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This paper is concerned with a novel methodology of smoothing analysis process of multicolor point relaxation by multigrid
method for solving elliptically partial differential equations (PDEs). The objective was firstly focused on the two-color relaxation
technique on the local Fourier analysis (LFA) and then generalized to themulticolor problem.As a key starting point of the problems
under consideration, the mathematical constitutions among Fourier modes with various frequencies were constructed as a base to
expand two-color tomulticolor smoothing analyses. Two different invariant subspaces based on the 2h-harmonics for the two-color
relaxation with two and four Fourier modes were constructed and successfully used in smoothing analysis process of Poisson’s
equation for the two-color point Jacobi relaxation. Finally, the two-color smoothing analysis was generalized to the multicolor
smoothing analysis problems by multigrid method based on the invariant subspaces constructed.

1. Introduction

Multigrid methods [1–6] are generally considered as one of
the fastest numerical methods for solving complex partial
differential equations (PDEs), for example, Navier-Stokes
equation in computational fluid dynamics (CFD). As we
know, the speed of the multigrid computational conver-
gence depends closely on the numerical properties of the
underlying problem of PDEs, for example, equating type and
discretizing stencil.Meanwhile, a variety of algorithms for the
components in multigrid are of great importance, for exam-
ple, the processing methods based on smoothing, restriction,
prolongation processes, and so on. So, an appropriate choice
for the available components has a great impact on the overall
performance for specific problems.

Local Fourier analysis (LFA) [5, 7–12] is a very useful tool
to predict asymptotic convergence factors of the multigrid
methods for PDEs with high order accuracy. Therefore it
is widely used to design efficient multigrid algorithms. In
LFA an infinite regular grid needs to be considered and
boundary conditions need to be ignored. On an infinite
grid, the discrete solutions and the corresponding errors

are represented by linear combinations of certain complex
exponential functions. Thus, Fourier modes are often used
to form a unitary basis of the subspace of the grid functions
with bounded norms [5, 7, 12]. The LFA monograph by
Wienands and Joppich [11] provides an excellent background
for experimenting with Fourier analysis. Recent advances in
this context included LFA for triangular grids [13, 14], hexag-
onal meshes [15], semistructured meshes [16], multigrid with
overlapping smoothers [17], multigrid with a preconditioner
as parameters [18], and full multigrid method [19]. In [8], an
LFA for multigrid methods on the finite element discretiza-
tion of a 2D curl-curl equation with a quadrilateral grid was
introduced.

A general definition on themulticolor relaxationwas pro-
vided in [20]. Smoothing analysis of the two-color relaxation
on LFA was given in [21–24], and the four-color relaxation
with tetrahedral grids was presented in [16, 25]. In [26], a
parallel multigrid method for solving Navier-Stokes equation
was investigated and a multigrid Poisson equation solver was
employed in [27]. A parallel successive overrelaxation (SOR)
algorithm for solving the Poisson problem was discussed in
[28], and multicolor SOR methods were studied in [29].
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In the present paper, a novel smoothing analysis process
of multicolor relaxation on LFA is provided with details.
An important coupled relation among Fourier modes with
various frequencies is constructed and expanded to themulti-
color smoothing analysis.The roles of the Fouriermodeswith
the high and low frequencies in the proposedmethod are well
characterized. Thus, by the two invariant subspaces based on
the 2h-harmonics the two-color smoothing analysis process
is well generalized to the multicolor problems.

2. LFA in Multigrid

2.1. General Definition. A rigorous base of the local mode
analysis in multigrid was elaborated [12]. Herein, we are
following [11] as a starting point of our framework.

A generally linear scalar constant-coefficient systemwith-
out boundary conditions is described with a discrete problem
with infinite grid; that is,

𝐿ℎ𝑢ℎ (
⇀
𝑥) = ∑

⇀
𝑛∈𝐽

𝑙⇀
𝑛
𝑢ℎ (
⇀
𝑥 +
⇀
𝑛 ⋅
⇀
ℎ) = 𝑓ℎ (

⇀
𝑥) ,

⇀
𝑥 ∈ 𝐺ℎ

(1)

in which an infinite grid is stated as

𝐺ℎ = {
⇀
𝑥 = (𝑘1ℎ1, . . . , 𝑘𝑑ℎ𝑑) |

⇀
𝑘 = (𝑘1, . . . , 𝑘𝑑) ∈ Z

𝑑
} , (2)

where
⇀
ℎ = (ℎ1, ℎ2, . . . , ℎ𝑑) is the mesh size, 𝑑 denotes the

dimension of ⇀𝑥 , the discrete operator is given by

𝐿ℎ := [𝑙⇀𝑛 ]ℎ
, (3)

and 𝑙⇀
𝑛
∈ R with ⇀𝑛 ∈ 𝐽 is the stencil coefficients [3–

5] of 𝐿ℎ for (2), 𝐽 ⊂ Z𝑑 containing (0, 0, . . . , 0), and ⇀𝑛 ⋅
⇀
ℎ =̂ (𝑛1ℎ1, 𝑛2ℎ2, . . . , 𝑛𝑑ℎ𝑑). From [11, 20], the Fourier eigen-
functions of the constant-coefficient infinite grid operator 𝐿ℎ
in (1) are given by

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) :=

𝑑

∏

𝑗=1

exp(
𝑖𝜃𝑗𝑥𝑗

ℎ𝑗

) = exp (𝑖
⇀
𝜃
⇀
𝑘) , (4)

where ⇀𝑥 ∈ 𝐺ℎ,
⇀
𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑑) ∈ Θ = (−𝜋, 𝜋]

𝑑

denotes the Fourier frequency,
⇀
𝜃
⇀
𝑘 =̂ 𝜃1𝑘1 +𝜃2𝑘2 + ⋅ ⋅ ⋅+𝜃𝑑𝑘𝑑,

and 𝜑ℎ(
⇀
𝜃 ,
⇀
𝑥) is called Fourier mode [3, 5, 20], which is

orthogonalwith respect to the scaledEuclidean inner product
[3, 5, 10]. On grid (2), the corresponding eigenvalues of 𝐿ℎ are
expressed by

𝐿ℎ𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) = �̃�ℎ (

⇀
𝜃)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) (5)

with

�̃�ℎ (
⇀
𝜃) := ∑

⇀
𝑛∈𝐽

𝑙⇀
𝑛
exp (𝑖
⇀
𝜃
⇀
𝑛) (6)

called Fourier symbol of 𝐿ℎ. Further, a Fourier subspace
with the bounded infinite grid function 𝑉ℎ ∈ 𝐹(𝐺ℎ), that is
𝐹(𝐺ℎ) ⊆ 𝐹ℎ, is defined as

𝐹ℎ := span {𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θ = (−𝜋, 𝜋]

𝑑
} (7)

in whichΘlow = (−𝜋/2, 𝜋/2]
𝑑 is referred to the low frequency

and Θhigh = Θ \ Θlow is referred to the high frequency. As

a standard multigrid coarsening [11], a case of ⇀𝐻 = 2
⇀
ℎ is

considered, and infinite coarse grid 𝐺𝐻 is stated as

𝐺𝐻 = {
⇀
𝑥 = (𝑘1𝐻1, 𝑘2𝐻2, . . . , 𝑘𝑑𝐻𝑑) |

⇀
𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑑) ∈ Z

𝑑
} .

