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Closure relations problemof hydrodynamicalmodels in semiconductors is considered by expressing third- and fourth-order closure
relations for the moments of the distribution function in terms of second-order Lagrange multipliers using a generalized Maxwell-
Boltzmann distribution function within information theory. Calculation results are commented and compared with others to
justify the accuracy of the approach developed in this paper. The comparison involves, in the first part with good agreements,
the closure relations results obtained within extended thermodynamics which were checked by means of Monte Carlo simulations,
in the second part, the results obtained by Grad’s method which expands the distribution function up to fourth-order in Hermite
polynomials. It is seen that the latter method cannot give any restriction on closure relations for higher-order moments, within the
same conditions proposed in our approach.The important role of Lagrangemultipliers for the determination of all closure relations
is asserted.

1. Introduction

The analysis of transport in small semiconductor devices
is essential for the optimization of their functioning. Such
transport could in principle be described by means of
Boltzmann transport equation (BTE) for charge carriers.
However, in small devices the electric fields are extremely
large, and therefore nonlinear effects are unavoidable [1, 2]
which leads to insurmountable difficulties to obtain solutions.
Notwithstanding this, BTE contains more information than
needed in practical applications. It is common in practice to
consider only the lowest-order moments of the distribution
function, which are directly related to density, charge flux,
kinetic energy, heat flux, and so on. These variables are
measured and controlled. This kind of approach is called a
hydrodynamical approach [3–5].

The basic model, in which the various steps and approxi-
mations are derived and discussed in detail, is due to Blotek-
jaer [4]. So as to close the set of balance equations considered
by Blotekjaer, one assumes that higher-order moments have
the value appropriate for a displaced Maxwellian. A slightly

different model has been suggested by Hänsch and Miura-
Mattausch [6]. In their model, the distribution function is
expanded in Legendre polynomials and only the first two
terms in the expansion are retained. Only the five balance
equations for particle number, momentum, and energy are
considered; then the closure is accomplished by means of the
Wiedemann-Franz law for heat flux. Both models [4, 6] are
then further simplified in order to provide amanageable set of
equations appropriate for the device simulation. However, for
more accurate results, the full models must be registered. In
approaches similar to those cited in references [4, 6],Woolard
et al. [7] and Thoma et al. [8] have proposed models taking
into account the nonparabolicity of the band structure of the
crystal. All these approaches have in common the assumption
that some higher-order moments can be calculated by means
of a displaced Maxwellian, such an approximation is rather
rough and imprecise and its range of validity needs to be
assessed [9].

Another method suitable for deriving hydrodynamical-
like equations isGrad’smethod ofmoments [10].Thismethod
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yields, with an appropriate truncation, a set of evolution
equations for the thirteen fields comprising, beside the five
balance laws corresponding to particle number, momentum,
and energy, rate-type equations for heat flux and anisotropic
stress. These equations are known to describe dilute gases
only near thermal equilibrium and fail in nonequilibrium
situations. Note that Banach and Larecki [11] proposed a
generalized Grad’s method, which begins by expanding the
phase density about an anisotropic Planck function, in order
to close systems of moment equations in nonequilibrium
situations.

Extended irreversible thermodynamics [1, 2] and extend–
ed thermodynamics [12, 13] are relatively recent approaches to
nonequilibrium thermodynamics phenomena [14, 15], which
at variance with classical irreversible thermodynamics [16]
incorporate higher-order moments (to be interpreted as flux
of fluxes) in the thermodynamic state description of system.
Though both approaches coincide at least up to second-order
in the fluxes, we adopt in this paper extended thermodynam-
ics in order to derive hydrodynamical equations for carrier
transport in semiconductors and try to close the system by
means of a generalized distribution function within infor-
mation theory (IT) [17]. Furthermore, our approach deals
with the higher-order moments based models which still
require a lot of fine tuning and a detailed understanding of
the underlying physical phenomena as mentioned by Grasser
et al. [18]. Furthermore, two recent contributions based on the
maximum entropy principle (MEP) and validated through
numerical results are to underline at this stage; the first
one concerns an exact closure obtained of the 8-moment
model for silicon semiconductors [19], and, the second one
is a technique for the construction of realizable 5-moment
closures whose extension to a fully three-dimensional gas was
not necessarily simple. In fact, the cost of the accurate numer-
ical integration of multidimensional distribution functions
required for the resynchronization step was expected to be
overwhelming [20].

Some rudimentary results of our approach were pub-
lished previously [21] which contain some difficulties in com-
paring with other works based on Monte Carlo simulations,
specially [22]. Here, we revisit it completely to overcome
difficulties and to provide accurate results. It will be done by
assuming nonvanishing higher-order Lagrange multipliers
(L-Multipliers). Such hypothesis is not the first one to this
field but there is some relevant contributions in quantum
regime due to Trovato and Reggiani [23–26], in which they
used quantum maximum entropy principle (QMEP) and
dealt with closure problems by assuming that L-Multipliers
could be expanded in powers of ℎ

2; ℎ being the reduced
Planck constant, in order to determine the reduced Wigner
function [27] for equilibrium and nonequilibrium condi-
tions. Thus, we compare and comment briefly, the aims and
the main results of the recent unified physical approach [25]
with those of the present paper. Finally, an attempt to solve the
closure problem bymeans of Grad’s method will show within
the same conditions proposed to deal with closure relations
(CR) in our approach.

The plan of this paper is as follows: in Section 2, we
recall the basic formalism of the hydrodynamic descrip-
tion in order to write the CR, that is, third- and fourth-
order moment tensors in terms of lower-order quantities.
In Section 3, we summarize some foregoing works dealing
with the CR problem. Section 4 presents the treatment of
the closure problem, in the case of an ideal gas under heat
flux or subject to both heat flux and viscous pressure by
expanding a generalized distribution function up to second-
order. Furthermore, we compare our results with otherworks.
In Section 5, we summarize for comparison some results of
the unified physical approach underlined above, particularly
those concerning nonlinear CR. Section 6 is devoted to
concluding remarks. The detail of some expressions used
in this paper and some useful integrals are included as
Appendices A, B, and C.

2. Hydrodynamic Description

The evolution equations for the moments of the distribution
function are directly obtained from the semiclassical BTE for
charge carriers [3]. In the case of electrons in the conduction
band of a semiconductor it is written as

𝜕𝑓

𝜕𝑡
+ k (k) ⋅ ∇𝑓 − 𝑒E ⋅ ∇k𝑓 = 𝑃, (1)

with 𝑓(x, k, 𝑡) the distribution function, k the electron
momentum, k(k) the electron group velocity given byk(k) =

∇k𝜀, where 𝜀 is the energy, 𝑒 the absolute value of electron
charge, E the electric field, and 𝑃 the collision term.

In the effective mass approximation [28], the energy is
given by

𝜀 (k) =
k2

2𝑚∗
with k (k) =

k
𝑚∗

, (2)

where 𝑚
∗ is the effective electron mass which in silicon is

𝑚
∗

= 0.26𝑚
𝑒
with 𝑚

𝑒
the electron mass and the reduced

Planck’s constant is taken as ℎ = 1 for convenience.
By multiplying (1) by several products of the components

of the momentum vector k and integrating, we obtain a
hierarchy of equations for the different moments of the dis-
tribution function.Thus, we obtain different hydrodynamical
models which differ in the choice of selected variables and
on the level at which the truncation is made in the hierarchy
[1, 2]. We will summarize these models in Section 3. For
instance, let us write this hierarchy of equations [9, 14, 15, 29].

For consistency, the boundary of the first Brillouin zone
is moved toward infinity, the particle density 𝑛(x, 𝑡) and the
mean velocity u(x, 𝑡) are defined, respectively, as 𝑛(x, 𝑡) =

∫ 𝑑k𝑓(x, 𝑡, k) and u(x, 𝑡) = ∫ 𝑑kk(k)𝑓(x, 𝑡, k), where J = 𝑛u
defines the particle flux. Assuming as usual that 𝑓(x, 𝑡, k)
vanishes sufficiently fast at infinity and integrating (1) in k-
space, we obtain the particle continuity equation

𝜕𝑛

𝜕𝑡
+ ∇ ⋅ (𝑛u) = 0. (3)
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Multiplying (1) by 𝑘𝑖 and integrating yield themomentum
balance equation

𝜕 (𝑛𝑢
𝑖
)

𝜕𝑡
+

𝜕𝜃
𝑖𝑗

𝜕𝑥𝑗
+

𝑛𝑒𝐸
𝑖

𝑚∗
= 𝑃
𝑖
. (4)

Multiplying (1) by 𝑘
𝑖
𝑘
𝑗 and integrating, we find the

expression of stress equation for the traceless part of 𝜃
⟨𝑖𝑗⟩

𝜕𝜃
⟨𝑖𝑗⟩

𝜕𝑡
+

𝜕𝜃
⟨𝑖𝑗⟩𝑟

𝜕𝑥𝑟
+

2𝑛𝑒𝐸
⟨𝑖𝑢𝑗⟩

𝑚∗
= 𝑃
⟨𝑖𝑗⟩

. (5)

