is fitness of the antibody 𝑖.

As known from (17), the first part of right side of the
equation is based on antibody concentration selection items;
the higher concentration antibody has little selected chance,
but the lower concentration antibody has bigger selected
chance; the second part of right side of the equation is
based on antibody fitness selection items; the higher fitness
antibody has bigger selected chance.

(c) Generate the NewAntibodies. Because the network param-
eters and the network structure is many to one relationship,
therefore, this paper only adopts mutation operation to carry
out antibodies update.

Defining mutation operator 𝜎
𝑖
= √1 − 𝐹(𝑤

𝑖
) and using it

mutate all parameters of network as follows:

𝑤
𝑖
󸀠

𝑗
= 𝑤
𝑖

𝑗
+ 𝜎
𝑖
× 𝑁
𝑗 (0, 1) ,

(18)

where 𝑤𝑖
𝑗
and 𝑤𝑖

󸀠

𝑗
are, respectively, antibodies of gene before

and aftermutation and𝑁
𝑗
(0, 1) indicates random variable for

each subscript 𝑗 re-sampling.

3.3. Simulating the Critical External Pressure of Penstock. This
paper uses [7, 11, 12] proposed calculationmethod to compute
critical pressure and regards the computed results as the
training sample of the network. The calculation model is
described as follows. Penstock material is 16Mn (modulus
of elasticity is 𝐸 = 2.1 × 10

5MPa, Poisson ratio 𝜇 = 0.3,
and 𝜎

𝑠
= 340MPa). The ratio of penstock radius 𝑟 and shell

thickness 𝑡 (relative tube radius 𝑟/𝑡) is from 20 to 400; step
length is 20; the ratio of rings spacing and tube radius (relative
ring spacing 𝐿/𝑟) is [0.1 0.2 0.3 0.5 0.8 1.4 2.0 3.0 40].
The total calculation models are 180.

The transfers function among neurons uses s-function in
the Matlab; the transfers function of output layer uses linear
function. Population size is 𝑁 = 50. The simulating results
are shown in Table 2.

3.4. Analysis of Calculated Results. (1) Figure 3 shows that
with the increase of 𝑟/𝑡 the losing stability capability of
penstock under external pressure is decreased acutely. The
critical external pressure decreases with increasing of 𝑟/𝑡.
Within 𝑟/𝑡 = 20 ∼ 260, the critical external pressure is
acutely decreased; beyond the range, the change is less. For
example, within 𝐿/𝑟 = 0.1 ∼ 3.0, 𝑟/𝑡 from 20 to 260, 𝑃cr will
decrease to 0.13%∼0.16% of initial value (𝑟/𝑡 = 20, 𝑃cr); when
the diameter of penstock is increased to a certain value, the
stability power of the penstock under external pressure will
change very small. For example, if 𝐿/𝑟 = 3.0 and 𝑟/𝑡 = 400,
then the 𝑃cr value is only 0.02MPa.

(2)The calculated result shows that the critical pressure
𝑃cr of penstock decreases with relative distance of reinforcing
ring 𝐿/𝑟 increasing,but the influence of decreasing velocity
is less than relative radius 𝑟/𝑡. For example, 𝑟/𝑡 = 300,
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Figure 3: Simulating results.

Table 2: Simulating results of the critical external pressure 𝑃cr.

Critical pressure
(simulation)

𝐿/𝑟

0.1 0.2 0.3 0.5 0.8
𝑟/𝑡

20 2024.26
(2024.2)

901.87
(901.9)

554.56
(554.5)

299.14
(299.1)

170.36
(170.4)

60 119.16
(119.17)

52.05
(52.14)

31.97
(31.89)

17.43
(17.56)

10.12
(10.18)

100 31.71
(31.57)

13.79
(13.71)

8.50
(8.43)

4.67
(4.71)

2.74
(2.77)

140 13.23
(13.38)

5.75
(5.86)

3.55
(3.47)

1.97
(2.01)

1.16
(1.14)

180 6.88
(6.92)