(8)

2.2. Smoothing Analysis of Multigrid Relaxation. For multi-
grid relaxation 𝑆ℎ of discrete operator 𝐿ℎ on the infinite
grid (2), if (4) are the eigenfunctions of 𝑆ℎ, then 𝑆ℎ(

⇀
𝜃 )

is the Fourier symbol of 𝑆ℎ. For pattern relaxation [11],
(4) are no longer the eigenfunctions of relaxation operator
𝑆ℎ. However, it leaves certain low-dimensional subspaces of
(4) invariant yielding a block-diagonal matrix of smoothing
operator consisting of small blocks. As presented in [10, 11],
the 2ℎ-harmonics of (4) is defined as

𝐹2ℎ (
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) |
⇀
𝛼 = (𝛼1, . . . , 𝛼𝑑) ,

𝛼𝑚 ∈ {0, 1} , 𝑚 = 1, . . . , 𝑑} ,

(9)

where
⇀
𝜃 =
⇀
𝜃

(0,...,0)

∈ Θlow and
⇀
𝜃

⇀
𝛼

=
⇀
𝜃

(0,...,0)

− (𝛼1 sign(𝜃1),
. . . , 𝛼𝑑 sign(𝜃𝑑))𝜋. If relaxation operator 𝑆ℎ satisfies

𝑆ℎ (𝜑ℎ (
⇀
𝜃

(0,...,0)

,
⇀
𝑥) , . . . , 𝜑ℎ (

⇀
𝜃

(0,...,1)

,
⇀
𝑥))

= (𝜑ℎ (
⇀
𝜃

(0,...,0)

,
⇀
𝑥) , . . . , 𝜑ℎ (

⇀
𝜃

(0,...,1)

,
⇀
𝑥)) 𝑆ℎ (

⇀
𝜃) ,

(10)

that is, 𝑆ℎ : 𝐹2ℎ → 𝐹2ℎ, the matrix 𝑆ℎ(
⇀
𝜃 ) is called Fourier

representation of 𝑆ℎ. Furthermore, an idea coarse-grid cor-
rection operator 𝑄𝐻

ℎ
is introduced [11] to drop out the low-

frequency modes and to keep the high-frequency modes. So,
it is clear that 𝑄𝐻

ℎ
is a projection operator onto the subspace

of the high-frequency modes

𝐹high (
⇀
𝜃) := span {𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θhigh} . (11)

By the same way, a subspace of the low-frequency modes is
defined as

𝐹low (
⇀
𝜃) := span {𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) |
⇀
𝜃 ∈ Θlow} . (12)
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Thus, a general coarsening strategy [11] is stated as

𝑄
𝐻

ℎ
𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) :=

{

{

{

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∈ 𝐹high

0 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∈ 𝐹low.

(13)

Consequently, a smoothing factor [11] on the Fourier modes
for the multigrid relaxation, 𝑆ℎ(𝜔) and 𝑄

𝐻

ℎ
, is yielded as

𝜌 (V, 𝜔) = sup
⇀
𝜃∈Θlow

V
√𝜌(𝑄

2ℎ

ℎ
𝑆
V
ℎ
(
⇀
𝜃 , 𝜔)), (14)

where 𝜔 is the relaxation parameter, V = V1 + V2 denotes the
sum of pre- and postsmoothing steps, 𝑄𝐻

ℎ
and 𝑆ℎ(

⇀
𝜃 , 𝜔) are

the Fourier representations of 𝑆ℎ(𝜔) and𝑄
𝐻

ℎ
, respectively, and

𝜌(𝑀) denotes the spectral radius of the matrix𝑀.

3. Smoothing Analysis of
Two-Color Relaxation

To develop two different processes of LFA for the two-color
relaxation, grid (2) is divided into two disjoint subsets 𝐺𝑅

ℎ

and 𝐺𝐵
ℎ
, referring to as the red and black points, respectively.

Two process steps [11] are required to construct a complete
two-color relaxation 𝑆𝑅𝐵

ℎ
(𝜔). In the first step (𝑆𝑅

ℎ
(𝜔)), the

unknowns located at the red points are only smoothed,
whereas the unknowns at the black points remain to be
unchanged. Then, in the second step (𝑆𝐵

ℎ
(𝜔)), the unknowns

at the black points are changed by using the new values
calculated with the red points in the first step. So, a complete
red-black point process is obtained by iteration

𝑆
𝑅𝐵

ℎ
(𝜔) = 𝑆

𝐵

ℎ
(𝜔) 𝑆
𝑅

ℎ
(𝜔) . (15)

From the process mentioned above, it is noted that the
Fourier modes (4) are no longer eigenfunctions of (15) on
grid (2) because the relaxation operator is used.

3.1. Invariant Subspaces for Two-Color Relaxation. A new
smoothing analysis process of the two-color relaxation is
proposed with details. The proposed process is different
with [11, 20–24]. A novel constitution among the Fourier
modes with various frequencies is developed as a base of the
smoothing analysis process. The analysis process is proved to
be valuable.

The grid 𝐺ℎ = {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) |

⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2}

is divided into two disjoint subsets 𝐺0
ℎ
and 𝐺1

ℎ
; that is, 𝐺ℎ =

𝐺
0

ℎ
∪ 𝐺
1

ℎ
with

𝐺
𝛽

ℎ
= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘1 + 𝑘2 = 𝛽 mod 2,

⇀
𝑘 ∈ Z

2
} ,

(16)

where 𝛽 = 0, 1. According to (16), the subspace of the 2ℎ-
harmonics (9) is redefined as

𝐹
2

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥)} (17)

with
⇀
𝜃 = (𝜃1, 𝜃2) ∈ Θlow = (−𝜋/2, 𝜋/2]

2, where
⇀
𝜃

𝛼

= (
⇀
𝜃 +

(𝛼, 𝛼)𝜋) mod 2𝜋, 𝛼 = 0, 1. Thus, the constitutions among the
various Fourier modes defined by (16) and (17) are presented
as follows.