We denote the completely symmetric and traceless part of
a tensor 𝐴

𝑖𝑗
as

𝐴
⟨𝑖𝑗⟩

=
1

2
[𝐴
𝑖𝑗
+ 𝐴
𝑗𝑖
−

2

3
𝛿
𝑖𝑗
𝐴
𝑘

𝑘
] . (6)

From the trace of 𝜃
𝑖𝑗
, we obtain the balance equation for

the energy 𝑊, with 𝑃
𝑊
the energy production,

𝜕𝑊

𝜕𝑡
+ ∇ ⋅ S + 𝑛𝑒E ⋅ u = P

𝑊
. (7)

The energy flux equation for 𝑆
𝑖
is governed by the

following equation, with 𝑃


𝑖
as the energy-flux production:

𝜕𝑆
𝑖

𝜕𝑡
+

𝜕𝑆
𝑖𝑗

𝜕𝑥𝑗
+ 𝑒 [𝐸

𝑖
𝜃
𝑖𝑗
+

1

𝑚∗
𝑊𝐸
𝑖
] = 𝑃



𝑖
. (8)

Here 𝑆
𝑖𝑗
denotes the flux of energy flux which is written

as

𝑆
𝑖𝑗
= 𝑊𝑢

𝑖
𝑢
𝑗
+ 2𝑛𝑘

𝐵
𝑇𝑢
𝑖
𝑢
𝑗
+

1

2
𝑢
2
𝑛𝑘
𝐵
𝑇𝛿
𝑖𝑗

+
𝑚
∗

2
(2𝑢
𝑟
𝑢
𝑗
𝜃
⟨𝑖𝑟⟩

+ 2𝑢
𝑖
𝑢
𝑟
𝜃
⟨𝑗𝑟⟩

+ 𝑢
2
𝜃
⟨𝑖𝑗⟩

)

+ 𝑢
𝑗
𝑄
𝑖
+ 𝑢
𝑖
𝑄
𝑗
+ 𝑢
𝑟
𝜃
𝑖𝑗𝑟

+ 𝜃
𝑖𝑗𝑟𝑟

,

(9)

with 𝑄
𝑖
the heat flux. 𝜃

𝑖𝑗𝑟
and 𝜃

𝑖𝑗𝑟𝑟
are, respectively, the

randomparts of the third- and fourth-ordermoment tensors,
(10).

3. Closure Problem and
Extended Thermodynamics

As we have mentioned above, different hydrodynamical
models have tried to close the hierarchy of equations for
the different moments of the distribution function. The
variables appearing in the thirteen-moment equations (3)–
(8) are the particle number density 𝑛, the momentum 𝑛𝑢

𝑖,
the temperature 𝑇, the stress tensor 𝜃

⟨𝑖𝑗⟩
, the heat flux𝑄

𝑖
, and

plus the randomparts of the third- and fourth-ordermoment
tensors 𝜃

𝑖𝑗𝑟
and 𝜃
𝑖𝑗𝑟𝑟

given by

𝜃
𝑖𝑗𝑟

=
𝑚
∗

2
∫𝑓𝑐
𝑖
𝑐
𝑗
𝑐
𝑟
𝑑k,

𝜃
𝑖𝑗𝑟𝑠

=
𝑚
∗

2
∫𝑓𝑐
𝑖
𝑐
𝑗
𝑐
𝑟
𝑐
𝑠
𝑑k,

(10)

where the random component c of the moment vector k is
used for convenience and which is defined by k = 𝑚

∗
(u + c)

with u the mean velocity.

So as to close the system at this level of approximation,
we need explicit expressions for 𝜃

𝑖𝑗𝑟
and 𝜃

𝑖𝑗𝑟𝑟
. One way

is based on the assumption that the distribution function
could be approximated by a drifted-Maxwellian [3, 4, 8, 30].
This approach implies the following closure relations for the
random parts of the third-order and fourth-order moment
tensors, (10),

𝜃
𝑖𝑗𝑟

=
1

5
(𝑄
𝑖
𝛿
𝑗𝑟

+ 𝑄
𝑗
𝛿
𝑖𝑟
+ 𝑄
𝑘
𝛿
𝑖𝑗
) , (11)

𝜃
𝑖𝑗𝑟𝑟

=
5

2

𝑛(𝑘
𝐵
𝑇)
2

𝑚∗
𝛿
𝑖𝑗
. (12)

However, this model presents some limitations which
makes a sounder analysis of the possible truncation of
equations to optimize the description of the system desirable
[1, 2]. Therefore, CR related to the hierarchy of moment
equations of the BTE take an essential role in building hydro-
dynamical models of carrier transport in semiconductors,
and it deserves a thorough investigation starting from first
principles [12, 13]. This is done in framework of extended
thermodynamics [1, 9, 12–15, 29]. The critical assumption
is that 𝜃

𝑖𝑗𝑟
and 𝜃

𝑖𝑗𝑟𝑟
can be considered as functions of the

lower-ordermoments of particle density,momentum, energy,
components of the pressure tensor, and heat flux. Within the
definition and the justification of the partial thermal equilib-
rium state, Anile andMuscato [29] derived the results (11) and
(12) as 𝜃

⟨𝑖𝑗𝑟⟩
= 0 and 𝜃

𝑖𝑗𝑟𝑟
= (5/2)((𝑛(𝑘

𝐵
𝑇)
2
)/𝑚
∗
)𝛿
𝑖𝑗

which
were obtainedwith the drift-Maxwellian assumption.The last
closure led to a flux-limited expression for the heat flow by
using the Schwartz’s inequality as

|𝑄| ≤ 𝑄max = 3(
5

2
)

1/2
𝑛

√𝑚∗
(𝑘
𝐵
𝑇)
3/2

. (13)

Let us mention that other attempts to investigate the flux-
limited phenomena are well known, for instance, in radia-
tions hydrodynamics [9, 31, 32], in plasma physics [33, 34]
and in electronics [1, 2, 29, 35–38]. Furthermore, Anile et al.
have applied [9, 14, 15, 29, 39, 40] amethod based on extended
thermodynamics [1, 2, 13] in order to establish expressions
corresponding to third- and fourth-order moment tensors,
that is, 𝜃

𝑖𝑗𝑟
and 𝜃

𝑖𝑗𝑟𝑟
, in the second-order of 𝑄

𝑖
and 𝜃

𝑖𝑗
. They

obtained the following constitutive equations up to second-
order about partial thermal equilibrium:

𝜃
⟨𝑖𝑗𝑘⟩

=
2

5

𝑚
∗

𝑛𝑘
𝐵
𝑇

(𝑄
𝑖
𝜃
𝑗𝑘

+ 𝑄
𝑗
𝜃
𝑘𝑖

+ 𝑄
𝑘
𝜃
𝑖𝑗

−
2

15
𝑄
𝑙
(𝜃
⟨𝑙𝑖⟩

𝛿
𝑗𝑘

+ 𝜃
⟨𝑙𝑗⟩

𝛿
𝑘𝑖

+ 𝜃
⟨𝑙𝑘⟩

𝛿
𝑖𝑗
)) ,

(14)

𝜃
𝑖𝑙𝑙𝑗

= (
5𝑛(𝑘
𝐵
𝑇)
2

2𝑚∗
+ (

𝜎

𝑀𝑘
𝐵
𝑇
𝐿

−
2

5𝑛𝑘
𝐵
𝑇
)𝑄
2
)𝛿
𝑖𝑗

+
2𝜎

𝑛𝑘
𝐵
𝑇
𝐿

𝑄
𝑖
𝑄
𝑗
+

7𝑘
𝐵
𝑇

2
𝜃
⟨𝑖𝑗⟩

+
𝑚
∗

𝑛
𝜃
⟨𝑖𝑙⟩

𝜃
⟨𝑗𝑙⟩

,

(15)

where 𝑇
𝐿
is the lattice temperature.



