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I present the status of direct dark matter detection with specific attention to the experimental results and their phenomenological
interpretation in terms of dark matter interactions. In particular I review a new and more general approach to study signals in
this field based on nonrelativistic operators which parametrize more efficiently the dark matter-nucleus interactions in terms of a
very limited number of relevant degrees of freedom. Then I list the major experimental results, pointing out the main uncertainties
that affect the theoretical interpretation of the data. Finally, since the underlying theory that describes both the dark matter and
the standard model fields is unknown, I address the uncertainties coming from the nature of the interaction. In particular, the
phenomenology of a class of models in which the interaction between dark matter particles and target nuclei is of a long range type

is discussed.

1. Introduction

One of the most exciting open questions at the interface
between particle physics and cosmology is the nature of
Dark Matter (DM). The first person who provided evidence
and inferred the presence of DM was a Swiss-American
astrophysicist, Fritz Zwicky. He applied the virial theorem
to the Coma cluster of galaxies and obtained evidence of
unseen mass. Roughly 40 years following the discoveries of
Zwicky and others, Vera Rubin and collaborators conducted
an extensive study of the rotation curves of isolated spiral
galaxies. They announced the discovery that the rotational
curves of stars in spiral galaxies exhibit a characteristic flat
behaviour at large distance in contrast with Keplers law.
Many other evidence of unseen mass on distance scales
of the size of galaxies and clusters of galaxies appeared
throughout the years, but the most precise measurement of
the total amount of DM comes from cosmological scales. In
particular, the measurements of modern precision cosmology
(the Cosmic Microwave Background (CMB) and the surveys
of the Large Scale Structure (LSS) of the Universe) provide
the current most relevant evidence. Apart from the qualitative
agreement, it is the quantitative fitting of the wealth of
available data that allows the amount of DM to be one of
the cosmological parameters now most precisely measured

(Qxh2 = 0.1199 +0.0027; see [1, Table 2]). Therefore, we have
compelling evidence of unseen mass, but the microscopic
features of this new kind of matter remain unknown yet.
Direct and indirect searches may shed light on the nature of
DM, and therefore a careful study of their phenomenology is
fundamental. For a pedagogical review on this subject, see,
for example, [2].

Direct searches for DM aim at detecting the nuclear
recoils arising from scattering between DM particles and
target nuclei in underground detectors. DM direct detec-
tion experiments are providing exciting results in terms
of measured features which have the right properties to
be potentially ascribed to a DM signal. For example in
addition to the long-standing DAMA results, nowadays
there are other experiments, such as CoGeNT, CRESST-
I, and CDMS-Si that start to see some anomalies in their
counting rates. On the other hand, the situation in this
field is extremely unclear and confusing, because, on top
of these positive result experiments, the constraints coming
from null results, like XENON100, COUPP, PICASSO
and very recently LUX, are very stringent and put the
interpretation of the anomalies in terms of a DM interaction
in serious trouble. Nevertheless, there are at least two main
caveats when the results from the experiments commented
upon above are interpreted. The first is that one has to



treat with great care the fine experimental details associated
with the results quoted by each experiment. The second
caveat is instead associated with the interpretation of the
data within a very simple-minded DM model. For instance,
the DM-nucleus spin independent contact interaction is
just a benchmark example. Upon relaxing some of these
assumptions, the current complicated experimental puzzle
can probably be solved.

The scope of this work is to present the status of direct
DM detection with specific attention to the experimental
results and their phenomenological interpretation in terms
of DM interaction. In particular in Section 2, I review a
new and more general approach to study signals in this
field based on nonrelativistic operators which parameterize
most efficiently the DM-nucleus interactions in terms of
a very limited number of relevant degrees of freedom. In
Section 3, I review the experimental results and their inter-
pretation in terms of the “standard” spin independent (SI)
interaction. I list then the main uncertainties that affect the
theoretical interpretation of the data: this is a very promising
area of research since only major advancements here can
probably reconcile the complicated puzzle showed by the
experiments up. Finally in Section 4, I pose my attention on
the uncertainties coming from the nature of the interaction.
In particular the phenomenology of a class of models in
which the interaction between DM particles and target nuclei
is of a long range type is discussed.

2. Basics of Direct Detection Computations

2.1. Kinematics. As already stated, when a DM particle
scatters off a nucleus, depending on the DM properties, one
can envision at least two distinct kinematics, the elastic and
the inelastic one. The elastic scattering is represented by

X + '/V(A./V’Z/V) — X + '/V(AA/’ Z/V)recoil’ (1)

at rest

while the inelastic is

Xt ‘/V(A./V’ Z/V) - X, + ‘/V(A/V’Z-/V)recoil' (2)

at rest

In (1) and (2), xy and XI are two DM particle states, and A ,
Z 4 are, respectively, the mass and atomic numbers of the
nucleus /.

We know, thanks to rotational curves data, that the
velocity of y in the vicinity of the Earth is of the order of 10°c.
Hence the scattering between a DM particle with velocity v
and mass m,, and a nucleus at rest with mass m , occurs
in deeply nonrelativistic regime. This is analogous with the
collision between two billiard balls and therefore the recoil
energy can be simply obtained by considering energy and
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momenta conservation separately. In the detector rest frame,
such scattering would end up into a nuclear recoil of energy:

~ 2;,1)2(/‘,1/2 1- (vf/sz) — /1= (v}/v?) cosB

E
R m, 2

>

v, = 0, elastic scattering,

v, #0, inelastic scattering,

(3)

where p, = m m . [(m, +m) is the DM-nucleus reduced
mass, 0 as usual is the scattering angle in the center-of-mass

frame, and v, = /26/p, - is a threshold velocity. Here § =
m' — m_ is the mass splitting between y and y', and the
X X ’

equation above holds for § <« m!, m, . Elastic scattering
occurs for § = 0, while § # 0 implies inelastic scattering. The
minimal DM velocity providing the Ey recoil energy can be
then obtained by putting 6 = — in (3). One gets

E 1)
Vmin(ER): \]mﬂ/ £ <1+ [/lX/V )

2#)2(/1/ m yEp

(4)

2.2. Formalism of Nonrelativistic Operators. Having a dis-
posal the basic quantity v, that fully describes the kine-
matics of the DM-nucleus scatterings in (1) and (2) and the
differential rate of nuclear recoil expected in a given detector
can be achieved by weighting the differential cross section
do /dE; with the DM velocity distribution f;(?) in the
velocity range allowed by the kinematics. It reads as follows:

dR, &4 po J Yese 3 do
- - d V) —= )E >
dER  my My Jvoin(Er e ) dEg (v E) ©)

where & ;- are the mass fractions of different nuclides (£, =
10°N,ym ,{ ,/kg A, where N, = 6.022 x 10* is Avo-
gadros number, { , are the numeric abundances and A =
Y (A, and p, = 03GeV/em’ is the DM energy
density at the Earth’s location. This is the canonical value
routinely adopted in the literature (see, e.g., [2-4]). Recent
computations have found a higher central value of it, still
subject for some debate [5-7]. The integral in the right-hand
side of the equation above is a key ingredient because it
contains all the information related to the geometry of the
DM halo, the nature of the DM-nucleus interaction, and in
turn the nuclear response of the target. In the following we
present the formalism of nonrelativistic (NR) operators and
then we describe how to write down the main observables in
terms of it.

(i) As already stated, the weight of the velocity integral
is the DM velocity distribution fg(¥). In the rest
frame of our Galaxy it can be roughly approximated
with a Maxwell-Boltzmann distribution due to the
fact, as pointed out in [8], that the violent relaxation
of the gravitational potential at the formation of
the Milky Way leads to fast mixing of the DM
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phase space elements. Therefore, DM particles were
basically frozen in high-entropy configuration which
are indeed Maxwell-Boltzmann-like. This has been
roughly confirmed by some recent numeral simula-
tion, but as one can see in [9, Figure 2], there are
some deviations due to the DM assembly history of
the Milky Way. Indeed one can see different features
both at low and high velocities that of course are
not present in the case of a Maxwell-Boltzmann
distribution. Furthermore the geometry of the halo
predicted by this kind of numerical simulation is not
exactly spherical but tends to a triaxial configuration
(see, e.g., [10]).