Proposition 1. For ∀⇀𝑥 ∈ 𝐺ℎ, ∀(𝑘1, 𝑘2) ∈ Z2, and ∀𝛼 ∈ {0, 1},
if
⇀
𝜃 ∈ Θlow, then the following formulation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (18)

Proof. From (4), for ∀⇀𝑥 ∈ 𝐺ℎ, it holds for 𝜑ℎ(
⇀
𝜃

𝛼

,
⇀
𝑥) =

exp(𝑖
⇀
𝜃

𝛼 ⇀
𝑘 ). From (17), ∃ ⇀𝑛 = (𝑛1, 𝑛2) ∈ Z

2 is subjected to
⇀
𝜃

𝛼

= (𝜃1 + 𝛼𝜋, 𝜃2 + 𝛼𝜋) + 2𝜋
⇀
𝑛 . Then

⇀
𝜃

𝛼 ⇀
𝑘 =
⇀
𝜃
⇀
𝑘 + 𝜋𝛼 (𝑘1 + 𝑘2) + 2𝜋

⇀
𝑛
⇀
𝑘 (19)

holds. Thus,

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp(𝑖

⇀
𝜃

𝛼 ⇀
𝑘)

= exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] exp (𝑖
⇀
𝜃
⇀
𝑘)

= exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) .

(20)

Proposition 1 follows.

Proposition 2. For ∀𝛼, 𝛽 ∈ {0, 1}, and ∀⇀𝑥 ∈ 𝐺𝛽
ℎ
, if
⇀
𝜃 ∈ Θlow,

then the following formulation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp (𝑖𝜋𝛼𝛽) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (21)

Proof. By Proposition 1 and 𝐺𝛽
ℎ
⊆ 𝐺ℎ, for ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ
, then

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝑘1 + 𝑘2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) , (22)

where (𝑘1, 𝑘2) ∈ Z2. For ⇀𝑥 ∈ 𝐺𝛽
ℎ
, from (16), ∃𝑝 ∈ Z is

subjected to 𝑘1 + 𝑘2 = 𝛽 + 2𝑝; hence,

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp [𝑖𝜋𝛼 (𝛽 + 2𝑝)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥)

= exp (𝑖𝜋𝛼𝛽) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) .

(23)

Proposition 2 holds.

Subsequently, the smoothing analysis process of the two-
color relaxation on the subspace of the 2ℎ-harmonics (17) is
conducted. By (15) and (16) and without loss of generality, let
𝐺
0

ℎ
and𝐺1

ℎ
correspond to𝐺𝑅

ℎ
and𝐺𝐵

ℎ
, respectively; thus (15) is

rewritten as

𝑆
01

ℎ
(𝜔) = 𝑆

1

ℎ
(𝜔) 𝑆
0

ℎ
(𝜔) . (24)

Theorem 3. The iteration operator 𝑆01
ℎ
(𝜔) for the two-color

relaxation leaves the subspace of the 2ℎ-harmonics (17) to be
invariant.
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Proof. From the process of the two-color relaxation, the
operator 𝑆𝛽

ℎ
(𝜔) of grid (16) is

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) =

{

{

{

𝑆
𝛽

ℎ
(
⇀
𝜃 , 𝜔) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
,

(25)

where 𝑆𝛽
ℎ
(
⇀
𝜃 , 𝜔) is Fourier symbol of 𝑆𝛽

ℎ
(𝜔) on grid (16)

with 𝛽 = 0, 1. From (10) and (25), now it is proved that
the subspace of the 2ℎ-harmonics (17) is invariant for the
iteration operator (24). Because of (17), we need to find out
two complex numbers 𝑎0 and 𝑎1 with ∀𝛼, 𝛽 ∈ {0, 1} andmake
them subjected to

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) = 𝑎0𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) + 𝑎1𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥) . (26)

From (25), the right hand side of (26) is written as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

{{

{{

{

𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) 𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(27)

By Propositions 1 and 2, the right hand side of (27) is
expressed as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥)

=

{

{

{

𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) exp (𝑖𝛼𝛽𝜋) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

exp [𝑖𝛼 (1 − 𝛽) 𝜋] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(28)

Taking 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔), (28) is written as

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥)

=

{

{

{

𝐴
𝛽

𝛼
exp (𝑖𝛼𝛽𝜋) 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

exp [𝑖𝛼 (1 − 𝛽) 𝜋] 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(29)

FromPropositions 1 and 2, the left hand side of (26) is written
as

𝑎0𝜑ℎ (
⇀
𝜃

0

,
⇀
𝑥) + 𝑎1𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥)

=

{

{

{

(𝑎0 + 𝑎1 exp (𝑖𝛽𝜋)) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥)

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

(𝑎0 + 𝑎1 exp [𝑖 (1 − 𝛽) 𝜋]) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥)
⇀
𝑥 ∉ 𝐺

𝛽

ℎ
.

(30)

Hence, from (26), (29), and (30), a set of two linear equations
on 𝑎0 and 𝑎1 is given as

𝑎0 + 𝑎1 exp (𝑖𝛽𝜋) = 𝐴
𝛽

𝛼
exp (𝑖𝛼𝛽𝜋)

𝑎0 + 𝑎1 exp [𝑖 (1 − 𝛽) 𝜋] = exp [𝑖𝛼 (1 − 𝛽) 𝜋] ,
(31)

where 𝛼, 𝛽 ∈ {0, 1}. Therefore, from (31), it is concluded that
there exist two complex numbers 𝑎0 and 𝑎1 that are subjected
to (26). From (10), (17), and (26), solving linear equation (31),
the Fourier representations of the iteration operators 𝑆0

ℎ
(𝜔)

and 𝑆1
ℎ
(𝜔) are obtained as

𝑆
0

ℎ
(
⇀
𝜃 , 𝜔) =

1

2
(

𝐴
0

0
+ 1 𝐴

0

1
− 1

𝐴
0

0
− 1 𝐴

0

1
+ 1

) ,

𝑆
1

ℎ
(
⇀
𝜃 , 𝜔) =

1

2
(

𝐴
1

0
+ 1 −𝐴

1

1
+ 1

−𝐴
1

0
+ 1 𝐴

1

1
+ 1

) ,

(32)

where 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) and 𝛼, 𝛽 ∈ {0, 1}. Furthermore, from
(32), the Fourier representations of the two-color relaxation
𝑆
01

ℎ
(𝜔) are

𝑆
01

ℎ
(
⇀
𝜃 , 𝜔) = 𝑆

1

ℎ
(
⇀
𝜃 , 𝜔) 𝑆

0

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(
𝐴
1

0
+ 1 −𝐴

1

1
+ 1

−𝐴
1

0
+ 1 𝐴

1

1
+ 1
)

⋅
1

2
(
𝐴
0

0
+ 1 𝐴

0

1
− 1

𝐴
0

0
− 1 𝐴

0

1
+ 1
) .

