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This paper mainly investigates the average consensus of multiagent systems with the problem of packet losses when both the first-
order neighbors’ information and the second-order neighbors’ information are used.The problem is formulated under the sampled-
data framework by discretizing the first-order agent dynamics with a zero-order hold.The communication graph is undirected and
the loss of data across each communication link occurs at certain probability, which is governed by a Bernoulli process. It is found
that the distributed average consensus speeds up by using the second-order neighbors’ informationwhenpackets are lost.Numerical
examples are given to demonstrate the effectiveness of the proposed methods.

1. Introduction

In recent years, there has been an increasing research in
coordination control of multiagent systems. Information
consensus has attractedmore andmore attentions frommany
engineering application fields, such as formation control,
flocking, artificial intelligence, and automatic control [1–
4]. A critical problem in distributed control is to develop
distributed protocols under which agents can reach an agree-
ment on a common decision.

An excellent protocol can reduce cost, increase efficiency,
and can optimize performance. Convergence rate is an
important index to evaluate the performance of consensus.
There has been much research interest in dealing with this
issue. In [5], the authors pointed out that the second smallest
eigenvalue of its Laplacian matrix was a measure of speed of
solving consensus problems. From [6], we know that the con-
vergence speeds up by finding the optimal weight associated
with each communication link, where the global structure
of the network must be known beforehand. Reference [7]

accelerated the convergence rate by using the polynomial
filtering algorithms. In [8], the authors presented randomized
gossip algorithm on an arbitrary connected network and
showed its performance precisely in the terms of the second
largest eigenvalue of an appropriate stochastic matrix. The
above literatures all tried to seek a suitable topology commu-
nication to achieve a fast convergence. However, in practice,
it is more useful to design a protocol to obtain a better
convergence performance under a given topology. In order to
get a better convergence speedwithout changing the topology
and edge weights, the authors in [9] proposed a protocol
in an unchanged topology network that each node got its
state value updated by using the information of multihop
communication and showed that the protocol increased the
convergence speed effectively for the first time. Then, in [10],
the authors discussed that the node in the network topology
updated its current state value not only from its immediate
neighbors but also from its second-order neighbors for both
the discrete-time case and the continuous-time case. Further,
the authors in [11] extended the systems to second-order
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case and made comparisons between the convergence rate
of second-order neighbor protocol and the general protocol.
What is more, the delay margins of general protocol and
second-order neighbor protocol were derived.

It is noted that the literatures mentioned above mainly
focus on consensus problem for agents under first-order
dynamics with time delay. In reality, the agents exchange data
over fading communication channels instead of ideal ones.
In fact, in many practical applications, this data exchange
between sensors is done by wireless communication, which
has a possibility of packets lost. Thereby, the packet losses
should be taken into consideration. Many related works
have been reported. Reference [12] dealt with consensus
with random delay and data losses. Reference [13] compared
the memory and memoryless consensus protocols in the
presence of uniform packet losses. In [14, 15], the authors
discussed the average consensus in first-order agents and
analyzed the convergence speed under data losses. Further-
more, [16] showed that packet dropouts can be treated as
an absence of a communication link over time. In addition,
[17–19] studied stochastic consensus subject to a random
process.

Inspired by the above references, we consider multiagent
systems with the problem of packet losses based on the
second-order neighbors’ information. We construct a group
of agents, which can communicate with their second-order
neighbors and each communication link has a probability
of failure. We assume that all channels are independent and
subject to a distributed random process. Thereby, they have
the same probability of data loss. Each agent is equipped with
a sampler and a zero-order hold, which are synchronized
in time. Then, by converting the system to the equivalent
error dynamics, stochastic stability of the error dynamic
system is studied. Here, a Lyapunov function is constructed
and a sufficient condition is established to guarantee the
average consensus in the form of linear matrix inequality
(LMI). We are curious about whether the protocol based on
the second-order neighbors’ information can accelerate the
convergence speed with the problem of packet losses.Then, a
simulation comparison of the convergence rate between the
protocol based on the second-order neighbors and the one
in general linear is shown. Comparison of the convergence
speed between different probabilities of packet losses is also
simulated.