2.99
(2.87)

1.86
(1.79)

1.03
(1.03)

0.61
(0.67)

260 2.64
(2.57)

1.16
(1.23)

0.72
(0.78)

0.40
0.37)

0.24
(0.28)

300 1.82
(1.81)

0.79
(0.81)

0.49
(0.51)

0.28
(0.25)

0.16
(0.16)

360 1.13
(1.14)

0.49
(0.45)

0.31
(0.29)

0.17
(0.19)

0.11
(0.15)

400 0.86
(0.81)

0.37
(0.36)

0.24
(0.23)

0.13
(0.11)

0.08
(0.07)

𝐿/𝑟 = 0.1 ∼ 3.0, and the critical external pressure 𝑃cr will
decrease to 2.19%∼43.41% of initial value.

(3) The most effective reinforcing rings spacing and the
curve of Figure 3 shows that reducing rings spacing can
effectively improve the carrying capacity of critical external
pressure of penstock, and while 𝐿/𝑟 decrease, 𝑃cr value and
its increase ratio increase. For example, 𝑟/𝑡 = 260, 𝐿/𝑟
from 3.0 decrease to 0.8 and continue to decrease to 0.1, and
the increment of 𝑃cr is respectively 0.18MPa and 2.40MPa.
In other words, the reinforcing rings spacing reduces to
0.1𝑟, and the average increment of 𝑃cr value is, respectively,
0.0082MPa and 0.34MPa. The latter is 41 multiples of the
former. So the most effective reinforcing ring spacing should
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meet 𝐿 < 0.8𝑟.The reinforcing ring spacing of China’s SanXia
hydropower station is 𝐿 = 0.32𝑟.

(4)Noneffective reinforcing rings spacing Figure 3 shows
that along with the stiffener ring spacing increases, the role of
stiffening ring is gradually reduced, and while 𝐿/𝑟 = 40, the
log(𝑃cr) ∼ 𝑟/𝑡 curves of reinforcing penstock and mill finish
steel tube (the calculated formula of mill finish steel tube:
𝑝 = 2𝐸(𝑡/𝐷)

3, 𝐷 is diameter of tube) are almost equal. This
shows that stability against external pressure of the two tubes
is roughly equal; then the reinforcing ring does not possess
any sustaining effect on the stiffness.

(5)The losing stability of wave numbers 𝑛 is a synthesis
embodiment for longitudinal and circular stiffness of the
penstock. With an increasing of the penstock diameter, the
stiffness of circular decreases, and the losing stability of
wave numbers increases. But in 𝑋-axial direction, with an
increasing of the reinforcing ring spacing, the stiffness of 𝑋-
axial direction of penstock decreases and also reduces the
instability wave numbers 𝑛. For fine pitch large diameter
stiffened penstock, the losing stability of wave shape shows
multiwave form, but for the sparse space and small diameter
shows less wave form.

(6) The design of penstock in Figure 3 shows that the
curve cluster of “log(𝑃cr) ∼ 𝑛, 𝑟/𝑡, 𝐿/𝑟” is divided into two
upper and lower districts by the plastic losing stability
curve. If the penstock diameter and relative reinforcing rings
spacing are bigger, the penstock appears elastic losing stability
under smaller external pressure; log(𝑃cr) value is located
in the below district of the elastic losing stability curve.
When the penstock diameter and relative reinforcing rings
spacing are smaller, the stability of penstock under external
pressure is powerful and can bear great pressure; the log(𝑃cr)
value is located in upon district of the elastic losing stability
curve. When we design the penstock, if 𝑟/𝑡 value has been
determined by use, construction, and so forth, we can select
appropriate 𝐿/𝑟 value according to Figure 3, making the
carrying capacity of penstock critical external pressure meets
not only the requirements resistance to external pressure
stability but also the instability curve as close as possible, in
order to achieve full use of the material strength, to ensure
external pressure stability and strength safety coordinated
purposes.