(33)

From (10), Theorem 3 holds.

3.2. Invariant Subspaces on Four Fourier Modes for Two-Color
Relaxation. We need to develop a Fourier representation of
the two-color relaxation in the subspace of the 2ℎ-harmonics
with four Fourier modes. By following (9), for 2D system,
another subspace of the 2ℎ-harmonics is given as

𝐹
∗

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) |
⇀
𝛼 = (𝛼1, 𝛼2) ,

𝛼𝑚 ∈ {0, 1} , 𝑚 = 1, 2}

(34)

with
⇀
𝜃 = (𝜃1, 𝜃2) =

⇀
𝜃

(0,0)

∈ Θlow = (−𝜋/2, 𝜋/2]
2,
⇀
𝜃

⇀
𝛼

=

⇀
𝜃

(0,0)

− (𝛼1 sign(𝜃1), 𝛼2 sign(𝜃2))𝜋.

For the sake of convenient analysis, taking
⇀
𝜃

⇀
𝛼

=

⇀
𝜃

(𝛼
1
,𝛼
2
)

=
⇀
𝜃

𝛼
1
𝛼
2

, for example,
⇀
𝜃

(0,0)

=
⇀
𝜃

00

, then 𝐹∗
2ℎ
(
⇀
𝜃 ) is

defined as

𝐹
∗

2ℎ
(
⇀
𝜃) := span{𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥) ,

𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥)} .

(35)

Meanwhile, the grid 𝐺ℎ is divided into four subsets [11] as

𝐺ℎ = 𝐺
00

ℎ
∪ 𝐺
11

ℎ
∪ 𝐺
10

ℎ
∪ 𝐺
01

ℎ
, (36)

where 𝐺
⇀
𝜂

ℎ
= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘𝑚 = 𝜂𝑚 mod 2,𝑚 = 1, 2}

and ⇀𝜂 = (𝜂1, 𝜂2) ∈ Λ = {00, 11, 10, 01}. The red and black
grid points corresponding with Gℎ are thus obtained as

𝐺
𝑅

ℎ
= 𝐺
00

ℎ
∪ 𝐺
11

ℎ
, 𝐺

𝐵

ℎ
= 𝐺
10

ℎ
∪ 𝐺
01

ℎ
. (37)
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Therefore, a constitutive relationship among the various
Fourier 2ℎ-harmonics is constructed.

Proposition 4. For ∀⇀𝑥 ∈ 𝐺ℎ, ∀
⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2, and

∀
⇀
𝛼 ∈ Λ, if

⇀
𝜃 ∈ Θlow, the following equation is yielded as

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = exp (−𝑖𝜋⇀𝛼

⇀
𝑘)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (38)

Proposition 5. For ∀⇀𝑥 ∈ 𝐺
⇀
𝛽

ℎ
, ∀
⇀
𝑘 = (𝑘1, 𝑘2) ∈ Z2, and

∀
⇀
𝛼,
⇀
𝛽 ∈ Λ, if

⇀
𝜃 ∈ Θlow, the following equation is yielded

as

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = exp (−𝑖𝜋⇀𝛼

⇀
𝛽)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (39)

The proof of Propositions 5 and 4 is similar to Propositions 2
and 1.

Subsequently, a smoothing analysis process of the two-
color relaxation on the subspace of the 2ℎ-harmonics (35) is
obtained.

Theorem 6. The iteration operator (15) for the two-color
relaxation leaves the subspace of the 2h-harmonics (35) to be
invariant 0.

Proof. Similar to the proof ofTheorem 3, from process of the
two-color relaxation and (15), operators 𝑆𝑅

ℎ
(𝜔) and 𝑆𝐵

ℎ
(𝜔) of

the grid (37) are

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{

{{{{

{

𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝑅

ℎ

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝑅

ℎ

(40)

𝑆
𝐵

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{

{{{{

{

𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

𝐵

ℎ

𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥) ∀

⇀
𝑥 ∉ 𝐺

𝐵

ℎ
,

(41)

where 𝑆𝑅
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) and 𝑆𝐵
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) are Fourier symbols of 𝑆𝑅
ℎ
(𝜔)

and 𝑆𝑅
ℎ
(𝜔) with 𝜑ℎ(

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) on the corresponding grids (37),

respectively, and ⇀𝛼 ∈ Λ. From (15), in order to prove

𝑆
𝑅𝐵

ℎ
(𝜔) : 𝐹

∗

2ℎ
(
⇀
𝜃 ) → 𝐹

∗

2ℎ
(
⇀
𝜃 ) with

⇀
𝜃 ∈ Θlow, we need to find

out four complex numbers 𝑎00, 𝑎11, 𝑎10, and 𝑎01 subjected to

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = 𝑎00𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) + 𝑎11𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥)

+ 𝑎10𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) + 𝑎01𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥) .

(42)

Meanwhile, we also need to find other four complex numbers
𝑏00, 𝑏11, 𝑏10, and 𝑏01 and make them subjected to

𝑆
𝐵

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥) = 𝑏00𝜑ℎ (

⇀
𝜃

00

,
⇀
𝑥) + 𝑏11𝜑ℎ (

⇀
𝜃

11

,
⇀
𝑥)

+ 𝑏10𝜑ℎ (
⇀
𝜃

10

,
⇀
𝑥) + 𝑏01𝜑ℎ (

⇀
𝜃

01

,
⇀
𝑥) .