Keeping in mind that this is not the truth because
we have not directly measured the properties of the
DM halo yet, what we know for sure is that, since we
are setting in the Earth laboratory frame, one has to
boost the DM-nucleus relative velocity with the drift
velocity of the Sun around the galactic center and the
Earth’s orbital velocity projected in the galactic plane.
Therefore the DM velocity distribution fz(V) in the
Earth frame is related to the DM velocity distribution
in the galactic one f5(w) by the Galilean velocity
transformation f5(V) = fo(¥ + Vg(t)), where

Vg (£) = Vo + 7 (£). (6)

Here V., = V5 + Vg is the sum of the galactic rotational
velocity of the local system ¥ = (0, v,,0) (here v, =
220 + 50 km/s is the local DM velocity) and the Sun’s
proper motion Vg = (10,13,7)km/s with absolute
value vy, = 233 £ 50km/s, while V4(f) is the time
dependent Earth’s orbital velocity with period of one
year, phase around June 2nd (when it is aligned to
Vo), and size vy = 30km/s, and it is inclined of an
angle y = 60" with respect to the galactic plane. More
details can be found in [11-13]. Since in (6) the Earth’s
orbital velocity projected in the galactic plane v, cosy
is relatively small compared to v,,, we can approximate
vg(t) with its component directed toward the galactic
center. We can then write

7)

vg (t) = vy + Avcos [

2n(-9))

T

where Av = vg cosy = 15km/s. Here ¢ = 152.5 days
(June 2nd) is the phase and 7 = 365 days is the period
of the Earth motion around the Sun.

Therefore, in general, it is expected an annual modu-
lation in the counting rate of direct detection exper-
iment, as the incoming flux of DM particles toward
us contains small oscillatory terms due to the Earth’s
proper motion around the Sun during the years. More
details on this model independent signature can be
found, for instance, in [14, 15]. It is worth stressing
that looking for an annual modulation of the counting
rate in direct detection is very challenging from the
experimental point of view, simply because the mod-
ulus of the time dependent component of the velocity

is relatively small compared to the constant one; in
better words, the size of the modulated signal that
experiments like DAMA and CoGeNT are looking
for is suppressed with respect to the unmodulated
one, due basically to the collective motion of the Solar
system around the galactic center.

(ii) In the nonrelativistic limit the differential cross sec-

tion can be written in the usual form:

do

1 1 1
dE,

(v, Eg) = || (8)

321 mym v

where | /V|2 is the DM-nucleus matrix element that
encodes all the information related to the nuclear
physics and the nature of the interactions. Since, as
already stated, the velocity of the DM particles in
the vicinity of the Earth is much smaller than the
speed of light, the framework of relativistic quantum
field theory is not too much appropriate to study
signals in this field, especially if we do not have any
clue about the underlying theory that describes the
DM-quark interactions. A more useful and general
framework is actually the one based on nonrelativistic
operators. Indeed, since, for the elastic scattering,
the relevant degrees of freedom are the DM-nucleon
relative velocity ¥, the exchanged momentum 4, the
nucleon spin sy (N = p, n can be proton or
neutron), and the DM one 5, (if different from zero),
the scattering amplitude will then be a rotationally
invariant function of this variables. In this regard,
with ¥, g, Sy, and §, [16], we can construct a basis
for 16 operators, w)i'xich includes all possible spin
configurations (the complete list and the numbering
of the nonrelativistic operators can be found in [17-
19]). The DM-nucleon matrix element can then be
written as a linear combination of these operators,
with coefficients that may depend on the momenta
only through the ¢* or v* scalars (DM models feature
a long range interaction with the Standard Model
fermions provide perhaps the most notable example.
Indeed, in this case, the differential cross section is
enhanced at smaller exchanged momenta, due to the
negative power dependence of q. A specific realization
is offered by models in which DM particles can
carry small but nonzero electric charge, electric dipole
moment, or magnetic one. Their phenomenology in
the context of DM direct searches has been studied in
[20-31] and references therein.). In particular it reads

16
My =Y N (m) O, ©)

i
i=1

where the coefficients ¢ are functions of the free
parameters of the underlying relativistic theory, such
as mediator masses, mixing angles, and couplings
constants (collectively denoted by A), and the DM
mass m,. For instance, if the interaction between



a fermionic DM x and the nucleon N is described
by the “standard” SI Lagrangian gy/A® Yx NN,
the only nonrelativistic operator involved will be
the identity (01" = 1[). Before moving on, it
is worth stressing that the operators above, which
entirely describe the nonrelativistic physics of the
DM-nucleus scattering, are many and they can either
depend on the exchanged momenta § or the relative
velocity V. As a consequence, focussing on just one
operator (e.g., O)'") is not the most model indepen-
dent way to study signals in direct DM searches,
since theories can predict several operators entering
together with the possibility that some of them may
even interfere.

Since now the nucleus is of course made of protons
and neutrons, one has to correct the DM-nucleon
matrix element (9) with the nuclear responses, which
are a sort of form factors that take account of the finite
size of the target nuclei. According to [17, Equation
(55)] we can then write the spin-averaged amplitude
squared for scattering off a target nucleus ./ with
mass m ;- as

) m/y N N (NN)
= Z P )
N i,j=1 N,N'= =p;n
(N.N')
The F; i (v, Eg, /) are the nuclear responses and

they depend critically on the type of scattering
nucleus //: they are also functions of m,, v, and the

nuclear recoil energy Ex = g°/2m,. In Figurel,
the nuclear responses for both light element (on
the left panel) and heavy one (on the right panel),
considering two completely different kinds of inter-
actions, are depicted. On a more specific level, in
thick red the total nuclear response for the standard
SI interaction is shown. As we can see, in the energy
range of interest in direct DM experiments (few keV),
it is enhanced by the canonical A, factor: this is
due to the fact that, in this case, the incoming DM
particles see the nucleus as a point-like object with
A y scatter centers. On the other hand, we show in
blue the nuclear responses of a completely different
type of interaction which is both momenta and spin
dependent (@NR = (5, - )5y - ). This type of inter-
action can give rise 1%( the DM-nucleus interaction is
mediated by a pseudoscalar particle. We can see that
the nuclear responses are dominated by the scattering
with protons, simply because neither the fluorine
nor the iodine has unpaired neutrons and moreover
the interaction goes to zero in the small momenta
transferred limit.

A complete set of these nuclear responses for each
pair of nucleons (N, N'), each pair of nonrelativistic
operators (i, j), and for several target nuclei ./ has
been provided in the appendices of [17]. This is
extremely useful because, for the first time, different
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types of interactions can be studied in a more general
ground. However, since this kind of computations is
quite new, the uncertainties, especially for the spin,
momenta, and velocity dependent interactions, are
still quite large.

Having a disposal the general relation of the DM-nucleus
matrix element (10), the differential cross section (8), and in
turn the rate of nuclear recoil (5) can be rewritten, following
[32], in a very general way. It reads

‘“‘”-mz Y & (hm,)

i,j=1 N,N'=p,n
& (Am ) FEN (B, 1),
(11)
where we defined
Po 1 1
= 20 (12)
m, 321 m)z(mN
FON (B )
Vese 1 ) (13)
. j Syl fo (94 75 (0) FON) (v, By ).
v y

min(ER)

2.2.1. “Standard” SI Contact Interaction. To give a concrete
example, in the following the coeflicient and the nuclear
responses for the “standard” SI contact interaction are showed
explicitly. In particular, when experiments present results in
terms of this interaction, they implicitly assume (probably
inspired by supersymmetric neutralino scattering) the fol-
lowing DM-nucleon effective Lagrangian:

351 = /\SIX)CNN (14)

From this the DM-nucleon matrix element can be obtained
by contracting (14) with initial and final states of the scatter-
ing. Performing then the nonrelativistic limit one gets

ﬂé}] = <XN 'Zé\{' XN> = 4AngmN@II\]R, (15)
where )® = [ is the operator that describes the nonrela-
tivistic limit of (14) and the coefficient is obviously given by
Q ()LSI,mX) = 4AngmN.