The rest of this paper is organized as follows. Section 2
provides some preliminaries on graph theory and gives the
designed protocol. Section 3 analyses the average consensus
and gives a sufficient condition. Section 4 includes some
numerical examples, which demonstrate the effectiveness
of the proposed approach. Finally, Section 5 offers the
concluding remarks.

Notations. The set of real numbers is denoted by R. For any
matrix 𝑄 ∈ R𝑛×𝑛, sym(𝑄) = 𝑄 + 𝑄

𝑇. The index set Λ
𝑛

=

{1, 2, . . . , 𝑛} is a group of consecutive integers from 1 to 𝑛.The
vector 1

𝑛
= [1, 1, . . . , 1]

𝑇

∈ R𝑛 has all of its elements equal to
1.Themathematical expectation is denoted by 𝐸{⋅} and 𝑃{⋅} is
the probability operator.

2. Problem Formation

2.1. Preliminaries on GraphTheory. In this paper, the interac-
tion among 𝑛 agents is modeled by an undirected graph 𝐺 =

{], 𝜀, 𝐴}, where ] = {]
1
, ]
2
, . . . , ]

𝑛
} is the node set. The edge

set 𝜀 ⊆ ] × ] contains ordered pairs of nodes. The neighbor
set of agent 𝑖 is denoted by 𝑁

𝑖
, which includes agents from

which agent 𝑖 receives information. The adjacency matrix
𝐴 = [𝑤

𝑖𝑗
] ∈ R𝑛×𝑛 is a nonnegative matrix, where 𝑤

𝑖𝑗
> 0

if and only if (V
𝑗
, V
𝑖
) ∈ 𝜀; otherwise, 𝑤

𝑖𝑗
= 0. We assume

that there is no self-loop, so 𝑤
𝑖𝑖

= 0. The Laplacian matrix
𝐿 = [𝑙

𝑖𝑗
] ∈ R𝑛×𝑛 is defined as

𝑙
𝑖𝑗

= − 𝑤
𝑖𝑗
, if 𝑖 ̸= 𝑗;

𝑙
𝑖𝑗

= ∑

𝑘∈𝑁𝑖

𝑤
𝑖𝑘
.

(1)

From the above definitions, we know some facts: 𝐴 and
𝐿 determine each other uniquely, and 𝐿 has nonnegative
eigenvalues. Moreover, 𝐿 has at least one zero eigenvalue
with the associated eigenvector 1

𝑇

𝑛
(𝐿1𝑇
𝑛

= 0); that is,
span{1𝑇

𝑛
} ⊆ null{𝐿}, where null{𝐿} is the null space of 𝐿. For

the undirected graph, we further have 𝐿 = 𝐿
𝑇, 1𝑇
𝑛
𝐿 = 0. From

[20], it is known that span{1𝑇
𝑛
} = null{𝐿} if and only if the

undirected graph 𝐺 is connected.

2.2. Protocols Based on Second-Order Neighbor with Packet
Losses. Consider the following first-order dynamics:

�̇�
𝑖
= 𝑢
𝑖
, 𝑖 ∈ Λ

𝑛
, (2)

where 𝑥
𝑖
, 𝑢
𝑖

∈ R are the state and the input of agent 𝑖,
respectively. With sampling period 𝑇 and a zero-order hold,
the agent dynamics is discretized as

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + 𝑇𝑢

𝑖
(𝑘) , 𝑖 ∈ Λ

𝑛
. (3)

Considering the protocol based on second-order neigh-
bors’ information, if there is no communication constraint
taken into account, the following control protocol can be
used:

𝑢
𝑖
(𝑘) = −𝑟

𝑐
∑

𝑗∈𝑁𝑖

𝑤
𝑖𝑗

[

[

(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘))

+ ∑

ℎ∈𝑁𝑗

𝑤
𝑗ℎ

(𝑥
𝑖
(𝑘) − 𝑥

ℎ
(𝑘))]

]

,

(4)

where the control gain 𝑟
𝑐
is to be designed.
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Next, we consider the packet losses among agents. The
following control protocol is designed:

𝑢
𝑖
(𝑘) = −𝑟

𝑐

{

{

{

∑

𝑗∈𝑁𝑖

𝛾
𝑖𝑗
(𝑘) 𝑤
𝑖𝑗

[

[

(𝑥
𝑖
(𝑘) − 𝑥

𝑗
(𝑘))

+ ∑

ℎ∈𝑁𝑗

𝛾
𝑗ℎ

(𝑘) 𝑤
𝑗ℎ

× (𝑥
𝑖
(𝑘) − 𝑥

ℎ
(𝑘)) ]

]

}

}

}

,

(5)

where 𝛾
𝑖𝑗
(𝑘) = 1, if there is no packet loss between agents 𝑖

and 𝑗; 𝛾
𝑖𝑗
(𝑘) = 0, otherwise.