4. Computation of the Stiffening Ring’s
Critical External Pressure

4.1.The Structure Form of Stiffening Ring. Thestructure forms
of stiffening ring include the cross-section form of ring
and the connected mode between ring and tube shell, as
shown in Figure 4. As for the huge thin-wall penstock, it
is advisable to adopt the structure of that both stiffening
ring and penstock are rolled together as a whole which can
effectively avoid penstock initial defects that caused by weld
bead and uneven weld quality. The reasonable cross-section
structure and dimensions of stiffening ring not only should
be able to bear large external load in smaller cross-section size
but also enable the critical load of tube shell close to or equal
to the critical load of stiffening ring effective control range, so

aL

b

t

Tube axis

(a) Rectangle ring

b

2
a

t

Radius of steel tube
r

Tube axis

b/2

(b) T-shape ring

Figure 4: The structure form of stiffening ring.

as to effectively improve external loads condition of structure
and to facilitate construction.

On the structure that penstock and stiffening ring are
rolled together as a whole, the effective control range of
stiffening ring is 0.78√𝑟𝑡. Computing model is as follows:
penstock radius r is 6200mm, penstock shell thickness 𝑡
is 40mm, ring thickness 𝑎 is, respectively, 20, 40, 60, and
80 100mm, and the variation range of relative ring spacing
𝐿/𝑟 is [0.1, 3.0], 𝑏/𝑎 ∈ [0.5, 50]. Calculating separately critical
pressure of rectangle ring and T-shape ring that having the
same cross-section area.The computing formula of stiffening
ring critical external pressure is as follows (calculation results
are shown in Table 3):

𝑃cr =
3𝐸𝐽
𝑘

𝑅
3

𝑘
𝐿
, (19)

where 𝑅
𝑘
is radius that is located in the gravity axis of

stiffening ring effective section (mm) and 𝐽
𝑘
is moment of

inertia that is located in the gravity axis of the stiffened ring
effective section (mm4).

For the rectangle ring

𝑅
𝑘
=
(𝑎/2) (𝑏 + 𝑡)

2
+ 0.78 𝑡

2
√𝑟𝑡

𝑎 (𝑏 + 𝑡) + 1.56 𝑡√𝑟𝑡

,

𝐽
𝑘
=
𝑎

12
(𝑏 + 𝑡)

3
+ 𝑎 (𝑏 + 𝑡) (𝑅𝑘 −

𝑏 + 𝑡

2
)

2

+ 0.13 𝑡
3
√𝑟𝑡 + 1.56 𝑡√𝑟𝑡(𝑅

𝑘
−
𝑡

2
)

2

.

(20)

For the T-shape ring

𝑅
𝑘
=
(𝑎𝑏/4) (𝑏 − 𝑎 + 2𝑡) + (𝑎/2) (𝑎 + 𝑡 + 𝑏/2)

2
+ 0.78 𝑡

2
√𝑟𝑡

(𝑎𝑏/2) + 𝑎 (𝑎 + 𝑡 + 𝑏/2) + 1.56 𝑡√𝑟𝑡

,

𝐽
𝑘
=
𝑎
3
𝑏

24
+
𝑎𝑏

2
(
𝑏 − 𝑎

2
− 𝑅
𝑘
+ 𝑡)

2

+
𝑎

12
(
𝑏

2
+ 𝑡)

3

+ 𝑎(
𝑏

2
+ 𝑡) × [

1

2
(
𝑏

2
+ 𝑡) − 𝑅

𝑘
]

2

+ 0.13 𝑡
3
√𝑟𝑡

+ 1.56 𝑡√𝑟𝑡(𝑅
𝑘
−
𝑡

2
)

2

.

(21)

The calculated results can be plotted as shown in Figure 5.
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Figure 5: log(𝑃cr) ∼ 𝑏/𝑎 of the rectangular ring and T-shape ring.
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Table 3: The part of calculation results of rectangle ring and T-shape ring (𝑎 = 60mm).