For the SI scattering, DM-proton and DM-neutron cou-
plings are customarily assumed to be equal and thus )‘1571 =
A = Ag; (isospin violating process is not taken into account).
Plugging back then the coefficient in the general equation (11)
and defining og; = A3,/ - p3; (uy is the DM-nucleon reduced
mass) to make contact with the usual physical cross sections,

the differential rate of nuclear recoil reduces to the very well-
know compact form:

dR/V E/V Po

dE P 2#2 ogFy (Eg) I (Eg) |,  (16)
R
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FIGURE 1: Nuclear responses of the fluorine (a) and the iodine (b) targets considering two completely different types of interactions. On a
more specific level, we show, in red, the nuclear responses for the “standard” SI contact interaction, while in blue those for another kind of
interaction described in the nonrelativistic limit by the operator @?R =5, - 4)(3y - §). The different hatching refers instead to the possible
choices of nucleon pairs in the nucleus. In particular, the solid, dashed, and dotted lines are for (p, p), (n, 1), and (p, n) pairs, while the thick
ones are obtained by summing over all of them (total nuclear responses). Notice that the total nuclear responses for the “standard” SI contact

interaction (thick red lines) reduce to AZJV.FPZI (g), where FI%I

elm elm

where we define the total SI nuclear response as

FY ()= Y Ey™ (B ). 1)
N,N'=p,n

Here, since AY, = A%, the total nuclear response reduces to

the square of the customary Helm form factor [33] multiplied
by the coherent enhancement of the cross section A”. In
particular it reads F{'(Eg) = A’/ F},.(Eg). The function
J(Ep) = j:;: &Evf(® + Pg(t))/v is instead the velocity
integral encountered many times in the literature. It is worth
noticing that ¥ (Ey) can be written in this way because in the
“standard” SI interaction the operator that the describes the
nonrelativistic limit of the effective Lagrangian does not carry
any dependences on the relative velocity v. In Section 3.2
the interpretation of the experimental results in terms of the
“standard” SI interaction is briefly reviewed.

2.3. Experimental Observables. Since, as already stated, the
Earth’s orbital velocity projected in the galactic plane is
relatively small compared to the drift velocity of the Sun, we
can then expand the recoil rate (11), assuming that the velocity

(q) is the customary Helm form factor [33].

distribution is not strongly anisotropic. Then, by means then
of (7), one gets

dEg ©' dEgl, .,
18)
O ARyl s [M]
ovg dEg Vemve T

In order now to properly reproduce the experimental
rate of nuclear recoil and in turn the expected number of
events in a certain energy bin, one should take into account
the response of the detectors as well. It can be done by the
following energy convolution and transformation:

aFOL o) g 0 o
dE' ~ & , rRF o\ rbr dE, ©*

where E' is the detected energy and the functions
H +(qyEg, E') and e(E") are the energy resolution centered
in q,Ep and the detector’s efficiency, respectively. Here
the sum runs over the different species of the detectors
(e.g, DAMA is a multiple target experiment composed
by crystal of sodium and iodine) and g, is the so-called



quenching factor that takes account of the partial recollection
of the released energy in the detector. After convolving with
all the experimental effects, (19) must be averaged over the
energy bins of the detector. For each energy bin k, we then
obtain the number of the unmodulated events Nshk and of

the modulated ones N « as

dR
ey 1
0k = Wk AE, dE'|, -, (20)
0 dR
N = AJ dl ——|
mk = WAV AE, avE dEI - (21)

where wy is the exposure (expressed kilograms per day) and
AE, is the width of the kth-esime energy bin. N, and N,
are the relevant quantities that one can use for the analysis of
the experiments which address the annual modulation effect,
namely, DAMA and CoGeNT. For the other experiments,
only N(t)hk is instead relevant.

Collecting all the elements in the previous equations we
expand (20) and (21) and write

M=XY T &

i,j=1 N,N'=p,n

)G (bmy)

X 3‘7(NN) (mx,k)

VE=Vo

(22)

Y () e (hmy) -

ovg

mk—XAvZ Z

j=1 N,N'=p,;n

X gg’N’) (mx,k)

VE=Vo

Here F 1(1]\1 N ’>(mX, k) is a sort of integrated form factor that
encapsulates all the information related to nuclear physics,
astrophysics, and the detector dependency of the rate. There is
one of these factors for each energy bin k of each experiment
under consideration and for each choice of the operators pair
(i, j) and nucleons pair (N, N'). It reads explicitly

EJ:E,IJ\']’NI) (mX’ k)

~w Yt | de(E)
N

Ej

(23)
x J dEg H ¢ (quR, E’)
0

><97(NN)(ER,/V).

It is worth noticing that the linearity of the expected
number of events in the integrated form factors is a funda-
mental ingredient. This, indeed, lets us parametrize the model
dependent part of the rate from the model independent

one, encapsulated in the function #; (NN (mX, k). Therefore,

if the experimental collaboratlons, 1nstead of presenting
the experimental results in terms of a specific DM model,
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release all of this finite number of integrated form factors,
one will be easily able to obtain the expected number of
events for any kind of interactions, whose particle physics
is completely encapsulated in the coefficient cf\] . A first
example of the potentiality of such parametrization has been
presented in [32]. In particular the authors provide a self-
contained set of numerical tools based on the integrated form
factors above, to derive the bounds from some current direct
detection experiments on virtually any arbitrary model of
DM elastically scattering on target nuclei.

3. Direct Detection Status

3.1. Experimental Landscape. The elusive nature of DM parti-
cles makes their detection a challenge for experimentalist: in
fact, considering typical atomic masses for the target nuclei
of m, = 100GeV and typical properties for the DM halo
(Maxwell-Boltzmann distribution with dispersion velocity
vy = 220km/s), DM particles should induce tiny nuclear
recoil in the range 1 + 10° keV with a total rate lower than
1cpd/kg/keV (here cpd refers to counts per days). Due to this
rare phenomenon, the experimental priorities in this field are
as follows:

(i) the detectors must work deeply underground in order
to avoid the high rate interaction induced by cosmic
rays scattering off on target nuclei,

(ii) they must use active shields and very clean materials
against the residual radioactivity in the tunnel (mostly
a-particles, neutrons, and photons),

(iii) they must distinguish multiple scattering, simply
because DM particles do not interact twice in the
detector, being of course weakly interacting particles.

A variety of different experimental techniques with the
aim of measuring the tiny energy released by a DM interac-
tion have been developed. In the following the main channels
by which the scattered nucleus can deposit energy in the
detectors are summarized as follows.

(i) Scintillation detection: a particle interacting within
a scintillating target induces the emission of light
produced by the deexcitation of exited atoms. This
light can be detected by appropriate photomultipliers.
Typically NaI(Tl) and xenon are used as scintillators.

(ii) Ionization detection: a particle interacting inside a
target produces an amount of free electron-ion pairs
that can be detected with a collecting drift field and a
device sensitive to the electric charge.

(iii) Phonon detection: a particle interacting inside a
detector releases a tiny energy deposition with a
subsequently increase of the temperature. Cryogenic
apparatus working at very low temperature (around
few mK) are able to measure this small variation
making this detection technique possible.