4 Journal of Thermodynamics

In the constitutive equation (15), only the free parameter
𝜎 can be determined by comparison with Monte Carlo
results [22]. In order to check CR, (14) and (15), the authors
evaluate the quantities 𝑛, 𝑢𝑖, 𝑇, 𝑄

𝑖
, and 𝜃

⟨𝑖𝑗⟩
by Monte Carlo

simulations and by using a suitable fitting. Accordingly, they
determine the free parameter 𝜎 appearing in (15). In fact, this
free parameter 𝜎 is in the range −0.15–+0.15 and it gives a
maximal error less than 7% with respect to the Monte Carlo
calculations as the authors described. Furthermore, one finds
that in (14), the error increases with electrical field E. Indeed,
for 𝐸 ≃ 10

4 V/cm the error is 0.01% and for 𝐸 ≈ 10
5 V/cm,

the error is 1%. In (15), the error is 7% for 𝐸 ≈ 10
2 V/cm and

reduces to 2% for 𝐸 between 10
3 V/cm and 10

4 V/cm.
Note that Romano [41] has dealt with another method

based on a finite difference scheme of Scharfetter-Gummel
type in order to simulate a consistent energy-transport
model for electron transport in semiconductors devices.This
last method is free of any fitting parameters. Otherwise, it
is known that the maximum entropy moment systems of
the gas-dynamical Boltzmann equation suffer from severe
disadvantages which are related to the nonsolvability of
an underlying maximum entropy moment problem unless
restrictions on the choice of the macroscopic variables are
made. Thus, Junk and Romano [42] showed that no such
difficulties appeared in the semiconductor case if Kane’s
dispersion relation is used for the energy band of electrons.
In addition, a hydrodynamic subband model for semicon-
ductors had been formulated by closing the moment system
derived from the Schrödinger-Poisson-Boltzmann equations
on the basis of the MEP where explicit closure relations for
the fluxes and the production termswere obtained taking into
account scattering of electrons with acoustic and nonpolar
optical phonons, as well as surface scattering. For this model,
a suitable numerical scheme was presented together with
simulations of a nanoscale silicon diode [43]. Evenly, Camiola
et al. [44] proposed an expression of the entropy combines
quantum effects and semiclassical transport by weighting the
contribution of each subband with the square modulus of
the envelope functions arising from the Schrödinger-Poisson
subsystem. The simulations shown that their model was able
to capture the relevant confining and transport features, and,
assessed the robustness of the numerical scheme. By taking
into account nonparabolic energy bands of Kane’s type,
Mascali and Romano [45] obtained explicit closure relations
for fluxes and production terms, including scattering of
electrons with acoustic and nonpolar optical phonons and
surface scattering.Numerical simulations of a quantumdiode
showed the feasibility of their model and the importance of
the nonparabolicity was assessed. Likewise, a recent unified
physical approach developed by Trovato and Reggiani [23–
26] deal with the same CR problem in quantum scheme,
we will report in Section 5 some results of this latter for a
comparison asserting that the knowledge of the L-Multipliers
implies the determination of all CR for the system.

4. Information Theory and Closure Relations

In the microscopic description, several methods (kinetic
theory and information theory) coincide in the first-order

in the fluxes. Here, we want to check disagreements in
higher-orders (second-order for instance). We think that
production terms and closure relations are good fields to
do that. In this work, we consider only the latter ones.
We apply IT [17] to deal with closure relations of a gas in
nonequilibrium steady state subject to heat flux and viscous
pressure. The treatment proposed here differs from that we
have presented in the precedent section. Indeed, there are two
modifications: (i) from amicroscopic point of view, it is based
on a second-order expansion of a generalized distribution
function obtained from IT and (ii) from a macroscopic point
of view, it is based on extended thermodynamics but with
a slightly different interpretation of the inequalities arising
from the second law of thermodynamics.

Thus, we consider a gas in a nonequilibrium steady state
characterized by numerical density 𝑛, internal energy, or
local equilibrium temperature 𝑇 and by a heat flux Q and
viscous pressure 𝜃

𝑖𝑗
. The conditions to be imposed on the

nonequilibrium distribution function 𝑓neq are

∫𝑓neq𝑑k = ∫𝑓eq𝑑k = 𝑛, (16)

∫𝑓neqc𝑑k = ∫𝑓eqc𝑑k = 0, (17)

∫𝑓neq (
1

2
𝑚
∗c2)𝑑k = ∫𝑓eq (

1

2
𝑚
∗c2)𝑑k =

3

2
𝑛𝑘
𝐵
𝑇, (18)

∫𝑓neq (
1

2
𝑚
∗c2) 𝑐

𝑖
𝑑k = 𝑄

𝑖
, (19)

∫𝑓neq𝑐⟨𝑖𝑐𝑗⟩𝑑k = 𝜃
⟨𝑖𝑗⟩

, (20)

where 𝑓eq is the local equilibrium distribution function
corresponding to the number density 𝑛 and the internal
energy (3/2)𝑛𝑘

𝐵
𝑇. Since 𝑓neq differs from 𝑓eq, the higher-

order moments of 𝑓neq, as for instance corresponding to
nonconserved quantities, will in general differ from the
corresponding moments (19) and (20) of 𝑓eq [46].

4.1. System under Heat Flux and Flux Limiters. When we take
into account the heat flux as the only dissipative source, the
maximum entropy solution for the distribution function has
the form

𝑓neq = 𝐴 exp(−𝛽
1

2
𝑚
∗c2 − (

1

2
𝑚
∗c2 − 5

2𝛽
) 𝛾 ⋅ c) , (21)

where𝛽 and 𝛾 are the L-Multipliers to be determined from the
constraints expressed by (18) and (19). 𝐴 is a normalization
constant to be obtained from (16). The Lagrange multiplier
corresponding to the velocity has been written as −(5/2𝛽)𝛾,
a relation which, as it is known, satisfies the restriction (17).
Therefore, the term (5/2𝛽)𝛾 ⋅ c follows from the requirement
that the system is at rest; that is, ⟨c⟩ = 0 [47]; it behaves near
equilibrium as (5/2𝛽)c ≈ ((5𝑘

𝐵
𝑇)/2)c.
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By using the shorthand notation 𝛼 = (1/2)𝑚
∗
𝛽 and

𝐵(c) = ((1/2)𝑚
∗c2−(5/2𝛽)), we expand (21) up to the second-

order in 𝛾 as

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾 ⋅ c +
1

2
𝐵
2
(c) (𝛾 ⋅ c)2] .

(22)

Thus, if one restricts the expansion to the first-order
in 𝛾, one would obtain the Grad distribution function [10]
corresponding to a steady heat flux without viscous pressure.
Also this second-order expansion in𝑓neq (which corresponds
to a fourth-order expansion in c) is not exactly equal to the
fourth-order expansion in the Grad’s scheme as it will be
commented below. Note finally that according to the usual
definition of the entropy in terms of the velocity distribution
function 𝑓

𝜌𝑠 = −𝑘
𝐵
∫𝑓 ln (𝑓) 𝑑c. (23)

We obtain, according to the restrictions imposed on 𝑓

𝑑𝑠 = 𝑘
𝐵
𝛽𝑑𝑢 + 𝑘

𝐵
𝛾 ⋅ 𝑑Q. (24)

Therefore, the entropy is no longer the local equilibrium
entropy [1, 2], but it depends also on the heat fluxQ (through
the Lagrange multiplier 𝛾). Later, we will include also the
viscous pressure 𝜃

𝑖𝑗
as a further independent quantity.

Introduction of (22) into (10) yields up to second-order
in L-Multipliers corresponding to heat flux

𝜃
𝑖𝑗𝑘

=
1

5
(𝑄
𝑖
𝛿
𝑗𝑘

+ 𝑄
𝑗
𝛿
𝑖𝑘

+ 𝑄
𝑘
𝛿
𝑖𝑗
) , (25)

𝜃
𝑖𝑗𝑟𝑟

=
5𝑛

2𝑚∗𝛽2
𝛿
𝑖𝑗
+ 𝐶
2𝑖𝑗

(𝛽, 𝑛) 𝛾
𝑖
𝛾
𝑗
, (26)

where 𝐶
2𝑖𝑗

(𝛽, 𝑛) = 𝐴∫ exp(−𝛽((𝑚∗c2)/2))(𝐵2(c)/2)c2𝑐2
𝑖
𝑐
2

𝑗
𝑑c.

We conclude that relation (25) coincides with (11) and by
eliminating the second-order correction term in the right-
hand side of (26) we find the same result as (12). Indeed, we
can justify the second-order correction appearing in (26) by
using a generalized distribution function.

Introduction of (22) into (16)–(19) yields the following
simplified expressions:

𝐴 =
𝑛

𝑚∗
(
𝛼

𝜋
)

3/2

[1 +
5

8

𝛾
2

𝛼𝛽2
]

−1

, (27)

3

2
𝑛𝑘
𝐵
𝑇 =

3

2

𝑛

𝛽
[1 +

15

8

𝛾
2

𝛼𝛽2
][1 +

5

8

𝛾
2

𝛼𝛽2
]

−1

, (28)

𝑄
𝑖
= −

5

2

𝑛

𝛽3𝑚∗
𝛾
𝑖
[1 +

5

8

𝛾
2

𝛼𝛽2
]

−1

. (29)

Then the relation between 𝑄
𝑖
and 𝛾
𝑖
can be written as

𝑄
𝑖
= −

𝐴

𝛾
𝑖

1 + 𝐵𝛾2
𝑖

, (30)

where𝐴 and 𝐵
 are functions of𝑚∗ and 𝛽 and 𝑛 are obtained

directly from (28) and are written as𝐴 = (5/2)(𝑛/𝛽
3
𝑚
∗
) and

𝐵

= (5/8)(1/𝛼𝛽

2
).