𝑃cr (MPa)
𝑏/𝑎

Rectangle shaped ring T-shaped ring
0.5 1.1 6.5 16.5 0.5 1.1 6.5 16.5

𝐿/𝑟

0.1 657.5 959.1 746.8 250.9 388.2 453.0 574.1 248.4
0.3 219.2 319.7 248.9 83.7 129.4 151.0 191.4 82.8
2.0 32.8 47.9 37.3 12.5 19.4 22.6 28.7 12.4
3.0 21.9 31.9 24.9 8.4 12.9 15.1 19.1 8.3

Table 4: Appropriate range of 𝑏/𝑎 value in the conditions of
different 𝑎.

𝑎 (mm) With maximum 𝑃cr
corresponding 𝑏/𝑎 Appropriate range of 𝑏/𝑎

20 12.7 10–14
30 6.9 5–8
40 4.5 3.5–5.5
60 2.5 1.5–3.5
80 1.7 1.5–2.5

4.2. Calculated Result Analysis

(a) Stiffening Ring Reasonable Cross-Section Form. By com-
paring log(𝑃cr) ∼ 𝑏/𝑎 curve of rectangular ring and T-shape
ring in Figure 5, we can see the ring with the same rings
spacing and cross-section area, the rectangular ring possesses
bigger 𝑃cr. The smaller the 𝐿/𝑟 is, the greater this effect is.
For example, for 𝑎 = 60mm, 𝑏 = 990mm, 𝐿/𝑟 = 0.1, and
𝐿/𝑟 = 3.0, the critical external pressure 𝑃cr of rectangular
ring and T-shape ring are, respectively, (250.9, 8.36)MPa and
(248.4, 8.28)MPa. While 𝐿/𝑟 = 0.1, 𝑃cr difference between
rectangular ring and T-shape ring is 2.57MPa, but 𝐿/𝑟 =

3.0𝑃cr difference between rectangular ring and T-shape ring
is 0.085MPa. It is thus clear that adopting small spacing
rectangular ring ismore reasonable, and themanufacture and
building construction are more convenient.

(b) Stiffening Ring Appropriate Size. The computed results
show the variation trend of critical external pressures of
stiffening ring with 𝑎 and 𝑏/𝑎. For the different 𝑎, the rising
interval of 𝑃cr with 𝑏/𝑎 is different. Tables 4 and 5 show
the appropriate range of 𝑏/𝑎 and the critical pressure in the
conditions of different 𝑎.

Figure 6 illustrates that under the same stiffening ring
thickness, the upper limit of 𝑃cr rising interval is unchanged,
and it has no relation with the relative ring spacing. For
example, when 𝑎 is 40mm and 𝐿/𝑟 ∈ [0.1, 3.0], the
corresponding 𝑏/𝑎 with the maximum 𝑃cr is 4.5.

(c) Coupling Rule and Its Application. It can be seen from
calculated results that stiffening rings with different cross sec-
tion sizes,layout spacing,their bucking curves have coupling
phenomenon. Therefore, by adjusting cross section sizes and
layout spacing of stiffening rings, the antibuckling capacity

of penstock and stiffening ring can be coordinated to the
optimal state.

5. Case Study

5.1. Setting of Computation Conditions. The computation
conditions of external pressure stability of embedded stiff-
ened penstock in the Yachi river hydropower station include
maintenance working conditions and constructing condi-
tions. In the maintenance working conditions, normal exter-
nal pressurewater head𝐻

1
is 50m. In the checking condition,

external pressure water head𝐻
2
is 80m. In the constructing

condition, grouting pressure of concrete 𝑃 is 0.3MPa. In the
above computing conditions, themaximumexternal pressure
water head is 0.80MPa (𝐻

2
= 80m), design external load

is 𝐾 × 0.80MPa, 𝐾 is safety coefficient, and 𝐾 is 1.8. In this
case, the design external pressure of penstock is 1.8 × 0.80 =
1.44MPa.