Since various types of interacting particles release a
different amount of energy in the channels commented upon
above, for a better rejection of the background events, most
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of the experiments are designed to be sensitive to more than
one of them. Indeed, thanks to this ability, the ratio between
two channels can be used to distinguish between nuclear (due
to a DM interaction) and electromagnetic recoils.

The only two experiments that do not use this kind
of experimental technique are DAMA and CoGeNT that,
perhaps not coincidentally, were the only two detectors
(until the CRESST-II and recently the CDMS-Si results)
observing an excess in their counting rate. In particular,
since both the experiments are not able to disentangle the
nuclear recoil signals from the electromagnetic ones, they
infer the presence of DM in our halo by exploiting the model
independent annual modulation signature in the counting

rate. As follows, I review the most important experiments in
this field.

3.1.1. DAMA. The DAMA experiment, located at the
National Laboratory of Gran Sasso, is an observatory for rare
processes made of highly radiopure scintillators (NaI(TI)
crystals). In particular the former DAMA/Nal and the
current DAMA/Libra experiments have the main aim of
investigating the presence of DM particles in the galactic halo
by exploiting the model independent annual modulation
induced by a DM interaction.

The DAMA detector is only able to measure the fraction
of energy deposited in scintillation light, while the phonon
excitation due to multiple nuclear interactions is not detected.
This effect, as commented upon in Section 2.3, is taken into
account by the so-called quenching factor. In particular, for
Nal(TI) crystals, one normally considers gy, = 0.3 and gq; =
0.09 [34]. It is, however, known [34-36] that some scattered
nuclei can travel long distances along the crystallographic
axes and planes without colliding with other nuclei. This
process is called channeling effect, and since no phonon
excitation is produced, the scattered nuclei deposit all the
energy in the detector electromagnetically (g, = 1). The
fraction of channeling depends on the nucleus itself, on the
recoil energy and strongly on the temperature. It has been
calculated, for instance, in [35] and, in particular, it has been
found that, for low energy recoiling Na and I'ions, the fraction
of channeled events can be relatively large. Nevertheless, this
result has not been confirmed by other theoretical [37-39]
and experimental studies [40], which instead suggest that the
channeling effect in Nal crystals is negligible.

The DAMA collaboration published results of the
combined DAMA/Naland DAMA/Libra experiments [41,
42], corresponding to an exposure of 1.17 ton-yr for a target.
They observed a cosine-like modulation, present only in the
single-hit events, with a measured period T = (0.999 + 0.002)
yr and a phase t' = (146 + 7) days well compatible with the
roughly 152.30 days expected for DM signals (see the previous
section). The modulation is present only in the low energy
window (2-6) keVee (here, keVee refers to electron equivalent
recoil energy. This must be converted with the quenching
factor in order to get the total energy released to the nucleus
by the scattering process (Ey [keV] = Ej [keVee]/q ,)) and its
amplitude N is equal to (0.0116 +0.0013) cpd/(kg-keV)

m (2-6)
at 8.90 CL [42].

3.1.2. CoGeNT. The CoGeNT experiment employs p-type
point-contact Germanium detectors operating in the Soudan
Underground Laboratory.

Like DAMA, the experiment performs just one of the
techniques commented upon above; namely, the p-type
point-contact germanium detectors only measure the frac-
tion of energy deposited by incident particles in the form
of ionization. The lack of energy measured is again taken
into account by the quenching factor that can be extracted
through the following empirical relation E 4, = O.ZEIIQ'12 [43].
By virtue of its low energy threshold (0.4keVee) and the
ability to reject surface backgrounds, this type of detector
is particularly sensitive to light DM candidates, although
large background contamination may be present for these low
energies.

In 2010 the collaboration has reported a step rise of
nuclear recoil spectrum at low energy which is not directly
explainable in terms of known radioactive background [44].
The energy region probed by CoGeNT partially overlaps
with the one in which the DAMA apparatus reported the
annual modulation signal, and therefore it is natural to inter-
pret the excess at low energy due to a DM interaction. In view
of that, fifteen months of cumulative CoGeNT data (442 live
days) have been also examined in order to look for an annual
modulation signature [45]. In particular the CoGeNT data
seem to favor a cosine-like modulation slightly shifted in
phase with respect to the one measured by DAMA. The
modulation is again only present at low energy with a statis-
tical significance of 2.80° CL, limited by the short exposure.

Very recently, the collaboration presented a 3.4-year
data taking, with an improved analysis that allows a better
discrimination between pure bulk and pure surface events
[46, 47]. In the same energy region, where in 2010 they
observed a step rise of the nuclear recoil spectrum, they still
reported a preference for an annual modulation in the pure
bulk counting rate. Although the statistical significance of the
modulation is modest (2.2 CL), the phase is compatible with
the one observed by DAMA.

3.1.3. CRESST-II. The CRESST-II cryogenic dark matter
experiment, located at the national laboratory of Gran Sasso,
employs 300 g of scintillating CaWO, crystals.

In particular the eight moduli of the experiments measure
the deposited energy in the form of phonons and scintillation
light. The former provides a precise measure of the energy
deposited, while the ratio between them gives an excellent
rejection of the background events.

In 2011 the collaboration completed a 730 kg-day data
taking [48]. In particular, 67 events were found in the DM
acceptance region with an expected background contribu-
tions in the same band which is not sufficient to explain all
the observed events. The resulting statistical significance, at
which the background-only hypothesis is rejected, is roughly
4.50 CL.

3.1.4. CDMS. The CDMS experiment, located at the
Soudan Underground Laboratory, is composed by germa-
nium and silicon cryogenic detectors.



In particular 19 germanium and 11 silicon detectors
measure the deposited energy in the form of phonons and
ionization through superconducting technology. Thanks to
the ability of detecting these two signals, the rejection of the
electromagnetic recoils can be obtained by the ratio among
them.

In 2009 the CDMS collaboration [49] has reported
no significant evidence for DM interaction. In particular,
only germanium detectors were used with an exposure of
612 kg-days. The collaboration observed two events in the
signal region with energy 12.3keVnr and 15.5keVnr (here,
keVnr refers to nuclear recoil energy. Unlike the electron
equivalent recoil energy, it already represents the total energy
released to the nucleus by the scattering process (E [keV] =
Eg [keVnr])), against an expected background of radiogenic
neutrons, cosmogenic neutrons, and misidentified surface
events equal to roughly 0.9 events.

More recently, the collaboration has also presented results
based on the silicon analysis [50, 51]. In [51], a blind analysis
of 140.2kg-days revealed three DM candidate events in
the signal region with an expected background of roughly
0.62 events. A profile likelihood ratio statistical test of the
three events yields a 0.19% probability when the known-
background-only hypothesis is tested, against the alternative
DM + background hypothesis.

3.1.5. Xenon Experiments. Direct detection experiments
based on liquid/gaseous xenon have done stunning pro-
gresses in the last decade. Indeed, thanks to the advantage
in scale ability and to the good reconstruction of the three-
dimensional coordinates, these experiments are among the
largest in terms of fiducial mass.

Discrimination between nuclear and electromagnetic
recoils is achieved by the ratio between the scintillation signal
due to a particle interaction in the liquid xenon and the
subsequent ionization signal in the gas phase of the detector.
Furthermore, the large mass number of the xenon nuclei
makes them an excellent target for the detection of DM
particles with SI interaction. However, the experiments based
on liquid xenon are also sensitive to the #»-DM spin dependent
interaction, by virtue of the unpaired neutron of the '*’Xe
and "'Xe isotopes.

In the following the results of the main experiments using
the double-phase xenon technology are summarized.

(i) XENON experiment: the XENON detector is a two-
phase time projection chamber located at the national
laboratory of Gran Sasso. The first stage of the experi-
ment was installed underground during March 2006,
and it searched for DM interactions until October
2007. In 2008 the collaboration reported a blind
analysis with an exposure of 5.4 x 58.6 kg-days, which
yields no significance evidence for DM interactions
[52].