(43)

Firstly, we prove (42) as follows.
From (36) and (40), as well as Propositions 5 and 4, the

right and left hand sides of (42) are written as, respectively,

𝑆
𝑅

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{{{{

{{{{{{{

{

𝐴
𝑅
⇀
𝛼
𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

00

ℎ

𝐴
𝑅
⇀
𝛼
exp [−𝑖𝜋 (𝛼1 + 𝛼2)] 𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

11

ℎ

exp (−𝑖𝜋𝛼1) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

10

ℎ

exp (−𝑖𝜋𝛼2) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

01

ℎ
,

∑

⇀
𝛼∈Λ

𝑎⇀
𝛼
𝜑ℎ (
⇀
𝜃

⇀
𝛼

,
⇀
𝑥)

=

{{{{{{{

{{{{{{{

{

(𝑎00 + 𝑎11 + 𝑎10 + 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

00

ℎ

(𝑎00 + 𝑎11 − 𝑎10 − 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

11

ℎ

(𝑎00 − 𝑎11 − 𝑎10 + 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

10

ℎ

(𝑎00 − 𝑎11 + 𝑎10 − 𝑎01) 𝜑ℎ (
⇀
𝜃 ,
⇀
𝑥) ∀

⇀
𝑥 ∈ 𝐺

01

ℎ
,

(44)

where 𝐴𝑅⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ. Hence, by using
(42) and (44), linear equations with respect to the complex
numbers 𝑎00, 𝑎11, 𝑎10, and 𝑎01 are obtained as

𝑎00 + 𝑎11 + 𝑎10 + 𝑎01 = 𝐴
𝑅
⇀
𝛼

𝑎00 + 𝑎11 − 𝑎10 − 𝑎01 = 𝐴
𝑅
⇀
𝛼
exp [−𝑖𝜋 (𝛼1 + 𝛼2)]

𝑎00 − 𝑎11 − 𝑎10 + 𝑎01 = exp (−𝑖𝜋𝛼1)

𝑎00 − 𝑎11 + 𝑎10 − 𝑎01 = exp (−𝑖𝜋𝛼2) .

(45)
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In the same way, equations with respect to the complex
numbers 𝑏00, 𝑏11, 𝑏10, and 𝑏01 are obtained as

𝑏00 + 𝑏11 + 𝑏10 + 𝑏01 = 1

𝑏00 + 𝑏11 − 𝑏10 − 𝑏01 = exp [−𝑖𝜋 (𝛼1 + 𝛼2)]

𝑏00 − 𝑏11 − 𝑏10 + 𝑏01 = 𝐴
𝐵
⇀
𝛼
exp (−𝑖𝜋𝛼1)

𝑏00 − 𝑏11 + 𝑏10 − 𝑏01 = 𝐴
𝐵
⇀
𝛼
exp (−𝑖𝜋𝛼2) ,

(46)

where 𝐴𝐵⇀
𝛼
= 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ. From
(10), (35), (42), and (43), solving (45) and (46), the Fourier
representations of the iteration operators 𝑆𝑅

ℎ
(𝜔) and 𝑆𝐵

ℎ
(𝜔) are

obtained as

𝑆
𝑅
⇀
ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝑅

00
+ 1 𝐴

𝑅

11
− 1 0 0

𝐴
𝑅

00
− 1 𝐴

𝑅

11
+ 1 0 0

0 0 𝐴
𝑅

10
+ 1 𝐴

𝑅

01
− 1

0 0 𝐴
𝑅

10
− 1 𝐴

𝑅

01
+ 1

)

𝑆
𝐵

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝐵

00
+ 1 −𝐴

𝐵

11
+ 1 0 0

−𝐴
𝐵

00
− 1 𝐴

𝐵

11
+ 1 0 0

0 0 𝐴
𝐵

10
+ 1 −𝐴

𝐵

01
+ 1

0 0 −𝐴
𝐵

10
+ 1 𝐴

𝐵

01
+ 1

) .

(47)

Furthermore, from (47), the Fourier representation of the
iteration operators 𝑆𝑅𝐵

ℎ
(𝜔) is

𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 𝜔)

= 𝑆
𝐵

ℎ
(
⇀
𝜃 , 𝜔) 𝑆

𝑅

ℎ
(
⇀
𝜃 , 𝜔)

=
1

2
(

𝐴
𝐵

00
+ 1 −𝐴

𝐵

11
+ 1 0 0

−𝐴
𝐵

00
− 1 𝐴

𝐵

11
+ 1 0 0

0 0 𝐴
𝐵

10
+ 1 −𝐴

𝐵

01
+ 1

0 0 −𝐴
𝐵

10
+ 1 𝐴

𝐵

01
+ 1

)

⋅
1

2
(

𝐴
𝑅

00
+ 1 𝐴

𝑅

11
− 1 0 0

𝐴
𝑅

00
− 1 𝐴

𝑅

11
+ 1 0 0

0 0 𝐴
𝑅

10
+ 1 𝐴

𝑅

01
− 1

0 0 𝐴
𝑅

10
− 1 𝐴

𝑅

01
+ 1

) ,

(48)

where 𝐴𝑅⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), 𝐴𝐵⇀
𝛼
= 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔), ⇀𝛼 = (𝛼1, 𝛼2) ∈ Λ.
Theorem 6 holds.

FromTheorems 3 and 6, two ways to carry out smoothing
analysis of the two-color relaxation are obtained.

4. Two-Color Jacobi Relaxation for
2D Poisson Equation

4.1. Poisson Equation and Optimal Smoothing Parameter. 2D
Poisson equation to be considered is stated as

−Δ𝑢 (𝑥1, 𝑥2) = 𝑓 (𝑥1, 𝑥2) . (49)

For using uniform grids of mesh size ℎ to solve this equation,
a central discretization stencil is introduced as

𝐿ℎ = −Δ ℎ =
1

ℎ2
[

[

−1

−1 4 −1

−1

]

]ℎ

. (50)

From (3)–(6), the Fourier symbol of (50) is

�̃�ℎ (
⇀
𝜃) =

1

ℎ2
(4 − 2 cos 𝜃1 − 2 cos 𝜃2) . (51)

From [1], the damped Jacobi relaxation 𝑆JAC
ℎ

is defined as

𝑆
JAC
ℎ
(𝜔) = 𝐼ℎ − 𝜔𝐷

−1

ℎ
𝐿ℎ, (52)

where 𝐼ℎ = [1]ℎ is the identity operator, 𝜔 is the smoothing
parameter, and 𝐷ℎ = (1/ℎ

2
)[4]ℎ is the diagonal part of the

discrete operator 𝐿ℎ.Thus, the Fourier symbol of (52) is given
as

𝑆
JAC
ℎ
(
⇀
𝜃 , 𝜔) = 1 − 𝜔(sin2 𝜃1

2
+ sin2 𝜃2

2
) . (53)

For the operators 𝑆ℎ(𝜔) and 𝑄
𝐻

ℎ
in (14) with a relax-

ation parameter 𝜔 and according to the optimal one-stage
relaxation [11], smoothing parameter and a related smoothing
factor are given by

𝜔opt =
2

2 − 𝑆max − 𝑆min
, 𝜌opt =

𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

, (54)

where 𝑆max and 𝑆min are the maximum and minimum
eigenvalues of the matrix 𝑄𝐻

ℎ
𝑆ℎ(
⇀
𝜃 , 1) for

⇀
𝜃 ∈ Θlow =

(−𝜋/2, 𝜋/2]
2 and 𝑆ℎ(

⇀
𝜃 , 1) is the Fourier representation of

𝑆ℎ(𝜔) with 𝜔 = 1.