5.2. Stability Design of the Penstock. The penstock stability
analysis and design was respectively carried out by Mises [1],
Lai and Fang [2], and Liu and Ma [7]. Among them, the
stiffening ring stability design method adopts formula (19) to
compute. The calculate results are shown in Table 6.

Adopting semianalytical finite element method to design
penstock separately considers two situations of that simple
supported role of stiffening ring and clamped role of stiffen-
ing ring.

The inside radius of penstock is 2.5m, stiffening ring
spacing 𝑙 is 2.0m, the penstock material is 16Mn (elastic
modulus 𝐸 is 210GPa, Poisson ratio 𝜇 is 0.3, and yield
strength𝜎 is 325MPa), and the initial crack between penstock
shell and its outside concrete Δ is 0.5mm. Using the above
several calculation methods obtain the calculation results
(shown in Table 5) of external pressure stability of embedded
penstock on China’s YACIHE hydropower station.

The computed results show that Mises method compu-
tational results are basically situated between two computa-
tional results that calculated by semianalytical finite element
method (two support forms of stiffened ring). Simulated
results are close to the computational results of semianalytical
finite element method with clamped stiffening ring.

Therefore, Mises calculation method can be used as main
method of stiffening penstock stability design under the
external pressure. Reference [2] method computed results
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Table 5: Part of computing results of 𝑃cr in the case of the different parameters 𝑎.

𝑃cr (MPa) 𝑏/𝑎

𝐿/𝑟 𝑎 (mm) 0.5 1.5 1.9 2.1 2.3 2.9 3.1 5.5

0.1

20 543.01 579.15 608.17 626.09 646.29 720.15 748.92 1195.9
30 558.04 682.73 772.08 823.19 877.52 1051.2 1109.9 1619.6
40 581.2 843.5 994.4 1069.9 1142.7 1329.6 1378.6 1480.9
60 657.5 1152.9 1280.3 1316.6 1336.4 1320.6 1297.9 886.4
80 766.1 1234.5 1223.0 1192.7 1153.4 1013.5 966.3 562.9
100 881.6 1139.7 1036.4 978.14 920.6 766.4 722.5 412.6

0.5

20 108.60 115.83 121.63 125.21 129.26 144.03 149.78 239.19
30 111.60 136.64 54.41 164.64 175.50 210.25 221.98 323.92
40 116.2 168.71 198.9 213.9 228.5 265.9 275.7 296.2
60 131.5 230.6 256.0 263.3 267.3 264.1 259.6 177.28
80 153.2 246.9 244.6 238.5 230.7 202.7 193.26 112.6
100 176.3 227.9 207.3 195.6 184.1 153.3 144.5 82.5

0.9

20 60.33 64.35 67.57 67.56 71.81 80.02 83.21 132.88
30 62.00 75.86 85.79 9.46 97.50 16.80 123.32 179.95
40 64.6 93.7 110.5 118.9 126.9 147.7 153.2 164.5
60 73.1 128.1 142.3 146.3 148.5 146.7 144.2 98.5
80 85.1 137.2 135.9 132.5 128.2 112.6 107.4 62.5
100 97.9 126.6 115.2 108.7 102.3 85.2 80.3 45.8

3.0

20 18.01 19.31 20.27 20.87 21.54 24.00 24.96 39.86
30 18.60 22.76 25.74 27.44 29.25 35.04 36.99 53.99
40 19.4 28.1 33.1 35.7 38.1 44.3 45.9 49.4
60 21.9 38.4 42.7 43.9 44.5 44.0 43.3 29.5
80 25.5 41.2 40.8 39.8 38.4 33.8 32.2 18.8
100 29.4 37.9 34.5 32.6 30.6 25.5 24.1 13.8

Table 6: Computational results of various calculation methods.