More recently the XENON10 experiment has been
superseded by XENON100 with more than one
order of magnitude improvement in sensitivity. In
[53], the collaboration reported the results of the last
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run, a blind analysis with an exposure of 34 x
224.6 kg-days which again yielded no evidence for
DM interactions. In particular, the two observed
events in the predefined nuclear recoil energy range of
6.6-43.3 keVnr were consistent with the background
expectation of roughly 1 event.

(iii) LUX experiment: the LUX experiment is a dual-
phase xenon time-projection chamber operated at
the Sanford Underground Research Facility in South
Dakota. Like the XENON100 experiment, it mea-
sures both the scintillation light and the ionization in
the gas phase to disentangle the nuclear recoils from
the electromagnetic ones. In [54], a nonblind analysis
was performed on data, collected with an exposure of
118.3 x 85.3 kg-days. After cuts, 160 events were found
within the signal energy region. The collaboration
found that all of these events are compatible with the
expected electron recoil background.

3.1.6. COUPP. The COUPP experiment operating at SNO-
LAB in Ontario is a 4 kg CF;I bubble chamber. By virtue of
its unpaired proton, the fluorine nucleus gives an excellent
sensitivity for p-DM spin-dependent interactions, while the
iodine enhances the sensitivity for the SI ones.

Particles entering the liquid in the superheated phase
create an ionization tracks, around which the liquid vapor-
izes, forming microscopic bubbles. Bubbles grow in size as
the chamber expands, making the detector able to record
them both photographically and by pressure and acoustic
measurements. The discrimination between nuclear and elec-
tromagnetic recoils can be achieved by choosing an appro-
priate chamber pressure and temperature. Indeed, under
this condition, the abundant gamma-ray and beta-decay
backgrounds do not nucleate bubbles.

In [55], data obtained for an effective exposure to single
recoil events of 437.4 kg-days (taking into account the 79.1%
detection efliciency) were presented. Twenty single nuclear
recoil events passing all the analysis cuts were observed over
the three energy bins. Due to uncertainties in the neutron
background estimation, the collaboration has not attempted
any background subtraction and instead has treated all of
them as DM events.

3.2. Interpretation in Terms of the “Standard” SI Interaction.
There are many studies in literature that try to analyze the
implications of the results of DAMA and the anomalies
in CoGeNT and CRESST-II and recently in CDMS-Si
together with the null results from other experiments in
terms of specific DM models and interactions. A routine
way to compare results from different DM experiments
is by assuming a particular DM velocity distribution and
a certain type of DM-nucleus interaction. The custom-
ary choices that can often be found in literature are (i)
a truncated Maxwell-Boltzmann velocity distribution with
isotropic velocity dispersion v, = 220km/s and (ii) DM
particles coupling through a contact SI interaction with
equal strength to the protons and neutrons. In this case one
customarily chooses the total DM-nucleon cross section o
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defined in Section 2.2.1 together with the DM mass m, as free
parameters, since the bounds and the allowed regions from
different experiments can be compared on the same plot.

In Figure 2 a compilation of the allowed regions of the
positive results experiments and the constraints coming from
null results taken from different experimental collaborations
are shown. Without entering in the details of the different
analysis, we summarize the interpretation of the datasets of
the positive results experiments listed above in terms of the
“standard” SI contact interaction as follows.

(i) The DAMA modulation signal effect has been
shown to be compatible with two areas in the (m,, o)
parameter space, due to the different kinematics
experienced by the two targets in the scintillator. In
particular, a region pointing towards DM masses in
the 10 GeV ballpark and towards a cross section o =
2 x 107 cm? can be associated with a DM particle
scattering oft with sodium (see, e.g., the red con-
tour in the top left-handed plot of Figure 2 denoted
by DAMA/Na). Another region around DM masses
of roughly 60 GeV is instead due to the scattering
with the iodine. In this case the cross section is
enhanced by a larger coherent factor and indeed the
favored value is og; = 107*! cm? (red contour denoted
by DAMA/I).

(ii) The modulation in CoGeNT is mostly concentrated
in the first two energy bins, close to the lower thresh-
old of the detector. If this anomaly is interpreted in
terms of SI contact interaction, it will be fitted by light
DM candidates (around 9 GeV) with a total SI cross
section og; = 3 x 107! cm? (see, e.g., the red contour
in the top right-handed plot of Figure 2).

(iii) Like DAMA, the CRESST-II experiment is a mul-
tiple target detector and therefore more than one
allowed region is in general expected. In particular, as
one can see in Figure 2, the region pointing towards
light DM masses (around 12GeV) and oy = 5 X
107" cm? is due to the scattering with oxygen and
calcium. On the other hand, the one pointing towards
heavier DM mass (around 30 GeV) and cross section
og = 107 cm? can be associated with a DM particle
scattering off with tungstenum. These regions are, for
instance, denoted as gray contours in the top left-
handed plot of Figure 2.

(iv) Very recently, also the 11 silicon detectors of
the CDMS experiment reported an excess in their
counting rate. Again, if the anomaly is interpreted
in terms of SI contact interaction, it will be fitted by
light DM particles (around 9 GeV) with a SI total
cross section ag; = 2 x 107*! cm? (blue regions in the
bottom left-handed plot of Figure 2).

The interesting feature is that all the experiments employ-
ing light target nuclei seem to be compatible with a DM inter-
pretation, which, for the “standard” SI contact interaction,
pin-points the properties of the DM particle quite precisely;
namely, it leads to DM masses in the 10 GeV ballpark and total
cross section in the range (2 x 107" em?-2 x 107 cm?).

On the other hand, the constraints coming from null
results are very stringent, and in particular the XENON100
and recently the LUX results severely exclude the allowed
parameter space of the positive results experiments. On a
more specific level, before LUX, the XENON100 experi-
ment provided the most stringent constraints for a DM mass
above roughly 8 GeV, with a minimum of og; = 1.8x10™** cm?
(see, e.g., the thick blue line in the top left-handed plot of
Figure 2). Nowadays this bound has been beat out by the one
of LUX by a factor ~2.5 (see the blue line in the bottom
right-handed plot of Figure 2). Other relevant analyses can
be found in [56-68].

3.3.  Uncertainties. Nevertheless, since the actual range
of masses and cross section critically depends on several
assumptions, one always bears in mind all the uncertainties
that enter in this field when interpreting the data in terms of
a specific DM interaction.

(i) A first class of uncertainties comes from the poor
knowledge of the properties of the DM halo. The
often used Maxwell-Boltzmann halo with isotropic
velocity dispersion is only a benchmark choice, not
the physical description of it. Other possible choices
(spherical halo with nonisotropic velocity dispersion,
axisymmetric halo, triaxial halo, and the possibility to
have corotating halo with different number densities)
must be taken into account, in order to have a
much better idea of how the velocity distribution
affects the final results. In particular, it has been
recently demonstrated that the uncertainties on the
astrophysical part of the rate can be removed by
comparing different experimental results in the v, ;,
space (see, e.g., [69-77]). In this way one can, for
instance, relax a bit the tension between the positive
results and the constraints showed in Figure 2 up.
However, this is not still sufficient to reconcile the
complicated puzzle the experimental data have left to
us (see, e.g., [77-80]).

(ii) A second class of uncertainties comes from the exper-
imental side. For instance, the direct measurements of
quenching factor are performed with reference detec-
tors, and thus the systematic uncertainties, important
for all the detectors in direct DM searches, could
be larger than what we normally assumed. These
must be carefully investigated, because they produce
a significant shift of the allowed regions in the total
cross section/DM mass plane.