Thus, the expression (30) yields a flux limiter for the heat
flux because of the relation

𝑄 ≤
𝐴


2√𝐵
= (

5

4
)

1/2
𝑛

√𝑚∗
(𝛽)
−(3/2)

≈ (
5

4
)

1/2
𝑛

√𝑚∗
(𝑘
𝐵
𝑇)
3/2

.

(31)
This saturation behavior of heat flux is attained when

𝛾 = √1/𝐵 . So as to have a more accurate expression of
heat flux limiter, we should take higher-order terms in (22).
Then, we conclude that within this approach, the heat flow is
limited (31) which could described a flux-limited phenomena
as mentioned below (13).

4.2. System Subject to ReducedHeat Flux andViscous Pressure.
The generalized distribution function obtained from IT
which describes a priori the nonequilibrium steady states of a
system subjected to heat flux𝑄 and viscous pressure 𝜃

𝑖𝑗
takes

the following form:

𝑓neq = 𝐴 exp(−𝛽
1

2
𝑚
∗c2 − (

1

2
𝑚
∗c2 − 5

2𝛽
) 𝑐
𝑖
𝛾
𝑖

− Γ
⟨𝑗𝑘⟩

: 𝑚
∗
𝑐
⟨𝑗𝑐𝑘⟩

) .

(32)

The expansion of this latter up to the second-order in
the L-Multipliers, 𝛽, 𝛾

𝑖
, and Γ

⟨𝑗𝑘⟩
conjugated, respectively, to

energy, heat flux, and viscous pressure, is written with a trace-
less symmetric tensor Λ as

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) (𝛾
𝑖
𝑐
𝑖
) − 𝑚
∗
(Γ
⟨𝑗𝑘⟩

: Λ) 𝑐
𝑗
𝑐
𝑘

+
𝛾
2

𝑖

2
𝐵
2
(c) 𝑐2
𝑖
+

𝑚
∗2

2
(Γ
⟨𝑗𝑘⟩

: Λ)
2

𝑐
2

𝑗
𝑐
2

𝑘

+ 𝑚
∗
𝛾
𝑖
(Γ
⟨𝑗𝑘⟩

: Λ) 𝐵 (c) 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
] ,

(33)
where 𝐴 is the normalization constant.

Denoting that the condition imposed on the distribution
function to give the reduced heat flux is written as

∫𝑓neq𝐵 (c) 𝑐
𝑖
𝑑k = 𝑄

𝑖
. (34)

Hence, in order to incorporate nonlinear effects in the CR
we propose up to the second-order in reduced heat flux 𝑄

𝑖

and viscous pressure tensor 𝜃
⟨𝑖𝑗⟩

, the following expressions for
the third- and fourth-order moments:

𝜃
𝑖𝑗𝑘

=
1

5
(𝑄
𝑖
𝛿
𝑗𝑘

+ 𝑄
𝑗
𝛿
𝑖𝑘

+ 𝑄
𝑘
𝛿
𝑖𝑗
)

+ 𝐶
1
(𝑄
𝑖
𝜃
𝑗𝑘

+ 𝑄
𝑗
𝜃
𝑘𝑖

+ 𝑄
𝑘
𝜃
𝑖𝑗
)

+ 𝐶
2
𝑄
𝑙
(𝜃
⟨𝑙𝑖⟩

𝛿
𝑗𝑘

+ 𝜃
⟨𝑙𝑗⟩

𝛿
𝑘𝑖

+ 𝜃
⟨𝑙𝑘⟩

𝛿
𝑖𝑗
) ,

(35)

𝜃
𝑖𝑗𝑟𝑟

= (
5𝑛

2𝑚∗𝛽2
+ 𝐶
3
𝑄
2
)𝛿
𝑖𝑗
+ 𝐶
4
𝑄
𝑖
𝑄
𝑗

+ 𝐶
5
𝜃
⟨𝑖𝑗⟩

+ 𝐶
6
𝜃
⟨𝑖𝑙⟩

𝜃
⟨𝑗𝑙⟩

,

(36)

where 𝐶
𝑖
(𝑖 = 1, . . . , 6) are coefficients to be determined.
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Note that all these coefficients are equal to zero in the
simplified hypotheses which recover (11) and (12). In the
following subsection, we will derive the coefficients 𝐶

𝑖
(𝑖 =

1, . . . , 6) within IT [17] by imposing some restrictions on 𝑄
𝑖
,

𝜃
⟨𝑖𝑗⟩

, 𝜃
𝑖𝑗𝑘
, and 𝜃

𝑖𝑗𝑟𝑟
.

4.2.1. Calculations of 𝐶
𝑖
. The first two hypotheses imposed

over𝑄
𝑖
and 𝜃
𝑗𝑘
to evaluate𝐶

1
(resp.𝐶

2
) are𝑄

1
̸= 0 and 𝜃

23
̸= 0

(resp. 𝑄
1

̸= 0 and 𝜃
11

̸= 0), and, the other components of 𝑄
𝑖

and 𝜃
𝑖𝑗
are equal to zero. After carrying out the calculations,

(35) yields the expressions of 𝐶
1
and 𝐶

2
up to the second-

order in L-Multipliers

𝐶
1
=

𝜃
123

𝑄
1
𝜃
23

=
2

5

𝑚
∗
𝛽

𝑛
[1 +

5

8

𝛾
2

1

𝛼𝛽2
+

1

2

(Γ
⟨23⟩

: Λ)
2

𝛽2
] , (37)

3𝐶
1
+ 2𝐶
2
=

5𝜃
111

− 3𝑄
1

5𝑄
1
𝜃
11

= −
69

25

𝑚
∗
𝛽

𝑛
[
(Γ
⟨11⟩

: Λ)

𝛽
]Φ,

(38)

with

Φ = (1 −
(Γ
⟨11⟩

: Λ)

𝛽
+

5

8

𝛾
2

1

𝛼2𝛽2
+

3

2

(Γ
⟨11⟩

: Λ)
2

𝛽2
)

× ((1 −
27

5

(Γ
⟨11⟩

: Λ)

𝛽
)

× (1 − 3
(Γ
⟨11⟩

: Λ)

𝛽
+

27

8

𝛾
2

1

𝛼2𝛽2

+
15

2

(Γ
⟨11⟩

: Λ)
2

𝛽2
))

−1

.

(39)

Note that we let (Γ
⟨11⟩

: Λ)/𝛽 term without simplification
by 𝛽 because it will play an important role as we will see later
in this paper.

The second two hypotheses imposed over 𝑄
𝑖
and 𝜃

𝑖𝑗
to

evaluate 𝐶
3
(resp. 𝐶

4
) are 𝑄

1
̸= 0 (resp. 𝑄

1
̸= 0 and 𝑄

2
̸= 0),

and, the other components of 𝑄
𝑖
and 𝜃

𝑖𝑗
are equal to zero.

After integration, (36) gives the following expressions for
𝐶
3
and 𝐶

4
up to second-order in the L-Multipliers

𝐶
3
+ 𝐶
4
=

𝜃
11𝑟𝑟

− 5𝑛/2𝑚
∗
𝛽
2

𝑄2
1

=
166

25

𝛽

𝑛
[1 +

5

8

𝛾
2

1

𝛼𝛽2
] , (40)

𝐶
4
=

𝜃
12𝑟𝑟

𝑄
1
𝑄
2

=
119

25

𝛽

𝑛
[1 +

5

8

𝛾
2

1
+ 𝛾
2

2

𝛼𝛽2
] . (41)

The third two hypotheses imposed over 𝑄
𝑖
and 𝜃

𝑖𝑗
to

evaluate𝐶
5
(resp.𝐶

6
) are 𝜃

12
̸= 0 (resp. 𝜃

11
̸= 0), and, the other

components of 𝑄
𝑖
and 𝜃

𝑖𝑗
are equal to zero. Thus (36) yields

the following expressions for 𝐶
5
and 𝐶

6
up to second-order

in the L-Multipliers:

𝐶
5
=

𝜃
12𝑟𝑟

𝜃
⟨12⟩

=
7

2

1

𝛽
, (42)

𝐶
6
=

𝜃
11𝑟𝑟

− 5𝑛/2𝑚
∗
𝛽
2
− 𝐶
5
𝜃
⟨11⟩

𝜃2
⟨11⟩

= −
21

4

𝑚
∗

𝑛
([1 +

8

7

(Γ
⟨11⟩

: Λ)

𝛽
−

75

7

(Γ
⟨11⟩

: Λ)
2

𝛽2
]

×[1 −
(Γ
⟨11⟩

: Λ)

𝛽
+

3

2

(Γ
⟨11⟩

: Λ)
2

𝛽2
])

× ([1 − 3
(Γ
⟨11⟩

: Λ)

𝛽
+

15

2

(Γ
⟨11⟩

: Λ)
2

𝛽2
]

2

)

−1

.