Furthermore, we assume that the occurrence of packet
loss is governed by a Bernoulli process with uniform prob-
ability 𝑝 satisfying 0 < 𝑝 < 1; that is,

𝑃 {𝛾
𝑖𝑗
(𝑘) = 1} = 𝑝, 𝑃 {𝛾

𝑖𝑗
(𝑘) = 0} = 1 − 𝑝,

∀𝑖 ̸= 𝑗.

(6)

As a result, we have 𝐸{𝛾
𝑖𝑗
(𝑘)} = 𝑝.

Assumption 1. The undirected topology is coupled; that is,
for any pair of agents 𝑖 and 𝑗, the communication channels
between them exist or vanish simultaneously.

Assumption 1 ensures that the communication topology
is always symmetric, so the average of agents’ states can be
retained during dynamic evolution.

We define two sets of matrices 𝐿
1
(𝑘) = [𝑙

1𝑖𝑗
(𝑘)] ∈ R𝑛×𝑛

and 𝐿
2
(𝑘) = [𝑙

2𝑖𝑗
(𝑘)] ∈ R𝑛×𝑛 as follows:

𝑙
1𝑖𝑗

(𝑘) = − 𝛾
𝑖𝑗
(𝑘) 𝑤
𝑖𝑗
,

𝑙
2𝑖𝑗

(𝑘) = − ∑

ℎ∈𝑁𝑖

𝑗∈𝑁ℎ

𝛾
𝑖ℎ

(𝑘) 𝑤
𝑖ℎ
𝛾
ℎ𝑗

(𝑘) 𝑤
ℎ𝑗
, 𝑖 ̸= 𝑗,

𝑙
1𝑖𝑖

(𝑘) = ∑

𝑗∈𝑁𝑖

𝛾
𝑖𝑗
(𝑘) 𝑤
𝑖𝑗
,

𝑙
2𝑖𝑖

(𝑘) = ∑

ℎ∈𝑁𝑖

𝛾
𝑖ℎ

(𝑘) 𝑤
𝑖ℎ

∑

𝑙∈𝑁ℎ

𝛾
ℎ𝑙

(𝑘) 𝑤
ℎ𝑙
.

(7)

Denote the vectors 𝑥(𝑘) and 𝑢(𝑘) by

𝑥 (𝑘) = [𝑥
1
(𝑘) , 𝑥

2
(𝑘) , . . . , 𝑥

𝑛
(𝑘)]
𝑇

,

𝑢 (𝑘) = [𝑢
1
(𝑘) , 𝑢

2
(𝑘) , . . . , 𝑢

𝑛
(𝑘)]
𝑇

.

(8)

Then, the control protocol can be rewritten as

𝑢 (𝑘) = −𝑟
𝑐
𝐿 (𝑘) 𝑥 (𝑘) , (9)

where 𝐿(𝑘) = 𝐿
1
(𝑘) + 𝐿

2
(𝑘).

So, the system dynamics can be written as

𝑥 (𝑘 + 1) = 𝑥 (𝑘) − 𝑟
𝑐
𝑇𝐿 (𝑘) 𝑥 (𝑘) = [𝐼 − 𝑟

𝑐
𝑇𝐿 (𝑘)] 𝑥 (𝑘) .

(10)

By taking the mathematical expectation of 𝐿
1
(𝑘) and 𝐿

2
(𝑘),

we have 𝐸{𝐿
1
(𝑘)} = 𝑝×L(1), 𝐸{𝐿

2
(𝑘)} = 𝑝

2

×𝐿
(2), where 𝐿

(1)

is the nominal Laplacian matrix of full weights where there is
no packet loss and 𝐿

(2) is the nominal Laplacian matrix of the
system which is only based on the second-order neighbors’
information with full weights and without packet loss.