(iii) Together with these main uncertainties, the third and
perhaps the most important class of them comes
from the nature of the DM interaction and in turn
from the nuclear responses of the target nuclei. Most
of the models tested in recent years are based on
the assumption that the mechanism of interaction
is realized through a contact interaction. Deviations
from this standard phenomenological approach are
interesting to study, since, from more general con-
ditions, the DM parameter space can be analyzed.
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In particular, there is a concrete possibility to remove
the uncertainties coming from the nature of inter-
action thanks to the formalism of nonrelativistic
operator reviewed in Section 2.2. On a more specific
level, if the experimental collaborations, in addition
to presenting the results in terms of a specific DM-
nucleus interaction, also provide all the model inde-
pendent integrated form factors, it will be extremely
useful for the community. Indeed, in this way one
can easily compute the expected number of events
for any kind of interactions (e.g., including isospin
violating interactions, momentum-dependent form
factors, and velocity dependent form factors) and
compare it directly with the experimental results.

Therefore the data must be treated very prudently with
a maximally conservative attitude, simply because slightly
modification of the assumptions summarized above can affect
the theoretical interpretation of the experimental results in

a relevant way. In the next section, I will focus on the
uncertainties coming from the nature of interaction and
in particular I am going to show how the allowed regions
and constraints are modified, if an exchanged momentum
dependent DM-nucleus interaction is taken into account.

4. Long Range Interaction

So far, the LHC has not reported any evidences of physics
beyond the standard model. An optimistic point of view is
that the new physics threshold is truly around the corner.
A pessimistic and maybe more realistic point of view is
that the LHC results are instead telling us that the TeV
scale is not a fundamental energy scale for new physics and
therefore all the new theories beyond the standard model
are, let us say, unnatural. Within this picture there is not any
particular reason to expect new particles in the TeV mass
range weakly interacting with ordinary matter. Therefore it
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should be time to ask ourselves whether there are other
indications of the relevant energy scale. DM may play a
central role in this picture. Indeed, the closeness between Q
and Q, usually referred to as a cosmic coincidence problem,
might suggest a profound similarity between the dark and the
ordinary sectors. Indeed, both p, and p, scale as 1 /a® with
the expansion of the Universe, and their ratio is independent
of time. Why these two fractions are then comparable, if
the ordinary and the dark sectors have a drastically different
nature and different origin? A hidden parallel sector (mirror
world (the idea of a mirror world was suggested before
the advent of the standard model (see, e.g., [81, 82]). The
idea that the mirror particles might constitute the DM of
the Universe was instead discussed in [83, 84])) may shed
light on this cosmic coincident problem [85]. Indeed, it is
tantalizing to imagine that the dark world could be similarly
complex (CP violating and asymmetric), full of forces (e.g.,
dark electromagnetism), and matter (dominant constituent
with a mass around few GeV) that are invisible to us. For a
review of mirror dark world; see, for example, [86, 87].

To be more concrete the phenomenology of a complex
dark sector, in which the matter fields are charged under
an extra U(1) gauge group, is particularly interesting. In
this case, the physics of the dark sector in itself can be as
complicated as the one of our sector, providing at the same
time also a feeble interaction between the two worlds. Indeed,
thanks to the following renormalizable Lagrangian:

€ uv
&= 2PUR, (24)

the new U(1) gauge boson ¢ may possess a small kinetic
mixing €, with the ordinary photon. Here F,, and FLV
are the field strength tensors of the ordinary and “dark”
electromagnetism, respectively. One effect of this mixing is
to cause DM particles to couple with ordinary particles with
effective millicharge €ye [88-90], and therefore a Rutherford-
like interaction gives rise if the mass of the new U(1) gauge
boson is smaller than the typical exchanged momentum in
the interaction.

4.1. Derivation of the Main Equations. Apart from the the-
oretical motivations which are interesting and quite strong,
what describes in the nonrelativistic limit the scattering
between millicharged DM particles and the protons (notice
that the interaction here maximally violates the isospin; e.g.,
the DM-neutron coupling is zero) is the following Yukawa
potential:

6¢ eeX —myr
V(?") = ETe ¢ 5 (25)

where ¢ e is the effective millicharge of the protons inside the
nucleus felt by a DM particle with “dark” charge e, . Here m
is the mass of the dark photon that acts like an electronic
cloud which screens the charges of the particles involved in
the scattering. The DM-proton matrix element can be then

1

obtained by performing the Fourier transform of (25) which
writes

00 +1 X
M, =4 mym, J dr2mr? J d cos e 17 %0y (1)
0 -1 (26)

= (q) 00"

where g = (2m E)"? is the exchanged momentum, 6 is
the scatter angle in the centre-of-mass frame, and ¢/ (q°) =
4e¢eexmpmx/(q2 + mi). Since @II\IR = [, the interaction, as
already mentioned in Section 2.2, is SI like the usual case
but with a coefficient which is instead dependent on the
exchanged momentum in the scattering. Summing now over
the total number of protons in the nucleus Z , and, if the dark
sector is made of stable composite particles, over the total
number of charge elementary constituents Z,, the square of
the DM-nucleus matrix element reads

|ty = 16m2,m’ CoLrelyey 2F2 (¢). @
VA m/lfmx q2+mi Helm \4 )>

where F},;,. (¢%) is the usual Helm form factor. Notice that in
general this equation should be also multiplied for the form
factor of the composite DM particle. For our computation we
assume it to be equal to one. Plugging back the DM-nucleus
matrix element in (8) the differential cross section will be

2
doy 8mmy 5 5.5 1 2 2 2
—+ = —Lead’k| 5—— | 2% Fiam (), (28

2
dE, % q* +my

where @ = ¢?/4m is the electromagnetic fine structure

constant and kX = Z eX/e is a factor that measures the

strength of the DM-dark photon coupling.

In order to have a rough comparison with the “standard”
picture (SI contact interaction), the differential rate of nuclear
recoil can be cast in the following form:
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x G (Eg),
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is a normalized total cross section that encapsulates all the

dependences on the dark sector vertex and the kinetic mixing
parameter, and the function
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measures the deviation of the allowed regions and constraints
compared to the “standard” SI contact cross section. Here the
function & (Ey) is a sort of DM form factors which clearly
exhibits two limits.

(i) Point-like limit (g <« m¢): in this regime Z(ER) =
(Z/,,/A/V)Zm‘;\,/m; is independent of E, and there-
fore the interaction is of a contact type. Indeed, the

rate of nuclear recoil turns out to be proportional to
azeék; / m;, which plays the same role of the Fermi’s

constant in weak interaction. The factor (Z /A /V)z
shows up the fact that millicharged DM particles
only couple with protons. Therefore, it is expected
that the allowed regions and bounds in the plane
(m,, agy) will be rigid shifted of a factor ~4 up with
respect to the “standard” SI scenario, in which a DM
particle symmetrically couples both with neutrons
and protons.

(ii) Long range limit (q > m¢): in this regime Z(Ey) =
(ZylA /,,)zm?\,/ (4miVE§) and therefore the differen-
tial cross section acquires an explicit dependence on
the nuclear recoil energy, and a Rutherford-like cross
section gives rise (do ,/dE; oc 1/g*). Experiments
with low energy thresholds and light target nuclei
(e.g, DAMA and CoGeNT) are therefore more
sensitive than the ones with high thresholds and
heavy targets (e.g., XENON100). The compatibility
among the experiments could therefore be improved.

Considering typical nuclei (m , ~ 100 GeV) and recoil
energies (few keV) in the range of interest of the current
experiments, the transition between the two limits is obtained
for my ~ O(10) MeV. Since 4" o m,, increasing m
the transition occurs at lower . Notice that once the long
range regime is reached (1, < 10 MeV), the differential cross
section is independent of the mass of the mediator.