4.2. Two-Color Relaxation on (17). According to (32), (33),
and (53), for point Jacobi relaxation, 𝐴𝛽

𝛼
in (17) is expressed

as

𝐴
0

𝛼
= 𝐴
1

𝛼
= 𝑆
0

ℎ
(
⇀
𝜃

𝛼

, 𝜔) = 𝑆
1

ℎ
(
⇀
𝜃

𝛼

, 𝜔)

= 𝑆
JAC
ℎ
(
⇀
𝜃

𝛼

, 𝜔) = 1 − 𝜔(sin2
𝜃
𝛼

1

2
+ sin2

𝜃
𝛼

2

2
)

(55)

which denotes that both red and black points are swept by the
Jacobi point relaxationmethod, where 𝛼, 𝛽 = 0, 1 and𝜔 is the
smoothing parameter. Further, when 𝜔 = 1, (55) is rewritten
as

𝐴
0

𝛼
= 𝐴
1

𝛼
= 𝑆

JAC
ℎ
(
⇀
𝜃

𝛼

, 1) = 1 − (sin2
𝜃
𝛼

1

2
+ sin2

𝜃
𝛼

2

2
) , (56)
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where 𝛼 = 0, 1. For simplification, let

𝑠1 = sin
2 𝜃
0

1

2
= sin2 𝜃1

2
,

𝑠2 = sin
2 𝜃
0

2

2
= sin2 𝜃2

2
.

(57)

By substituting (56) and (57) into (33), (56) is given as

𝐴
0

0
= 𝐴
1

0
= 1 − (𝑠1 + 𝑠2) ,

𝐴
0

1
= 𝐴
1

1
= 𝑠1 + 𝑠2 − 1,

(58)

𝑆
01

ℎ
(
⇀
𝜃 , 1) = (

1 −
1

2
(𝑠1 + 𝑠2) 1 −

1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

)

⋅ (

1 −
1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2) − 1

−
1

2
(𝑠1 + 𝑠2)

1

2
(𝑠1 + 𝑠2)

) .

(59)

Further, by using (13) and (17), the Fourier representation of
𝑄
𝐻

ℎ
is given as𝑄𝐻

ℎ
= diag(0, 1). From (59), the product of𝑄𝐻

ℎ

and (59) is

𝑄
𝐻

ℎ
𝑆
01

ℎ
(
⇀
𝜃 , 1)

= (

0 0

1

2
(𝑠1 + 𝑠2) (1 − 𝑠1 − 𝑠2)

1

2
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

) .

(60)

Therefore, a unique nonzero eigenvalue of the matrix
𝑄
𝐻

ℎ
𝑆
01

ℎ
(
⇀
𝜃 , 1) is yielded as

𝜆 (𝑠1, 𝑠2) =
1

2
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1) . (61)

Because of
⇀
𝜃 ∈ Θlow = (−𝜋/2, 𝜋/2]

2, thus, from (57), we
know (𝑠1, 𝑠2) ∈ [0, 1/2]

2. So, by using (54), the optimal
smoothing parameters for the two-color relaxation are given
as

𝑆max = max
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆 (𝑠1, 𝑠2)

⇀
𝜃=(𝜋/2,𝜋/2)

= 0,

𝑆min = min
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆 (𝑠1, 𝑠2)

⇀
𝜃=(0,𝜋/2)

= −
1

8
,

(62)

𝜔opt =
2

2 − 𝑆max − 𝑆min
=
16

17
,

𝜌opt =
𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

=
1

17
.

(63)

4.3. Two-Color Jacobi Relaxation on (35). By using (48) and
(53), for point Jacobi relaxation, 𝐴𝑅⇀

𝛼
and 𝐴𝐵⇀

𝛼
for (35) are

expressed as

𝐴
𝑅
⇀
𝛼
= 𝐴
𝐵
⇀
𝛼
= 𝑆
𝑅

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) = 𝑆
𝐵

ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔)

= 𝑆
JAC
ℎ
(
⇀
𝜃

⇀
𝛼

, 𝜔) = 1 − 𝜔(sin2
𝜃
𝛼
1

1

2
+ sin2

𝜃
𝛼
2

2

2
)

(64)

which denotes that both red and black points are swept by
the Jacobi point relaxation method, where ⇀𝛼 = (𝛼1, 𝛼2) ∈
Λ. Further, substituting (57) into (64), when 𝜔 = 1, (64) is
written as

𝐴
𝑅

00
= 𝐴
𝐵

00
= 1 − (𝑠1 + 𝑠2)

𝐴
𝑅

11
= 𝐴
𝐵

11
= 𝑠1 + 𝑠2 − 1

𝐴
𝑅

10
= 𝐴
𝐵

10
= 𝑠1 − 𝑠2

𝐴
𝑅

01
= 𝐴
𝐵

01
= − (𝑠1 − 𝑠2) .

(65)

Substituting (65) into (48), the Fourier representation of
𝑆
𝑅𝐵

ℎ
(𝜔) with 𝜔 = 1 is expressed as

𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) = diag (𝑆11, 𝑆22) , (66)

where

𝑆11 = (

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
− 2) −

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
− 2)

−
1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
)

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
)
),

𝑆22 = (

1

2
(𝑠
1
+ 𝑠
2
− 1) (𝑠

1
+ 𝑠
2
) −
1

2
(𝑠
1
− 𝑠
2
+ 1) (𝑠

1
− 𝑠
2
)

1

2
(𝑠
2
− 𝑠
1
+ 1) (𝑠

1
− 𝑠
2
) −
1

2
(𝑠
2
− 𝑠
1
+ 1) (𝑠

1
− 𝑠
2
)
) .

(67)

From (13) and (35), the Fourier representation of operator𝑄𝐻
ℎ

is given as

𝑄
𝐻

ℎ
= diag (𝑄11, 𝑄22) , (68)

where 𝑄11 = diag(0, 1), 𝑄22 = diag(1, 1). Therefore, the
product of (66) and (68) is obtained as

𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) = diag (𝑄11𝑆11, 𝑄22𝑆22) , (69)
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in which the diagonal blocks are expressed as

𝑄11𝑆11

= (

0 0

−
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2

(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2

) ,

(70)

𝑄22𝑆22

= (

(𝑠1 − 𝑠2) (𝑠1 − 𝑠2 + 1)

2
−
(𝑠1 − 𝑠2) (𝑠1 − 𝑠2 + 1)

2
(𝑠1 − 𝑠2) (𝑠2 − 𝑠1 + 1)

2
−
(𝑠1 − 𝑠2) (𝑠2 − 𝑠1 + 1)

2

) .