(43)

Here, we should underline that the coefficients 𝐶
𝑖
(𝑖 =

1, . . . , 6) depend, in our case, not only on 𝑚
∗, 𝑛, and 𝑇 as

in [22], but on the L-Multipliers 𝛽, 𝛾
𝑖
, and Γ

⟨𝑗𝑘⟩
by taking

into account only the second-order in the expansion of
the distribution function. Note that explicit expressions of
the generalized distribution function corresponding to each
hypothesis are given in Appendix A.

4.2.2. Comparison with Anile and Muscato [22]. In zero-
order in L-Multipliers [21] or in first-order in the L-
Multipliers with (Γ

⟨11⟩
: Λ)/𝛽 is equal to zero, the coeffi-

cients 𝐶
𝑖
(𝑖 = 1, . . . , 6), that is, (37)–(43), become 𝐶

1
≈

(2/5)(𝑚
∗
𝛽/𝑛), 𝐶

2
≈ −(1/5)(𝑚

∗
𝛽/𝑛), 𝐶

3
≈ (47/25)(𝛽/𝑛),

𝐶
4

≈ (119/25)(𝛽/𝑛), 𝐶
5

≈ (7/2)(1/𝛽), and 𝐶
6

≈

−(21/4)(𝑚
∗
/𝑛). At this stage, the expressions for CR near

equilibrium state take the forms

𝜃
⟨𝑖𝑗𝑘⟩

≈
2

5

𝑚
∗
𝛽

𝑛
(𝑄
𝑖
𝜃
𝑗𝑘

+ 𝑄
𝑗
𝜃
𝑘𝑖

+ 𝑄
𝑘
𝜃
𝑖𝑗

−
1

2
𝑄
𝑙
(𝜃
⟨𝑙𝑖⟩

𝛿
𝑗𝑘

+ 𝜃
⟨𝑙𝑗⟩

𝛿
𝑘𝑖

+ 𝜃
⟨𝑙𝑘⟩

𝛿
𝑖𝑗
)) ,

(44)

𝜃
𝑖𝑗𝑟𝑟

≈ (
5𝑛

2𝑚∗𝛽2
+

47

25

𝛽

𝑛
𝑄
2
)𝛿
𝑖𝑗
+

119

25

𝛽

𝑛
𝑄
𝑖
𝑄
𝑗

+
7

2

1

𝛽
𝜃
⟨𝑖𝑗⟩

−
21

4

𝑚
∗

𝑛
𝜃
⟨𝑖𝑙⟩

𝜃
⟨𝑗𝑙⟩

.

(45)

When we neglect the contribution of 𝛾
𝑖
and Γ

⟨𝑗𝑘⟩
, we

can recover easily (14) and (15) established by Anile and
Muscato [22], with a slight suitable difference concerning
the definitions of Q, 𝜃

𝑖𝑗
, 𝜃
𝑖𝑗𝑘
, and 𝜃

𝑖𝑗𝑟𝑟
. In our opinion, the

main difference is related to the use of different microscopic
definitions of the heat flow and a vanishing expression of
(Γ
⟨11⟩

: Λ)/𝛽. We will study later in this paper a nonvanishing
expression of (Γ

⟨11⟩
: Λ)/𝛽 which will give us a solution to
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Table 1: Estimates of the free parameter 𝜎, (46), by using data extracted from [22].

Electron temperature: 𝑇 (K) 275.27 281.77 348.27 449.46 1694.33 3281.89 5123.61
Electric field: E (V/cm) 1109 1449 5518 10768 41000 61230 80000
Free parameter: 𝜎 2.594 2.534 2.050 1.589 0.421 0.218 0.139

overcome the slight differences among our expressions and
those established by Anile and Muscato [22].

Otherwise to evaluate CR, Anile and Muscato [22] used
for the heat-flux the expression Q = (1/2)𝑚

∗c2c but in our
case we have used Q = ((1/2)𝑚

∗c2 − (5/2𝛽))c. Thus, the
two definitions gave the same average value forQ, as we have
described above, but they yield different values for higher-
order moments. The adopted definition in our calculation
corresponds to what one calls the reduced heat flow, which
it is used in fluctuation-dissipation theory where moments of
Q play an important role.

Furthermore, if we simply compare (14) and (15) with
those established in our approach (44) and (45), we can
estimate the unknown free parameter 𝜎. In fact, a definite
value of this latter is provided by the maximum entropy
approach or alternatively it may be determined by Monte
Carlo simulations [1]. This is what we deal with in our
approach based on IT. It is clear from (15) and (45) that the
unknown parameter 𝜎 is connected to 𝐶

3
(resp. 𝐶

4
). It is a

nondimensional free parameter and a function of the lattice
temperature 𝑇

𝐿
(300K) and the electron temperature 𝑇 as

𝜎 ≈ (57/25)(𝑀𝑇
𝐿
/𝑛𝑇) (resp. 𝜎 ≈ (119/50)(𝑇

𝐿
/𝑇)) with

𝛽 ≈ (1/𝑘
𝐵
𝑇) in the case of partial thermal equilibrium.

So as to compare our results with those obtained inMonte
Carlo simulations, we plot in Figure 1 for the same values of
𝑇
𝐿
and 𝑇 versus field E. The data of these latters (see Table 1)

are extracted from [22]. Thus, we choose the second expres-
sion of 𝜎 related to 𝐶

4
because the authors were silent about

the expression of the parameter𝑀 used in expression (15)

𝜎 ≈
119

50

𝑇
𝐿

𝑇
. (46)

As shown in Figure 1, we find that free parameter 𝜎which
is obtained by using a fitting of Monte Carlo simulation data
[22] becomes approximately constant at high field more than
60000V/cm and 𝜎 ≤ 0.139.

In Figure 2, we plot the impact of electron temperature
𝑇 on the nondimensional free parameter 𝜎. It is clear from
Figure 2 that at high electron temperature 𝑇 is more than
3500K and 𝜎 ≤ 0.13. This last 𝜎-value is obtained without
using any fitting. Hence, we can use the expression (46) to
evaluate the value of the electric field which could be applied
in future experiences dealing with electron transport in
semiconductors and to comparewithMonteCarlo simulation
results, vice versa to have electron temperature 𝑇 if we know
electric field 𝐸.

4.2.3. Overcoming Slight Differences in CR with Anile and
Muscato [22]. In order to overcome the slight difference
between our results and those performed by Anile and
Muscato [22], we have to take into account, in the first-order
in L-Multipliers, a nonvanishing expression of (Γ

⟨11⟩
: Λ)/𝛽.
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Figure 1: The free parameter 𝜎 from (46) versus electric field E.
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Figure 2: Determination of the free parameter 𝜎 from (46) by
varying electron temperature𝑇, without using a fit nor data ofMonte
Carlo simulation.

Denoting firstly by 𝐶
𝐴

𝑖
(𝑖 = 1, . . . , 6), the coefficients related

to (14) and (15) which are written as 𝐶
𝐴

1
≈ (2/15)(𝑚

∗
𝛽/𝑛),

𝐶
𝐴

2
≈ −(4/75)(𝑚

∗
𝛽/𝑛), 𝐶𝐴

3
≈ ((𝜎/𝑀𝑘

𝐵
𝑇
𝐿
) − (2/5)(𝛽/𝑛)),

𝐶
𝐴

4
= (2𝜎/𝑛𝑘

𝐵
𝑇
𝐿
), 𝐶𝐴
5

≈ (7/2)(1/𝛽), and 𝐶
𝐴

6
= (𝑚
∗
/𝑛) with

(1/𝑘
𝐵
𝑇) ≈ 𝛽. Thus, by subtracting from (38) three times (37)

and adding (38) to (37), that is, (38) −3 × (37) and (38) + (37),
we obtain the coefficients 𝐶

2
and 𝐶

1
in the first-order in L-

Multipliers with a nonvanishing (Γ
⟨11⟩

: Λ)/𝛽

𝐶
2
= 𝐶
𝐴

2
[
207

8

(Γ
⟨11⟩

: Λ)

𝛽
+

45

4
] , (47)

𝐶
1
= −

1

5
𝐶
𝐴

1
[
207

8

(Γ
⟨11⟩

: Λ)

𝛽
+

45

4
]

−
𝑚
∗
𝛽

𝑛
[

69

100

(Γ
⟨11⟩

: Λ)

𝛽
+

2

20
] .