4.2. Results. In our analysis we consider as free parameters
the normalized total cross section 0£y> the mass of the dark

photon my, and of course one of the DM particle m,.
The velocity distribution has been assumed to be Maxwell-
Boltzmann-like with a velocity dispersion v, = 220 km/s. For
the local DM density we have chosen p, = 0.3 GeV/cm®.
For all the positive results experiments we use a different
technique for analyzing the datasets with respect to the one
often found in literature. Specifically, we adopt the same
approach of [91], in which the null hypothesis is tested. From
this kind of statistical test we can then extract the level
at which the absence of signal on top of the background
in CRESST-II and the absence of modulation in DAMA
and CoGeNT is rejected.

In Figure 3 the allowed regions of the positive results
experiments and constraints coming from null results in the
plane (mX, ogy) are shown. For a better visualization of the
transition from the contact to the long range regime, we
have fixed three values of the dark photon mass; namely,
mg = 1GeV (left plot corresponding to the contact limit),
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mg = 30MeV (central plot), and my = 0 (right plot
corresponding to the pure long range regime). In all plots the
solid green contours individuate the regions compatible with
the DAMA annual modulation [41,42], without considering
the channeling effect. The short-dashed blue contour refers
to the region derived from the CoGeNT annual modulation
signal data published in [45] (in [46, 47] the collaboration
reanalyzed the data finding that the background of surface
events was underestimated. In view of that we expect that
the CoGeNT allowed regions in the (mx,afgy) plane will

shrink around its best value, like the one reported for the
“standard” SI contact interaction (see, e.g., the red contour
in the top right-handed plot of Figure2)). The dashed
brown contours individuate the allowed regions compatible
with the CRESST-II excess [48]. For each experiment the
contour lines cover at least one area in the (mX, O‘(‘:;y) plane.

Specifically, they refer to regions where the absence of annual
modulation can be rejected at 7o CL (outer region) and 8¢
CL (inner region) for DAMA, and lo CL for CoGeNT.
For CRESST-II the absence of an excess is instead excluded
at 30 CL (outer region) and 40 CL (inner region).

Very recently, also the 11 silicon detectors of the CDMS
experiment have reported an excess in their counting rate.
Since the results presented in Figure 3 are based on [24]
published in 2011, we do not include a full statistical analysis
of the CDMS-Si datasets. We attempt however an analytical
comparison between the results arising from the interaction
studied here and the standard SI contact picture (blue regions
in the bottom left-handed plot of Figure 2). More precisely,
defining (¥) = ((ER)), where (Eg) = 10keV is the average
recoil energy of the three events observed [51], the CDMS-
Si allowed region in the (m,, o) plane can be projected
in the parameter space of Figure 3, through the relation
(mX,Ugy) = (mX,aSI/(?)). Recalling now that the best fit

value of the SI cross section is agf“ ~2x107* cm?, we expect
thatthe CDMS-Siallowed region in the (m,, ogy) plane will
still point towards light DM candidate, but with a normalized
total cross section agy = A2Si / Zéim; / m}f,aé’f“ = 107 cm?
in the point-like regime (m4> = 1GeV), and
agy = AZSi/Zgiélmgi (ER)z/nft}*\]Ué’fst =~ 3 x 10¥cm? in
the long range one (my = 0).

Constraints, derived at 50 CL, are shown as dashed gray
lines for CDMS-Ge and magenta lines for XENON100. In
particular, in order to bracket as much as possible the uncer-
tainties coming from the poor knowledge of the detection
efficiency close to the lower threshold; for the XENON100
bound, we adopt two approaches: (i) a case (dotted lines) in
which the constraints are computed with the nominal value of
the lower threshold of 4 PHE and of the effective luminosity
[92], which is a sort of quenching factors in liquid xenon and
(ii) another case (dashed lines) in which the constraints are
computed by considering a higher threshold of 8 PHE: this is
in order to determine a situation which is nearly independent
of the poor knowledge of the effective luminosity (especially
at very low nuclear recoil) and more important on the
statistical distribution of the few PHE collected close to the
threshold of the detector. For similar discussions; see [93, 94].
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FIGURE 3: Normalized total cross section as a function of the dark matter mass. For a better visualization of the transition from the contact
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for CDMS-Ge and magenta lines for XENON100. These results have been presented in [24, 25].

In October 2013, also the LUX collaboration announced
their first DM search results. With the data collected in just
85 live-days, they were able to set the most stringent bound
on the SI contact cross section, with respect to the preexisting
limits. We do not perform a full statistical analysis of their
data, since, as already pointed out, the results in Figure 3
are taken from [24]. Nevertheless, since both XENON
and LUX are based on the same double-phase xenon
technology, we can estimate the bound on agy, just by
rescaling the magenta lines in Figure 3 with the exposures of
the two experiments. Naively, we then expect that the LUX
bound will be a factor wy yx /Wxenonigo = 1.5 more stringent
with respect to  XENON100.

We can see, as expected from the discussion above,
that the agreement among the positive results experiments
increases moving towards long range interaction without
being excluded by both the  XENON100and LUX bounds,
if our conservative choice for the lower threshold is taken into
account. In particular, a common region pointing towards a
DM mass around 15 GeV with a normalized total cross section

agy ~ 107* ¢cm? has been found. Since the normalized total

cross section crf;y depends collectively on the kinetic mixing

parameter €, and on the DM-dark photon coupling encoded
in the parameter k)c (see (30)), keeping fixed, for instance,
two values of kx’ namely, kX = (1,10); the best fit for the

kinetic mixing parameter would then be €, ~ (107%,107°).
On the other hand, the significance of the DAMA region
alone gets lower, due to the fact that for pure long range
interaction (q > my) the 1 /q4 drop-off of the unmodulated
signal rapidly overshoots the measured total rate (see [41,
Figure 1]), that of course we treat as an intrinsic constraint
in our analysis. This can be appreciated in more details
in Figure 4, where again the DAMA allowed regions are
shown, but in the (m,,m,) plane. As one can see a 99%
confidence level lower gound on the mass of the dark photon

around 10 MeV is possible to be placed. This is due to
the fact that the unmodulated signal, unlike the modulated
one, is particularly sensitive to the energy drop-oft of the
cross section, which is typical for Rutherford-like scattering.
The situation does not dramatically vary if we change the
properties of the dark matter halo. Indeed, if we consider a
more physical triaxial halo with the same velocity dispersion
in the major axis (right plot of Figure 4), the allowed regions
are only slightly enhanced.

Nevertheless, it is worth noticing that, in a dark world
filled by more than one species in thermal equilibrium,
the DM particles responsible for the annual modulation
may possess smaller velocity dispersion. For instance, in
the context of mirror DM, the dominant species can be
the mirror hydrogen, like our world, while the mass of
the DM particles favored by direct detection experiments
is around 16 GeV (mirror oxigen). If they are in thermal
equilibrium, the relation v, = 1/ V2 (A H/Ao)l/ 2.220km/s <
100 km/s then will hold [21]. In this case the constraints in
Figure 4 are less important, because the raise of the total rate
for low nuclear recoil energy is under threshold (see, e.g.,
[21, Figures 5(a) and 5(b)]).

Since, as already stated, the normalized total cross section
and in turn the rate depend collectively on the kinetic mixing
parameter €, and on the DM-dark photon coupling k,; in the
next section, a complementary class of constraints which are
relevant for DM models featured by a long range interaction
will be presented.

4.3. Complementary Constraints. A first class of complemen-
tary constraints that solely depends on the properties of the
dark photon (kinetic mixing parameter €, and its mass 1)
is the one coming from beam dump neutrino experiments
and supernove observations. In Figure 5 a compilation of
the bounds in the (mg,€4) plane is shown. Specifically,
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on the left panel the shaded blue regions are taken from
[95, 96], while those in the right one represent the latest
constraints on the dark photon properties presented in [97]
(notice that the labels € and m1/ in the plots of Figure 5 stand
for the kinetic mixing parameter €, and the dark photon
mass myg, resp.). As is apparent, the bounds coming from
supernova observations (namely, the energy loss observed
from SN1987a) are the most stringent. They exclude small
kinetic mixing parameter and light mass for the dark photon.
Indeed, in this case, if dark photons were produced in
relevant amount in the centre of a supernova via mixing
with the ordinary photon, the subsequent emission of them
would shorten so that the predicted neutrinos boost that it
would become inconsistent with the measurements made by
KamiokaNDE (see, e.g., [95, 98, 99]).