Assumption 2. The nominal communication topologies 𝐺
(1)

associated with 𝐿
(1) and 𝐺

(2) associated with 𝐿
(2) are all

connected.

The above assumption is necessary for consensus because
if the undirected graph is not connected, then it does not have
a spanning tree. From [21, Lemma 1] and [22,Theorem 5], we
know that there exist two nonempty, disjoint groups of agents
that have no communication with each other at any time. In
this case, consensus cannot be reached.

3. Consensus Analysis

The average states of the agents

𝛼 = Ave (𝑥 (𝑘)) =
1

𝑛

𝑛

∑

𝑖=1

𝑥
𝑖
(𝑘) =

1

𝑛
1
𝑇

𝑛
𝑥 (𝑘) (11)

are invariant.We say the average consensus problem is solved,
if

lim
𝑘→+∞

𝑥
𝑖
(𝑘) = 𝛼, 𝑖 = 1, . . . , 𝑛. (12)

Each agent state can be presented by the form

𝑥 (𝑘) = 𝛼1
𝑛
+ 𝛿 (𝑘) , (13)

where the variable 𝛿(𝑘) = [𝛿
1
(𝑘), 𝛿
2
(𝑘), . . . , 𝛿

𝑛
(𝑘)]
𝑇 satisfies

1
𝑇

𝑛
𝛿 = 0. (14)

The following error dynamics are obtained:

𝛿 (𝑘 + 1) = 𝛿 (𝑘) − 𝑟
𝑐
𝑇𝐿 (𝑘) 𝛿 (𝑘) = [𝐼 − 𝑟

𝑐
𝑇𝐿 (𝑘)] 𝛿 (𝑘) .

(15)

Obviously, the stability of (15) is equivalent to the consensus
in (2). Then, we introduce the following lemma, which plays
an important role in the stability analysis of (15).

Lemma 3 (see [16]). For an undirected graph, given the
Laplacian matrix 𝐿

1
(𝑘), 𝐿

2
(𝑘), and a symmetric matrix
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𝑄 = 𝑄
𝑇, 𝐸 {(𝐿

1
(𝑘) + 𝐿

2
(𝑘)) 𝑄(𝐿

1
(𝑘) + 𝐿

2
(𝑘))} can be

calculated as follows:

𝐸 {(𝐿
1
(𝑘) + 𝐿

2
(𝑘)) 𝑄 (𝐿

1
(𝑘) + 𝐿

2
(𝑘))}

= 𝐸{Ι [
𝐿
1
(𝑘) 0

0 𝐿
2
(𝑘)

] Ι
𝑇

𝑄Ι [
𝐿
1
(𝑘) 0

0 𝐿
2
(𝑘)

] Ι
𝑇

}

= Ι𝐸{[
𝐿
1
(𝑘) 0

0 𝐿
2
(𝑘)

] Γ [
𝐿
1
(𝑘) 0

0 𝐿
2
(𝑘)

]} Ι
𝑇

= Ι {
∧

𝑝 (𝐿
(0)

)
∧

𝑝 (𝐿
(0)

) 𝐿
(0)

Γ𝐿
(0)

+
∧

𝑝 (𝐿
(0)

) (𝐼−
∧

𝑝 (𝐿
(0)

)) Ξ (Γ)} Ι
𝑇

,

(16)

where 𝐿
(0)

= [ 𝐿
(1)
0

0 𝐿
(2)

], Ι𝑇 = [ 𝐼
𝐼
]
2𝑛∗𝑛

,
∧

𝑝 (L(0)) = [
𝑝 0

0 𝑝
2 ], Γ =

[
𝑄 𝑄

𝑄 𝑄
], and Ξ(Γ) is a function of 𝑄, defined as

Ξ (Γ)

=

𝑛

∑
𝑚=1

𝑛

∑
𝑞=1

[
𝐸
𝑇

1(𝑚,𝑞)
0

0 𝐸
𝑇

2(𝑚,𝑞)

] Γ [
𝐸
1(𝑚,𝑞) 0

0 𝐸
2(𝑚,𝑞)

]