(48)
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We find from (47) that for (Γ
⟨11⟩

: Λ)/𝛽 = −(82/207)

we have 𝐶
2

= 𝐶
𝐴

2
. This last equality into (48) yields 𝐶

1
=

𝐶
𝐴

1
. Thus, introducing the latter nonvanishing expression

of (Γ
⟨11⟩

: Λ)/𝛽 into (43) without any trancation in L-
Multipliers, it gives𝐶

6
= 0.857𝐶

𝐴

6
.Then, the closure relations

(35) and (36) become

𝜃
⟨𝑖𝑗𝑘⟩

≈
2

5

𝑚
∗
𝛽

𝑛
(𝑄
𝑖
𝜃
𝑗𝑘

+ 𝑄
𝑗
𝜃
𝑘𝑖

+ 𝑄
𝑘
𝜃
𝑖𝑗

−
2

15
𝑄
𝑙
(𝜃
⟨𝑙𝑖⟩

𝛿
𝑗𝑘

+ 𝜃
⟨𝑙𝑗⟩

𝛿
𝑘𝑖

+ 𝜃
⟨𝑙𝑘⟩

𝛿
𝑖𝑗
)) ,

𝜃
𝑖𝑗𝑟𝑟

≈ (
5𝑛

2𝑚∗𝛽2
+

47

25

𝛽

𝑛
𝑄
2
)𝛿
𝑖𝑗
+

119

25

𝛽

𝑛
𝑄
𝑖
𝑄
𝑗
+

7

2

1

𝛽
𝜃
⟨𝑖𝑗⟩

+ 0.857
𝑚
∗

𝑛
𝜃
⟨𝑖𝑙⟩

𝜃
⟨𝑗𝑙⟩

.

(49)

By comparing (49) with (14) and (15), we conclude that
we have overcome the silght difference arising at zero-order
and at first-order in L-Multipliers where we have used a
vanishing expression of (Γ

⟨11⟩
: Λ)/𝛽. Thus, the accuracy

of our approach checked against the results of Anile and
Muscato [22], involving the percent error between 𝐶

𝑖
and

𝐶
𝐴

𝑖
is asserted such as 𝐶

1
/𝐶
𝐴

1
= 100%, 𝐶

2
/𝐶
𝐴

2
= 100%,

𝐶
5
/𝐶
𝐴

5
= 100%, and 𝐶

6
/𝐶
𝐴

6
= 85.7%. We recall, as we have

processed above that 𝐶
4
and 𝐶

𝐴

4
(resp. 𝐶

3
and 𝐶

𝐴

3
) allow us

to find the nondimensional free parameter 𝜎. It is clear now
that taking into account higher-order in L-Multipliers will
give better accurate results as it is seen from the calculation
of coefficient 𝐶

6
determined without any truncation in L-

Multipliers.

4.2.4. Closure Relations and Grad’s Method [10]. The most
well-known assumed form for the distribution function is the
Grad type which is based on an expansion of the distribution
function in Hermite polynomials [10]. This decouples the
dependence of the closure coefficients and greatly simplifies
the derivation. In fact, Grad considered both 13- and 20-
moment closures, extensions to many moments have been
considered by others [13, 48]. However, it is an unfortu-
nate fact that members of the Grad hierarchy suffer from
several problems: (i) the distribution function is not always
positive; it is therefore not a properly defined probability
density function and (ii) for modest departures from local
equilibrium, it is possible for the resulting moment equations
to become nonhyperbolic [49–51]. Here, we assert that Grad’s
method fall in nonequilibrium situation. Indeed, we expand
the distribution function 𝑓neq up to the fourth-order in the
power of the velocity (this is the same order used in the
precedent section). In the notation of Hermite polynomials
where𝐻(𝑛)

𝑖
is a tensor of order 𝑛, Grad’s distribution function

writes as

𝑓
𝐺

= 𝑓eq

4

∑

𝑛=0

1

𝑛!
𝑎
(𝑛)

𝑖
𝐻
(𝑛)

𝑖
, (50)

where the coefficient 𝑎(𝑛)
𝑖

is also a tensor of order 𝑛.

The first four closure relations are written as

𝜃
𝑖𝑗𝑘

=

4

∑

𝑛=1

𝜃
𝑛

𝑖𝑗𝑘
,

𝜃
𝑖𝑗𝑟𝑟

=

4

∑

𝑛=1

𝜃
𝑛

𝑖𝑗𝑟𝑟
.

(51)

In order to derive the coefficients𝐶
𝑖
appearing in (35) and

(36), we should use the same conditions as in Section 4.2.1;
that is, 𝑄

1
̸= 0 and 𝜃

23
̸= 0, and, the other components are

equal to zero. Thus, up to the third-order Grad’s distribution
function takes the form

𝑓
𝐺

= 𝑓eq [1 +
1

2

𝑝
23

𝑝
𝑐
2
𝑐
3
+

1

6

𝑄
1
𝑐
1

𝑝√𝑅𝑇
(c2 − 5)] . (52)

According to the last equation we observe that 𝜃
123

= 0,
which means that𝐶

1
= 0. Grad’s distribution function can be

generalized by including the full third-order contributions

𝑓
𝐺

= 𝑓eq [1 +
𝜃
23

𝑝
𝑐
2
𝑐
3
+

𝑄
1
𝑐
1

𝑝√𝑅𝑇
(𝑐
2
− 5)

+
𝜃
123

𝑝√𝑅𝑇
𝑐
1
𝑐
2
𝑐
3
+ ⋅ ⋅ ⋅ ] ,

(53)

where 𝜃
123

is arbitrary.
Hence, if one imposes only conditions on 𝑝

23
and on 𝑄

1

but not on the additional third-order terms, we observe that
𝐶
1
is arbitrary too, since 𝐶

1
is given by 𝐶

1
= 𝜃
123

/(𝑄
1
𝜃
23
).

We checked also the same method for the other coefficients
𝐶
2
, 𝐶
3
, . . . , 𝐶

6
in (35) and (36). We concluded that at higher-

order, if conditions are imposed only on heat flux and
viscous pressure, Grad’s method cannot give any restrictions
in the closure relations (35) and (36). We can understand the
difference between this model and our approach based on IT.
Consequently, if we compare𝑓neq with𝑓

𝐺
used to provid 𝜃

123
,

we will see clearly that in our approach 𝜃
123

is connected in a
unique manner to 𝛾

1
and Γ
⟨23⟩

but in Grad’s method it is an
independent coefficient. In fact, the distribution function of
Grad assumes to 𝜃

123
= 0 in the case, where only 𝑄

1
̸= 0 and

𝜃
23

̸= 0. Thus, this freedom of coefficients in Grad’s method is
present also for the others coefficients 𝐶

2
, 𝐶
3
, . . . , 𝐶

6
.

5. Nonlinear Closure Relations
in Quantum Scheme

The present section is devoted to compare the aims and the
results developed in Section 4 with those of the work of
Trovato and Reggiani [23–26]. The authors proposed MEP
in its local semiclassical and nonlocal quantum formulation
as the basis of an unified physical approach. In fact, the
local semiclassical case investigated MEP both in the usual
kinetic theory of degenerate gases and in transport phe-
nomena for hot carriers in nondegenerate semiconductors
and mostly overviewed results obtained in the last decade.
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Thenonlocal quantumcasemostly summarized recent results
and presented a series of original findings. Otherwise,
Romano [52] proposed quantum corrections to the hydro-
dynamical model of semiconductors based on MEP were
obtained at ℎ2 order with a Chapman-Enskog expansion in
the high field approximation, modeling the ℎ

2 part of the
collision term in a relaxation form. The author deduced
limiting energy-transport and drift-diffusion models.

As constraints in QMEP approach, Trovato and Reg-
giani [24] have determined a closed quantum hydrodynamic
(QHD) system for macroscopic variables. By showing that
only a higher-order expansion of the distribution function
can be fruitfully applied to describe transport phenomena
under conditions extremely far from thermodynamic equi-
librium in the presence of very high electric fields and associ-
ated gradients such as those occurring in submicron devices.
Therefore, to describe accurately the transport phenomena
in submicron semiconductor devices, they have considered
a nonlinear expansion of the distribution function in terms
of the first thirteen relevant macrovariables involved phys-
ical interpretation. For validation purposes, the approach
was applied to many one-dimensional 𝑛+𝑛𝑛+ submicron Si
structures by using different band structure models, different
doping profiles, different lattice temperatures, and different
applied biases. From the numerical results, it is shown that
only a strongly nonlinear expansion provided amore accurate
description of all moments [25]. We report below an abstract
of those works which concern only nonlinear extended
thermodynamics with thirteen moments and we comment
briefly the main characteristics of this recent unified physical
approach.