The allowed regions of the DAMA and CoGeNT
experiments projected in the (1, €;) plane are instead shown
in the left plot of Figure5. Since, as already stated, the
normalization of the rate depends not only on the properties
of the dark photon but also on its coupling with the DM
particles, we present the results for two benchmark values of
k,. for example, k, = 1 (upper orange region) and k, = 10
(f(()wer orange region). We can see that, in the “symmetric”
case k, = 1, only the dark photons with my > 100 MeV can
simultaneously satisfy the constraints and give a reasonable fit
of the positive results of experiments. On the other hand, for
k, 2 50, the whole range is basically unbounded. It is worth
stressing that such large values of k, can be easily obtained
either in models of composite DM particles with large Z
(e.g., mirror models) or in those with a strongly coupled
dark sector. Furthermore, it is also relevant to point out that,
for pure long range interaction (my = 0), the majority of
the bounds, and in particular those coming from supernovae
observations, do not apply, being the direct production of
dark photon forbidden by kinematical reason (see, e.g., [97,
Figure 7]).

A second class of constraints which instead solely
depends on the properties on the dark sector itself is the one
coming from the self-interactions. Indeed, since for this class
of models the DM-DM scattering, given by

ok
V()= —Ze, (32)
r

is not suppressed by €, the self-interactions can easily reach
high values, making the dynamics of virialized astrophysical
objects affected. This is particularly relevant in the limit
my, — 0;indeed, in this case the self-interaction (32) could
be of the same order of the electromagnetic scattering.

A first example of such bounds comes from the observa-
tions of colliding galaxy clusters, like the bullet cluster [100],
which points towards collision-less DM. In particular a quite
robust bound (o})/m, < 1.25 cmz/g on the size of the self-
interaction has been placed by [101]. In order to translate such
bound in a constraint on the dark photon mass, one has to
compute the weighted energy transfer cross section, which
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measures the rate at which energy is transferred in the system.
It reads

(1) = [| Endnf () F () or () 3)

where op(v,) = dedo/dQ(l — cos0) is the two-body
energy transfer cross section. Here f(v) is the DM velocity
distribution, assumed to be Maxwellian, and v, = [V, — V,|
is the relative velocity of the DM particles involved in the
scattering. Considering now the typical velocity of collision
in the bullet cluster of 4700 km/s, a DM mass of 10 GeV, and
two values of kx = (1,10), the bound of 1.25 cm?/ gisexceeded
if the mass of the dark photon is smaller than (1, 20) MeV.

A second example of bounds, which is in principle
relevant for this kind of models, comes from the fact that
quite large self-interaction rapidly drives the DM halo into
a spherical configuration, due to the prompt equipartition of
the energy in the system. In particular, the efficiency of such
process can be roughly estimated by

1
Trel = @’ (34)

where

2
<FT> = JJ d31‘}1(131/2f (vl) f (VZ) nxvrelaT (Vrel) %’ (35)

0

which is telling us the typical time at which the self-
interactions affect the dynamics of a virialized astrophysical
object with number density n, and dispersion velocity v,.
Indeed, if it is smaller than the age of the object, a spher-
ical configuration will tend to form, making such scenario
excluded by few elliptical DM halos observations [102-106].
In particular, in the case of galaxy clusters we get that the
relaxation time is always bigger than the age of the object
(t,, ~ 10" years), making therefore the mass of the
dark photon basically unbounded. On the other hand, if
we consider a smaller halo, like the one of dwarf galaxies,
which are characterized by larger number density and smaller
velocity dispersion, one can in principle put a very stringent
lower bound on the mass of the dark photon of the order of
100 MeV (see also [107, 108]).

Nevertheless, it is worth stressing that the derivations of
the constraints coming from self-interaction are affected by
several uncertainties both from the theoretical and experi-
mental side. Indeed, since the phenomenology of this class
of models is completely different compared to the standard
one, an N-body/hydrodynamical simulation is needed. This
is especially true in the case of multicomponent dark sector,
in which the different equipartitions of the energy among the
DM particles can generate a sort of dark electric and magnetic
fields in the long range regime. Furthermore, since the self-
interaction needed to change their dynamics is in general
of the order of the Thomson scattering (d,,, ~ 1072* cm?),
from trivial analysis dimension of such large cross section, the
following rough estimation yields: the self-interaction is of a
long range type in most of the virialized astrophysical objects
under the assumption that the DM-dark photon coupling is
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of the order of «. In this case, the probability to radiate a dark
photon in the scattering process is then different from zero
and therefore it might well be possible that the DM sector is
dissipative like ours. The time at which energy is transferred
in the system (7,) is no longer a good indicator, since the
relevant quantity that describes the dynamical evolution of
the system is now the cooling time: in particular, for a DM
sector composed by heavy and light species, the dissipation
time due to the soft emission of the dark photon (dark
bremsstrahlung) can be smaller than the age of the virialized
astrophysical objects (see, e.g., [109-111]). In this scenario the
system is no longer stable, and in general it starts to collapse.
By virtue of this fact, we do not consider this last class of
constraints, since dedicated and careful analysis involving
also numerical simulations is needed.

5. Conclusion

Direct DM searches are now characterized by tantalizing
results and hints that make this field very active both
from the theoretical and experimental side. In particular,
in addition to the long standing DAMA results, nowadays
there are other experiments, like CoGeNT, CRESST-II
and CDMS-Si that are starting to observe anomalies in their
counting rates. On the other hand, the increasingly stringent
constraints coming from null result experiments put in
serious trouble the theoretical interpretation of the data, at
least in terms of the simple-minded SI contact interaction. In
this work I discussed the status of direct DM detection with
specific attention to the experimental results and their phe-
nomenological interpretation in terms of DM interaction. In
particular, in the first part I presented a new and more general
approach to study signals in this field based on nonrelativistic
operators. Then I reviewed the experimental results and
their interpretation in terms of the “standard” SI interaction
pointing out all the uncertainties which enter in this field.
In the last part of this work, I investigated a fermionic dark
matter particle carrying a small millicharged and analyzed
its impact on direct detection experiments. I showed that
this kind of long range interaction can accommodate the
positive experimental results. By assuming a conservative
choice for the lower threshold of the  XENON100and LUX
experiments I have demonstrated that this candidate is not
ruled out. I also determined the complementary class of
constraints which are relevant for millicharged DM particles
with long range forces.

Finally, I would like to propose a possible direction
to pursue in order to make sense of the current exciting
experimental panorama based on the formalism of non-
relativistic operators. Indeed, as we have seen in the first
part of this work, it allows us to describe the DM-nucleus
interactions in terms of a very limited number of relevant
degrees of freedom. In this way, it is possible to parametrize
the model-dependent part of the rate from the model-
independent one encapsulated in a sort of integrated form
factors that encode all the dependences on the astrophysics,
nuclear physics, and experimental details. Therefore, since
one is ignorant or agnostic about the underlying theory, I
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would like to encourage a synergy between nuclear physi-
cists and experimentalists in order to provide a complete
set of integrated form factors defined in (23). It would be
extremely useful for the community, because, in this way, one
can compute the expected number of events for any kind
of interaction (e.g., including isospin-violating interactions,
momentum-dependent form factors, and velocity-dependent
form factors) and compare it directly with the experimental
results. Providing the integrated form factors will thus be the
first step towards a model-independent analysis in direct DM
searches.
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