× [
𝑎
2

1(𝑚,𝑞)
0

0 𝑎
2

2(𝑚,𝑞)

]

+

𝑛

∑
𝑚=1

𝑛

∑
𝑞=1

[
𝐸
𝑇

1(𝑚,𝑚)
0

0 𝐸
𝑇

2(𝑚,𝑚)

] Γ [
𝐸
1(𝑚,𝑚)

0

0 𝐸
2(𝑚,𝑚)

]

× [
𝑎
2

1(𝑚,𝑞)
0

0 𝑎
2

2(𝑚,𝑞)

]

−

𝑛

∑
𝑚=1

𝑛

∑
𝑞=1

sym ([
𝐸
𝑇

1(𝑚,𝑞)
0

0 𝐸
𝑇

2(𝑚,𝑞)

] Γ [
𝐸
1(𝑚,𝑚)

0

0 𝐸
2(𝑚,𝑚)

])

× [
𝑎
2

1(𝑚,𝑞)
0

0 𝑎
2

2(𝑚,𝑞)
]

+

𝑛

∑

𝑗=1

𝑛

∑

𝑚=𝑗+1

sym (2[
𝐸
𝑇

1(𝑗,𝑗)
0

0 𝐸
𝑇

2(𝑗,𝑗)

] Γ [
𝐸
1(𝑚,𝑚)

0

0 𝐸
2(𝑚,𝑚)

]

− [
𝐸
𝑇

1(𝑗,𝑗)
0

0 𝐸
𝑇

2(𝑗,𝑗)

] Γ [
𝐸
1(𝑚,𝑗)

0

0 𝐸
2(𝑚,𝑗)

]

− [
𝐸
𝑇

1(𝑗,𝑚)
0

0 𝐸
𝑇

2(𝑗,𝑚)

]

× Γ [
𝐸
1(𝑚,𝑚)

0

0 𝐸
2(𝑚,𝑚)

])

× [
𝑎
2

1(𝑚,𝑞)
0

0 𝑎
2

2(𝑚,𝑞)

] .

(17)

The following theorem gives a sufficient condition on the
average consensus of the system (2).

Theorem 4. Given the scalar 𝑟
𝑐
, the average consensus of the

system (2) is achieved if there exists a matrix 𝑄 > 0, such that
the following LMI holds:

− [𝐿
(1)

𝑄 + 𝑄𝐿
(1)

+ 𝑝 (𝐿
(2)

𝑄 + 𝑄𝐿
(2)

)]

+ 𝑟
𝑐
𝑇Ι {
∧

𝑝 (𝐿
(0)

)
∧

𝑝 (𝐿
(0)

) 𝐿
(0)

Γ𝐿
(0)

+
∧

𝑝 (𝐿
(0)

) (𝐼−
∧

𝑝 (𝐿
(0)

)) Ξ (Γ)} Ι
T
< 0.

(18)

Proof. Construct the candidate Lyapunov function as𝑉(𝑘) =

𝛿
𝑇

(𝑘)𝑄𝛿(𝑘). We have

𝐸 {Δ𝑉 (𝑘)}

= 𝐸 {𝑉 (𝑘 + 1) − 𝑉 (𝑘)}

= 𝐸 {𝛿
𝑇

(𝑘 + 1)𝑄𝛿 (𝑘 + 1) − 𝛿
𝑇

(𝑘) 𝑄𝛿 (𝑘)}

= 𝐸 {𝛿
𝑇

(𝑘) [𝐼 − 𝑟
𝑐
𝑇𝐿 (𝑘)]𝑄 [𝐼 − 𝑟

𝑐
𝑇𝐿 (𝑘)] 𝛿 (𝑘)

−𝛿
𝑇

(𝑘) 𝑄𝛿 (𝑘)}

= 𝐸 {𝛿
𝑇

(𝑘) [ − 𝑟
𝑐
𝑇𝐿 (𝑘)𝑄 − 𝑟

𝑐
𝑇𝑄𝐿 (𝑘)

+𝑟
2

𝑐
𝑇𝐿 (𝑘)𝑄𝐿 (𝑘)] 𝛿 (𝑘)}

= −𝑟
𝑐
𝑇𝛿
𝑇

(𝑘) (𝑝𝐿
(1)

+ 𝑝
2

𝐿
(2)