(71)

The eigenvalues of the matrix (69) are obtained as

𝜆1 = 0, 𝜆2 = (𝑠1 − 𝑠2)
2
,

𝜆3 = 0, 𝜆4 =
(𝑠1 + 𝑠2) (𝑠1 + 𝑠2 − 1)

2
.

(72)

When
⇀
𝜃 ∈ Θlow, the maximum andminimum eigenvalues of

the matrix 𝑄𝐻
ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1) are as follows:

𝜆max (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1)) = max

(𝑠
1
,𝑠
2
)∈[0,1/2]

2

{𝜆1, 𝜆2, 𝜆3, 𝜆4}

= max
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆2 =
1

4
,

(73)

𝜆min (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1)) = min

(𝑠
1
,𝑠
2
)∈[0,1/2]

2

{𝜆1, 𝜆2, 𝜆3, 𝜆4}

= min
(𝑠
1
,𝑠
2
)∈[0,1/2]

2

𝜆4 = −
1

8
.

(74)

Therefore, by using (54), the values of the optimal smoothing
parameters for the Poisson equation are obtained as

𝑆max = 𝜆max (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1))


⇀
𝜃=(0,𝜋/2)

=
1

4
,

𝑆min = 𝜆min (𝑄
𝐻

ℎ
𝑆
𝑅𝐵

ℎ
(
⇀
𝜃 , 1))


⇀
𝜃=(𝜋/2,0)

= −
1

8
,

(75)

𝜔opt =
2

2 − 𝑆max − 𝑆min
=
16

15
,

𝜌opt =
𝑆max − 𝑆min
2 − 𝑆max − 𝑆min

=
1

5
.

(76)

5. Extending Two-Color to
Multicolor Relaxation

Herein, the proposed smoothing analysis process of two-
color relaxation is generalized to a 3D system. The Fourier
representation of the smoothing operator for two-color relax-
ation is still a 2-order square matrix in (17). The result in (35)
for a 3D case is changed to a 23 × 23 diagonal block matrix.

For a 𝑚-color relaxation (𝑚 > 2), the infinite grid 𝐺ℎ is
subdivided into 𝑚 types of the grid points 𝐺0

ℎ
, 𝐺
1

ℎ
, . . . , 𝐺

𝑚−1

ℎ

for presenting𝑚different colors [11, 20].Thus a complete ana-
lyzing step of the 𝑚-color relaxation consists of 𝑚 substeps:
at the 𝛽th step (𝛽 = 0, 1, . . . , 𝑚 − 1), the unknowns located
at only ⇀𝑥 ∈ 𝐺𝛽

ℎ
are changed by using updated data at the

previous step. For example, for the𝑚-color relaxation of a 2D
system, the infinite grid 𝐺ℎ is stated as

𝐺ℎ =

𝑚−1

⋃

𝛽=0

𝐺
𝛽

ℎ
, (77)

with

𝐺
𝛽

ℎ

= {
⇀
𝑥 = (𝑘1ℎ1, 𝑘2ℎ2) | 𝑘1 + 𝑘2 = 𝛽 mod 𝑚, (𝑘1, 𝑘2) ∈ Z

2
} ,

(78)

where 𝛽 ∈ Λ𝑚 := {0, 1, . . . , 𝑚 − 1}. In the subdivisions of the
infinite grids𝐺ℎ, there are∀𝑗, 𝑛 ∈ Λ𝑚, 𝑗 ̸= 𝑛, and𝐺

𝑗

ℎ
∩𝐺
𝑛

ℎ
= 𝜙.

For the standard coarsening [11, 20], the subspace of the
2ℎ-harmonics is defined as

𝐹
𝑚

2ℎ
:= span{𝜑ℎ (

⇀
𝜃

0

,
⇀
𝑥) , 𝜑ℎ (

⇀
𝜃

1

,
⇀
𝑥) , . . . ,

𝜑ℎ (
⇀
𝜃

𝑚−1

,
⇀
𝑥)} ,

(79)

where
⇀
𝜃 ∈ Θlow, ∀𝛼 ∈ Λ𝑚, and

⇀
𝜃

𝛼

= (
⇀
𝜃 + (2𝜋/

𝑚)(𝛼, 𝛼))(mod 2𝜋).
In order to obtain a Fourier representation of the 𝑚-

color point relaxation, let 𝑆𝑚𝑐
ℎ
(𝜔) be the above complete 𝑚-

color point relaxation operator and let 𝑆𝛽
ℎ
(𝜔) be the 𝛽th

subrelaxation (𝛽 ∈ Λ𝑚); thus, the 𝑚-color point relaxation
is expressed as

𝑆
𝑚𝑐

ℎ
(𝜔) =

𝑚−1

∏

𝛽=0

𝑆
𝛽

ℎ
(𝜔) (80)

with

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

{{

{{

{

𝐴
𝛽

𝛼
𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥)
⇀
𝑥 ∈ 𝐺

𝛽

ℎ

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥)

⇀
𝑥 ∉ 𝐺

𝛽

ℎ
,

(81)

where 𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔) denotes the Fourier symbol of 𝑆𝛽
ℎ
(𝜔),

𝛼, 𝛽 ∈ Λ𝑚. The proof of this process is analogous to the
two-color case. In fact, as we know, the subspace of the 2ℎ-
harmonics 𝐹𝑚

2ℎ
with𝑚 Fourier modes remains to be invariant

for𝑚-color point relaxation operator 𝑆𝑚𝑐
ℎ
(𝜔); that is, 𝑆𝑚𝑐

ℎ
(𝜔) :

𝐹
𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
. So, the Fourier representation of the 𝑚-color

point relaxation (80) is given as 𝑆𝑚𝑐
ℎ
(𝜔) = ∏

𝑚−1

𝛽=0
𝑆
𝛽

ℎ
(𝜔), where

𝑆
𝛽

ℎ
(𝜔) is a Fourier representation of 𝑆𝛽

ℎ
(𝜔) in 𝐹𝑚

2ℎ
.
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Proposition 7. For ∀𝛼, 𝛽 ∈ Λ𝑚, ∀
⇀
𝑥 ∈ 𝐺

𝛽

ℎ
, if
⇀
𝜃 ∈ Θlow, the

following equation holds:

𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) = exp(𝑖2𝜋

𝑚
𝛼𝛽)𝜑ℎ (

⇀
𝜃 ,
⇀
𝑥) . (82)

The proof is similar to Proposition 1.