Shell thickness

Mises method Semianalytical finite
element method Lai-Fan method Proposed method

in this paper
Stiffening ring as
simple supported

Stiffening ring as
fixed supported

𝑃cr
MPa 𝐾

𝑃cr
MPa 𝐾

𝑃cr
MPa 𝐾

𝑃cr
MPa 𝐾

𝑃cr
MPa 𝐾

20 1.529 1.91 0.859 1.07 1.595 1.99 2.716 3.40 1.579 1.97
22 1.965 2.46 1.144 1.43 2.123 2.65 3.462 4.33 2.273 2.84
25 2.690 3.36 1.678 2.10 3.115 3.89 4.795 5.99 2.916 3.64
27 3.266 4.08 2.114 2.64 3.924 4.91 5.846 7.31 3.784 4.73
29 3.926 4.91 2.619 3.27 4.862 6.08 7.031 8.79 4.592 5.74

Table 7: The calculation results of stiffening ring stability.

Shell-thickness (mm) Ring-thickness (mm) Ring plate-high (mm) Stiffening ring instability
Instability pressure (MPa) 𝐾

20 20 300 2.380 2.98
22 22 300 2.685 3.36
25 25 300 3.159 3.95
27 27 300 3.468 4.36
29 27 300 3.823 4.78
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have the great deviation. Meanwhile, this paper method is
also validated.

The computed results also illustrate that when pen-
stock shell thickness, respectively, is 20mm and 22mm, the
safe coefficient calculated by semianalytical finite element
method (stiffening ring played simple-supported function)
is less than 1.8 and cannot meet the requirements. However,
this method considers penstock resistant external pressure
capability in the case of the stiffening ring bucking, but
actually penstock resistant external pressure capability should
be higher than this value. The safety coefficient of other
method computational results is greater than 1.8 and meet
the requirements. For security purposes, penstock shell thick-
ness, respectively, is 20mmand 22mmand the stiffening ring
spacing can be adjusted to 1.5m; at this time, the calculated
results by semianalytical finite element method (stiffening
ring played simple-supported function), respectively, are
1.557MPa (safety coefficient 1.95) and 2.072MPa (safety
coefficient 2.59) and meet the requirement.

5.3. The Buckling Analysis of Stiffening Ring. Set the size
of stiffening ring, using formula (19), to calculate critical
external pressure of the stiffened ring.The calculation results
are shown in Table 7.

From Table 7 we can see that when the penstock shell
radius is 2.5m, stiffening rings spacing is 2.0m, penstock
thickness is 0.02m, and the stiffening ring height is 0.3m; the
computational result of 𝑃cr is 2.380MPa, 𝑃cr = 2.380MPa >
1.44MPa (𝐾 × 0.8); therefore, the stiffening ring is stable;
when penstock shell thickness is 0.022m, the critical external
pressure of stiffening ring is 2.685MPa, and the stiffening ring
stability is more reliable.

6. Conclusions

This paper analyzed characteristics and drawbacks of dif-
ferent calculation methods of penstock external pressure
stability problem and proposed a simulation calculation
method based on immune network. Caculation example
demonstrates the feasibility of the method. The method
provides a newdesign approach for embedded stiffening pen-
stock external pressure stability problem in the hydropower
station building engineering. The main conclusions are as
follows.

(1) By analyzing the shortcomings of various calculation
methods of that stiffening penstock external pressure stability
problem in the current design of hydropower penstock,
this paper presented simulating model of the problem. In
simulation solving process, this paper adopts the immune
evolutionary programming designed neural network and
effectively overcomes shortcomings of hidden layer neurons
and network structure which is difficult to determine in the
traditional BP network, increasing convergence speed and
improving global convergence capacity of the network. By
comparing the results calculated by this paper calculation
method and Mises calculation method (see Table 2 and
Figure 3), we verify the calculation accuracy of this paper
presented algorithm.

(2) The results reveal that different section sizes and
different layout spacing stiffening rings, their critical pressure
bucking curves have coupling phenomena. Therefore, in
external pressure stability design of stiffening penstock, we
can appropriately adjust stiffening rings sectional size param-
eters, stiffening rings spacing, and stiffening ring section
structure, to make the bearing capacity of stiffening rings,
penstock bearing capacity coordination, penstock external
pressure stability, and its strength safety coordinated.
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