)𝑄𝛿 (𝑘)

− 𝑟
𝑐
𝑇𝛿
𝑇

(𝑘) 𝑄 (𝑝𝐿
(1)

+ 𝑝
2

𝐿
(2)

) 𝛿 (𝑘)

+ 𝑟
2

𝑐
𝑇
2

𝛿
𝑇

(𝑘) 𝐸 {𝐿 (𝑘)𝑄𝐿 (𝑘)} 𝛿 (𝑘)

= −𝑟
𝑐
𝑇𝑝𝛿
𝑇

(𝑘) [𝐿
(1)

𝑄 + 𝑄𝐿
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2

𝛿
𝑇
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∧

𝑝 (𝐿
(0)

)
∧

𝑝 (𝐿
(0)

) 𝐿
(0)

Γ𝐿
(0)

+
∧

𝑝 (𝐿
(0)

) (𝐼−
∧

𝑝 (𝐿
(0)

)) Ξ (Γ)}

× Ι
𝑇

𝛿 (𝑘) .

(19)

Thus, from the Lyapunov stability theory, we know that
if 𝐸{Δ𝑉(𝑘)} is negative, then (15) is asymptotically stable.
Thereby, the states of all agents will converge to their average
state; that is, the average consensus of the system (2) is
achieved.
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Figure 1: Nominal communication topology and topology based on
the second-order neighbors’ information.

4. Simulations and Analyses

To illustrate the average consensus of the system (2) under
the condition of packet losses and fast convergence rate of
the protocol based on second-order neighbors’ information,
a numerical example is provided. The nominal interaction
topology 𝐺

(1) and topology only based on second-order
neighbors’ information 𝐺

(2) among five agents are shown in
Figure 1.

The weights are set to unity for simplicity here. We set the
corresponding Laplacian matrices 𝐿(1) and 𝐿

(2) as follows:

𝐿
(1)

=

[
[
[
[
[

[

2 −1 0 0 −1

−1 2 −1 0 0

0 −1 2 −1 0

0 0 −1 2 −1

−1 0 0 −1 2

]
]
]
]
]

]

,

𝐿
(2)

=

[
[
[
[
[

[

2 0 −1 −1 0

0 2 0 −1 −1

−1 0 2 0 −1

−1 −1 0 2 0

0 −1 −1 0 2

]
]
]
]
]

]

.

(20)

We choose the sampling period as 𝑇 = 0.05 sec, control
gain as 𝑟

𝑐
= 0.5, and the probability of successfully receiving

information as 𝑃 = 0.9. The initial condition is set to be
𝑥(0) = [1, 2, 3, 4, 5]

𝑇, and it will be shown that the agents’
states finally converge to the average value 𝛼 = Ave(𝑥(0)) =

(1+2+3+4+5)/5 = 3.Then, by solving the LMI inTheorem4,
the result shows that it is feasible. Thus, consensus will be
achieved. The time history of the Bernoulli variable 𝛾

𝑎𝑏
(𝑘) is

shown in Figure 2. Figure 3 compares the convergence speed
of the nominal communication and the topology based on
second-order neighbors’ information with 𝑃 = 0.9, from
which we can see that the protocol we designed is more
effective. Figure 4 compares the convergence speed based
on second-order neighbors’ information with 𝑃 = 0.9 and
𝑃 = 0.5, fromwhich we can see the influence of packet losses.

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

1.5

Time (s)

−0.5

𝛾
a
b
(k
)

Figure 2: Time history of the Bernoulli variable 𝛾
𝑎𝑏
(𝑘).
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Figure 3: Nominal communication and the topology based on
second-order neighbors’ information with 𝑃 = 0.9.
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Figure 4: Comparison of the convergence speed based on second-
order neighbors’ informationwith different package loss probability.

5. Conclusions

In this paper, we have investigated the average consensus
in multiagent systems with the problem of packet losses
when second-order neighbors’ information was used. The
convergence rates of general protocol and second-order
neighbor protocol with packet losses have been compared
and it is concluded that second-order neighbor protocol
speeds up the consensus rate. What is more, we can see
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the influence of packet losses. Future work will extend the
agent dynamics to second-order or higher-order dynamics
with data loss and time-varying delay.
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