Theorem 8. The iteration operator (80) for 𝑚-color point
relaxationmakes the subspace of the 2ℎ-harmonics (79) invari-
ant.

The proof is similar to Theorem 3. In fact, in order to prove
𝑆
𝑚𝑐

ℎ
(𝜔) : 𝐹

𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
, one only needs to do ∀𝛽 ∈ Λ𝑚,

𝑆
𝛽

ℎ
(𝜔) : 𝐹

𝑚

2ℎ
→ 𝐹

𝑚

2ℎ
, which is equivalent to finding out 𝑚

complex numbers 𝑎𝑗, 𝑗 ∈ Λ𝑚, subject to

𝑆
𝛽

ℎ
(𝜔) 𝜑ℎ (

⇀
𝜃

𝛼

,
⇀
𝑥) =

𝑚−1

∑

𝛼=0

𝑎𝛼𝜑ℎ (
⇀
𝜃

𝛼

,
⇀
𝑥) . (83)

Being similar to the proof of Theorems 3 and 6 and
according to (81), (83) and Proposition 7, 𝑚 linear equations
on 𝑎𝑗 are obtained as

𝑎0 + 𝑎1 + 𝑎2 + ⋅ ⋅ ⋅ + 𝑎𝑚−1 = 1
⇀
𝑥 ∈ 𝐺

0

ℎ

𝑎0 + 𝑎1 exp(𝑖
2𝜋

𝑚
) + 𝑎2 exp (𝑖

2𝜋 ⋅ 2

𝑚
) + ⋅ ⋅ ⋅

+𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1)

𝑚
] = exp(𝑖2𝜋𝛼

𝑚
)

⇀
𝑥 ∈ 𝐺

1

ℎ

𝑎0 + 𝑎1 exp(𝑖
2𝜋 ⋅ 2

𝑚
) + 𝑎2 exp(𝑖

2𝜋 ⋅ 4

𝑚
)

+ ⋅ ⋅ ⋅ + 𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ 2

𝑚
]

= exp (𝑖2𝜋 ⋅ 2𝛼
𝑚
)

⇀
𝑥 ∈ 𝐺

2

ℎ

.

.

.

𝑎0 + 𝑎1 exp(𝑖
2𝜋 ⋅ 𝛽

𝑚
) + 𝑎2 exp(𝑖

2𝜋 ⋅ 2𝛽

𝑚
)

+ ⋅ ⋅ ⋅ + 𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ 𝛽

𝑚
]

= 𝐴
𝛽

𝛼
exp(𝑖

2𝜋 ⋅ 𝛼𝛽

𝑚
)

⇀
𝑥 ∈ 𝐺

𝛽

ℎ

.

.

.

𝑎0 + 𝑎1 exp [𝑖
2𝜋 (𝑚 − 1)

𝑚
]

+𝑎2 exp [𝑖
2𝜋 ⋅ 2 (𝑚 − 1)

𝑚
] + ⋅ ⋅ ⋅

+𝑎𝑚−1 exp [𝑖
2𝜋 (𝑚 − 1) ⋅ (𝑚 − 1)

𝑚
]

= exp [𝑖2𝜋 (𝑚 − 1) ⋅ 𝛼
𝑚

]
⇀
𝑥 ∈ 𝐺

𝑚−1

ℎ
.

(84)

Letting 𝜂 = 2𝜋/𝑚, 𝜉𝑛 = exp(𝑖𝑛 𝜂) with 𝑛 ∈ Λ𝑚, the equations
are simplified as

𝑁
⇀
𝑎 =
⇀
𝑏 𝛽,

(85)

where ⇀𝑎 = (𝑎0, 𝑎1, . . . , 𝑎𝑚−1)
𝑇,
⇀
𝑏 𝛽 = (𝜉0, 𝜉1, . . . , 𝐴

𝛽

𝛼
𝜉
𝛼𝛽

1
,

. . . , 𝜉
𝛼

𝑚−1
)
𝑇, 𝑇 denotes transposition of matrix or vector, and𝑁

is the Vander monde matrix; namely,

𝑁 =(

1 1 ⋅ ⋅ ⋅ 1

𝜉0 𝜉1 ⋅ ⋅ ⋅ 𝜉𝑚−1
.
.
.

.

.

. d
.
.
.

𝜉
𝑚−1

0
𝜉
𝑚−1

1
⋅ ⋅ ⋅ 𝜉
𝑚−1

𝑚−1

). (86)

Because of ∀𝑗 ̸= 𝑛 ∈ Λ𝑚, 𝜉𝑗 ̸= 𝜉𝑛, the determinant of the
matrix 𝑁 is nonzero. Therefore, from (83)–(86), for ∀𝛼, 𝛽 ∈
Λ𝑚, the Fourier representation of the 𝛽th substep relaxation in
𝐹
𝑚

2ℎ
is obtained as

𝑆
𝛽

ℎ
(𝜔) = 𝑁

−1
𝑁𝛽 (87)

in which 𝑁𝛽 is a square matrix which is obtained by substi-

tuting
⇀
𝜉 𝛽 = (𝐴

𝛽

𝛼
𝜉
𝛽

0
, 𝐴
𝛽

𝛼
𝜉
𝛽

1
, . . . , 𝐴

𝛽

𝛼
𝜉
𝛽

𝑚−1
) for the 𝛽th row of the

matrix𝑁, and𝐴𝛽
𝛼
= 𝑆
𝛽

ℎ
(
⇀
𝜃

𝛼

, 𝜔).Therefore, from (80) and (87),
the Fourier representation of the𝑚-color point relaxation in the
subspace of the 2ℎ-harmonics 𝐹𝑚

2ℎ
is stated as

𝑆
𝑚𝑐

ℎ
(𝜔) =

𝑚−1

∏

𝛽=0

𝑁
−1
𝑁𝛽. (88)

Theorem 8 holds.

6. Conclusions

A novel smoothing analysis process of the two-color point
relaxation for a 2D system is presented. The results are gen-
eralized to the𝑚-color point relaxation and extended to a 3D
system.The applications to the 2D and 3D Poisson equations
show that the computational domain overmultigrids needs to
be divided into the multisubsets to correspond with the dif-
ferent frequency modes in partial differential equations and
to use the corresponding discretizing stencils.Meanwhile, the
definition of the subspace based on the 2ℎ-harmonics has to
be agreeable to the subdomains of the multigrids. It is an
important fact that establishes a mathematical constitution
among the various Fourier modes with the different 2ℎ-
harmonics and constructs a usable Fourier representation of
the𝑚-color point relaxation in subspace of the 2ℎ-harmonics.
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