5.1. Unified Physical Approach due to Trovato and Reggiani
[25]. In the local semiclassical case, Trovato and Reggiani
[25] introducedBTE for a fermion or bose gas by developing a
local theory with a temperature scheme to describe the state
of a gas in which the moments of the distribution function
𝑓(r, u, 𝑡) are taken as basic fields.Through a formal expansion
around the local equilibrium configuration, they explained
the extended thermodynamic theories of 𝑁 moments and
degree 𝛼, by determining a set of closed hydrodynamic
systems for bosons and/or fermions, in the frame work of the
usual gas dynamics. By introducing the kinetic field

Ψ{𝑛,𝑚𝑢
𝑖
, 𝑚𝑢
2
, 𝑚𝑢
⟨𝑖𝑢𝑗⟩

, 𝑚𝑢
2
𝑢
𝑖
} , (54)

where u denotes velocity vector; they obtained the corre-
sponding first thirteen macroscopic variables, that is, the
masse density 𝑛, the moment density𝑚𝑢

𝑖
, the energy density

𝑚𝑢
2, the traceless momentum flux density 𝑚𝑢

⟨𝑖𝑢𝑗⟩
, and

the energy flux density 𝑚𝑢
2
𝑢
𝑖
that admit a direct physical

interpretation. In the same way, by defining the higher-
ordermoments, the external field productions and collisional
productions, they wrote the balance equations for usual first
thirteen moments.

Thus, by considering the decomposition of a moment in
its convective and central parts, they formally obtained the
new set of variables {𝑛, 𝑃,𝑀

⟨𝑖𝑗⟩
, 𝑄
𝑖
}, 𝑛 being the numerical

density, 𝑃 the pressure, 𝑀
⟨𝑖𝑗⟩

the stress deviator, and 𝑄
𝑖
the

heat flux. Analogously, they obtained the following consti-
tutive equations for the third- and fourth-order moments
tensors 𝜃

𝑖𝑗𝑟
and 𝜃
𝑖𝑙𝑙𝑘

as

𝜃
⟨𝑖𝑗𝑘⟩

= 𝑀
𝑖𝑗𝑟

+ 3𝑀
(⟨𝑖𝑗⟩V

𝑘
)

−
2

5
V
𝑘
(𝑀
⟨𝑟𝑖⟩

𝛿
𝑗𝑘

+ 𝑀
⟨𝑟𝑗⟩

𝛿
𝑘𝑖

+ 𝑀
⟨𝑟𝑘⟩

𝛿
𝑖𝑗
)

+ 𝑚𝑛V
(𝑖V𝑗V𝑘),

𝜃
𝑖𝑙𝑙𝑘

= 𝑀
𝑖𝑗𝑟

+ 2V
𝑟
𝑀
⟨𝑟𝑖𝑘⟩

+ 7𝑃V
𝑖
V
𝑘
+

28

5
𝑄
(𝑖V𝑘)

+
4

5
(𝑄
𝑟
V
𝑟
) 𝛿
𝑖𝑘

+ V2𝑀
⟨𝑖𝑘⟩

+ 𝑃V2𝛿
𝑖𝑘

+ 2V
𝑟
(𝑀
⟨𝑟𝑖⟩

V
𝑘
+ 𝑀
⟨𝑟𝑘⟩

V
𝑖
) + 𝑚𝑛V2V

𝑖
V
𝑘
,

(55)

where V
𝑖
is the mean velocity.

The central moments𝑀
𝑖1 ⋅⋅⋅𝑖𝑛𝑘

are expressed as

𝑀
𝑖1 ⋅⋅⋅𝑖𝑠𝑘

= ∫𝑚�̃�
𝑖
⋅ ⋅ ⋅ �̃�
𝑖𝑠
�̃�
𝑘
𝑓 (r, u, 𝑡) 𝑑u, (56)

where �̃� = 𝑢
𝑖
− V
𝑖
the peculiar velocity and 𝑠 = 0, 1, . . . ,𝑀 by

construction with arbitrary values for the integer 𝑀.
The higher-order moments 𝜃

⟨𝑖𝑗𝑘⟩
and 𝜃

𝑖𝑙𝑙𝑘
(55) are deter-

mined by decomposing the distribution function and L-
Multipliers into equilibrium and nonequilibrium parts where
L-Multipliers are formulated versus bose and fermi integrals.
In fact, by determining an analytic expression for the L-
Multipliers versus 𝑛, 𝑃,𝑄

𝑖
,𝑀
⟨𝑖𝑗⟩

and the fermi and bose inte-
gral functions, Trovato and Reggiani [25] obtained an explicit
distribution function up to the second-order of the local
equilibrium.Thus, all the results obtained for the constitutive
relations are determined in terms of the fermi and/or bose
functions.Therefore, only by means of an efficient evaluation
of these integrals, it is possible to analyse the gas behavior for
various degeneracy levels.

5.2. Comparison with Trovato and Reggiani [25]. Within the
QMEP Trovato and Reggiani [25] introduced a quantum
entropy functional of the reduced density matrix; the princi-
ple of quantum maximum entropy is then asserted as funda-
mental principle of quantum statistical mechanics. Accord-
ingly, they developed a comprehensive theoretical formalism
to construct rigorously a closed QHD transport within a
Wigner function approach [25].Their approach is formulated
both in thermodynamic equilibrium and nonequilibrium
conditions, and the quantum contributions are obtained by
only assuming that the L-Multipliers can be expanded in
powers of ℎ2, while the classical results are recovered in the
limit ℎ → 0. The authors asserted that the knowledge of
the L-Multipliers involves the determination of all CR for
the system, up to the first quantum correction [24]. Thus,
to prove the validity of the QMEP results in the case of
nonlinear extended thermodynamicswith thirteenmoments,
Trovato and Reggiani compared the analytic results existing
in the literature with some recent numerical methods for the
evaluation of bose and fermi integrals.
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Hence it is clear that the L-Multipliers play an important
role in the conception dealing with CR in hydrodynamical
models both in the relevant contributions of Trovato and
Reggiani and in the present paper. In our case, we have
assumed some restrictions on L-Multipliers where third- and
fourth-order CR for themoments of the distribution function
are expressed merely in terms of second-order L-Multipliers:
(i) to recover the formulation of flux-limiters (30) and (ii) to
overcome difficulties in comparing our results with those of
Anile andMuscato [22]. In fact, we have used on the one hand
a nonvanishing expression of (Γ

⟨11⟩
: Λ)/𝛽 at the first-order

in L-Multipliers to find the accurate coefficients 𝐶
1
and 𝐶

2
,

and on the other hand the fall expression of 𝐶
6
without any

truncation in L-Multipliers (49). Also, the fact that third- and
fourth-order moments are related to the numerical values of
bose and fermi integrals, in the unified physical approach due
to Trovato and Reggiani, does not allow us to reach one of
the main objectives of the present paper which is to find an
analytical expression of the nondimensional free parameter 𝜎
(46).

6. Concluding Remarks

In this paper, we have studied within extended thermody-
namics implications of higher-order moments, in particular
second-order moments, so as to solve the closure problem
presented in hydrodynamical models. This is done by means
of a generalized distribution function which is obtained from
maximum-entropy argument. Thus, we have compared the
results of our approach with those obtained by both models
based on the assumption of a drift-Maxwellian distribution
function, and, on extended thermodynamics and entropy
principle; then we have found a good agreement. Further,
we have applied Grad’s method to solve the same nonlinear
CR. In the first part, we have restricted ourself using only
heat flux as dissipative source. The CR found are the same
as those obtained by a drift-Maxwellian assumption of the
distribution function. We have been led to an expression
for the heat flux describing the flux limited phenomena
occurring in the submicron-electron devices. In the second
part, we have considered a generalized distribution function
for a nonequilibrium system under heat flux and viscous
pressure in order to obtain constitutive equations of the third-
order and the fourth-order moments. Indeed, we have found
with a slight difference similar constitutive equations as those
established by Anile and Muscato [22]. This slight difference
which was published previously arised from the use of a
vanishing first-order in L-Multipliers. Here, it was overcome
by using a nonvanishing one.

Furthermore, we conclude that considerations proposed
in this paper, which concern the definition of the reduced heat
flux, allow us to express the nondimensional free parameter
𝜎 appearing in (15) as function of the lattice temperature
𝑇
𝐿
and the electron temperature 𝑇. In fact, the 𝜎-parameter

appearing in fourth-ordermoment tensor, for partial thermal
equilibrium, is related both to the Monte Carlo simulation
and to a fitting as described by Anile and coworkers. Finally,

we have used Grad’s method to calculate the CR for higher-
order moments in a simple case. We have found that this
method could not give any restrictions about higher-order
moments. Also, we assert as Trovato and Reggiani [23–
26] that the knowledge of the L-Multipliers involves the
determination of all CR for the system.

In brief, we have constructed a generalized distribution
function in the frame work of IT. This latter allowed us
to reproduce the constitutive equations of the third-order
and the fourth-order moments in terms of second-order L-
Multipliers and to take into account the nonlinear effects
in transport-hydrodynamical models of submicron-electron
devices. We should not forgot that the generalized distri-
bution function proposed in this paper is one of several
contributions dealing with the extension of the canonical
distribution function by adding to the equilibrium Hamil-
tonian an effective Hamiltonian due to the flow [1, 2, 53].
Thus, we have considered in (21) heat flux as a supplementary
constraint, and in (32) both heat flux and viscous pressure
as supplementary constraints in order to conceive the gen-
eralized distribution function used in our approach. At the
end, for a full exploitation of the results mentioned in the
present paper involving the nonlinear CR and themaximum-
entropy should be tested against the Monte Carlo simulation
incorporating second-order L-Multipliers.

Appendices

A. Explicit Expressions of 𝑓neq Used
in Section 4.1

The present appendix contains the explicit expressions of
the generalized distribution function corresponding to each
hypothesis proposed in our paper in order to derive the
coefficients 𝐶

𝑖
, that is, (37), (38), (40), (41), (42), and (43).

For the first tow hypotheses, the distribution function is
written, respectively,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
𝑐
1
− 𝑚
∗
(Γ
⟨23⟩

: Λ) 𝑐
2
𝑐
3

+
𝛾
2

1

2
𝐵
2
(c) 𝑐2
1
+

𝑚
∗2

2
(Γ
⟨23⟩

: Λ)
2

𝑐
2

2
𝑐
2

3

+ 𝑚
∗
𝛾
1
(Γ
⟨23⟩

: Λ) 𝐵 (c) 𝑐
1
𝑐
2
𝑐
3
] ,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
𝑐
1
− 𝑚
∗
(Γ
⟨11⟩

: Λ) 𝑐
2

1

+
𝛾
2

1

2
𝐵
2
(c) 𝑐2
1
+

𝑚
∗2

2
(Γ
⟨11⟩

: Λ)
2

𝑐
4

1

+ 𝑚
∗
𝛾
1
(Γ
⟨11⟩

: Λ) 𝐵 (c) 𝑐3
1
] .

(A.1)
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In the conditions of the second two hypotheses, the
distribution function is written, respectively,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
𝑐
1
− 𝑚
∗
(Γ
⟨23⟩

: Λ) 𝑐
2
𝑐
3

+
𝛾
2
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2
𝐵
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] ,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
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∗
𝛾
1
(Γ
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: Λ) 𝐵 (c) 𝑐3
1
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(A.2)

The distribution functions related to the third two
hypotheses are written, respectively,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
𝑐
1
+

𝛾
2

1

2
𝐵
2
(c) 𝑐2
1
] ,

𝑓neq = 𝐴 exp (−𝛼c2) [1 − 𝐵 (c) 𝛾
1
𝑐
1
− 𝐵 (c) 𝛾

2
𝑐
2

+
𝛾
2

1

2
𝐵
2
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1
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𝛾
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𝐵
2
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(A.3)

B. Some Equations Used in Grad’s Method

We underline here some equations used in Grad’s method to
deal with CR. Indeed, the first fourHermite polynomials𝐻(𝑛)

𝑖

appeared in the distribution function of Grad (50) [10] may
be written as

𝐻
(0)

= 1,

𝐻
(1)

𝑖
= 𝑐
𝑖
,

𝐻
(2)

𝑖𝑗
= 𝑐
𝑖
𝑐
𝑗
− 𝛿
𝑖𝑗
,

𝐻
(3)

𝑖𝑗𝑘
= 𝑐
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𝛿
𝑖𝑗
)

+ (𝛿
𝑖𝑗
𝛿
𝑘𝑙

+ 𝛿
𝑖𝑘
𝛿
𝑗𝑙
+ 𝛿
𝑖𝑙
𝛿
𝑗𝑘
) ,

(B.1)

and the coefficient tensors 𝑎
(𝑛)

𝑖
are expressed in terms of the

elementary moments as

𝑎
(0)

= 1,

𝑎
(1)

𝑖
= 0,

𝑎
(2)

𝑖𝑗
=

𝑝
𝑖𝑗

𝑝
,

𝑎
(3)

𝑖𝑗𝑘
=

𝑠
𝑖𝑗𝑘

𝑝√𝑅𝑇
,

𝑎
(4)

𝑖𝑗𝑘𝑙
=

𝑀
𝑖𝑗𝑘𝑙

𝑝𝑅𝑇
−

1

𝑝
(𝑝
𝑖𝑗
𝛿
𝑘𝑙

+ 𝑝
𝑖𝑘
𝛿
𝑗𝑙
+ 𝑝
𝑖𝑙
𝛿
𝑗𝑘

+ 𝑝
𝑗𝑘
𝛿
𝑖𝑙

+𝑝
𝑗𝑙
𝛿
𝑖𝑘

+ 𝑝
𝑘𝑙
𝛿
𝑖𝑗
)

− (𝛿
𝑖𝑗
𝛿
𝑘𝑙

+ 𝛿
𝑖𝑘
𝛿
𝑗𝑙
+ 𝛿
𝑖𝑙
𝛿
𝑗𝑘
) ,

(B.2)

where 𝑝
𝑚𝑛
, 𝑠
𝑚𝑛𝑙

, and𝑀
𝑖𝑗𝑘𝑙

take the form

𝑝
𝑖𝑗
= ∫ 𝑐
𝑖
𝑐
𝑗
𝑓𝑑𝜉,

𝑠
𝑖𝑗𝑘

= ∫ 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
𝑓𝑑𝜉,

𝑀
𝑖𝑗𝑘𝑙

= ∫ 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
𝑐
𝑙
𝑓𝑑𝜉.

(B.3)

Then, the simplified expressions of the closure relations
(51) are given by

𝜃
(0)

𝑖𝑗𝑘
=

𝐴𝑚
∗2

2
∫ exp (−𝛼c2) 𝑐

𝑖
𝑐
𝑗
𝑐
𝑘
𝑑c = 0,

𝜃
(1)

𝑖𝑗𝑘
=

𝐴𝑚
∗2

2
∫ 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
exp (−𝛼c2) (0 𝑐

𝑚
) 𝑑c = 0,

𝜃
(2)

𝑖𝑗𝑘
=

𝐴𝑚
∗2

𝑝
𝑚𝑛

4𝑝
: ∫ exp (−𝛼c2) (𝑐

𝑚
𝑐
𝑛
− 𝛿
𝑚𝑛

) 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
𝑐
𝑘
𝑑c = 0,

𝜃
(3)

𝑖𝑗𝑘
=

𝐴𝑚
∗2

𝑠
𝑚𝑛𝑙

12𝑝√𝑅𝑇
: ∫ exp (−𝛼c2)

× (𝑐
𝑚
𝑐
𝑛
𝑐
𝑙
− (𝑐
𝑚
𝛿
𝑛𝑙

+ 𝑐
𝑛
𝛿
𝑚𝑙

+ 𝑐
𝑙
𝛿
𝑚𝑛

)) 𝑐
𝑖
𝑐
𝑗
𝑐
𝑘
𝑑c,

𝜃
(4)

𝑖𝑗𝑘
= 0,

𝜃
(0)

𝑖𝑗𝑟𝑟
=

𝑚
∗2

2
∫𝑓eq𝑐𝑖𝑐𝑗c

2
𝑑c,

𝜃
(1)

𝑖𝑗𝑟𝑟
= 0,

𝜃
(2)

𝑖𝑗𝑟𝑟
=

𝑚
∗2

𝑝
𝑚𝑛

4𝑝
: ∫𝑓eq (𝑐𝑚𝑐𝑛 − 𝛿

𝑚𝑛
) 𝑐
𝑖
𝑐
𝑗
c2𝑑c,

𝜃
(3)

𝑖𝑗𝑟𝑟
= 0,

𝜃
(4)

𝑖𝑗𝑟𝑟
=

𝑚
∗2

2

1

4!
𝑎
(4)

𝑚𝑛𝑙𝑟
: ∫ 𝑓eq𝐻

(4)

𝑚𝑛𝑙𝑟
𝑐
𝑖
𝑐
𝑗
c2𝑑c.

(B.4)
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C. Useful Integrals

This appendix contains some useful integrals that are needed
to calculate equations presented in this paper. Let 𝐹(c) be any
scalar function of c such that the integrals appearing below
converge, and let 𝑐

𝑥
and 𝑐
𝑦
be the components of the relative

velocity c [1]. Then

∫𝐹 (c) 𝑐2
𝑥
𝑑c =

1

3
∫𝐹 (c) c2𝑑c,

∫ 𝐹 (c) 𝑐4
𝑥
𝑑c =

1

5
∫𝐹 (c) c4𝑑c,

∫ 𝐹 (c) 𝑐2
𝑥
𝑐
2

𝑦
𝑑c =

1

15
∫𝐹 (c) c4𝑑c.

(C.1)

The following definite integrals are also useful:

∫

+∞

0

exp (−𝛼c2) 𝑐
𝑟
𝑑c =

√𝜋

2

1

2

3

2

5

2
⋅ ⋅ ⋅

𝑟 − 1

2
𝛼
−(𝑟+1)/2

,

𝑟 even,

∫

+∞

0

exp (−𝛼c2) 𝑐
𝑟
𝑑c =

1

2
(
𝑟 − 1

2
)!𝛼
−(𝑟+1)/2

, 𝑟 odd.

(C.2)
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