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The particle swarm optimization (PSO) algorithm superiority exists in convergence rate, but it tends to get stuck in local optima.
An improved PSO algorithm is proposed using a best dimension mutation technique based on quantum theory, and it was applied
to sensor scheduling problem for target tracking. The dynamics of the target are assumed as linear Gaussian model, and the sensor
measurements show a linear correlationwith the state of the target.This paper discusses the single target tracking problemwithmul-
tiple sensors using the proposed best dimensionmutation particle swarmoptimization (BDMPSO) algorithm for various cases. Our
experimental results verify that the proposed algorithm is able to track the target more reliably and accurately than previous ones.

1. Introduction

Nowadays, the optimization problems of real-world increase
rapidly, and they are almost nonlinear and often have several
local optima, so it is very hard to find the global optimal solut-
ion fast. For example in target tracking [1, 2] system, manage-
ment of different kinds of sensors to get desired result within
acceptable time is a very difficult task.

Heuristic search strategies can acquire faster solutions as
they need not require the objective functions to be continu-
ous or differentiable. For recent years the particle swarm opti-
mization (PSO) algorithm in terms of social and cognitive
behavior with heuristic search strategy has been successfully
used in many real applications [3, 4] since it was proposed
by Kennedy and Eberhart [5]. Like most biologically inspired
algorithms, the PSO is population based, and the individuals
whichmake up the population are referred to as particles.The
main advantage of PSO algorithm is that it has fewer param-
eters to adjust, but when the search space is high its conver-
gence speed will become very slow near the global optimum
and get into local optima. PSO algorithm also shows poor
quality results when it deals with large and complex data sets,
and it often failed in searching for a global optimal solution

when the objective function has a large number of dimen-
sions. The reason for this phenomenon is not only the exis-
tence of the local optimal solutions especially for somemulti-
modal functions, but also the velocities of the particles some-
times lapsed into degeneracy, so that the successive range was
restricted in the subplain of the whole search space [6].

Although it was confirmed that the PSO algorithm has
potential to find global optimal solution on some benchmark
functions [7], it could get stuck in local optima. So the issue
of local optima in PSO algorithmhas been studiedwidely and
many different variants of PSO algorithmwere proposed. For
example, by dynamically adjusting the inertia weight 𝑤 and
acceleration weights 𝑐

1
, 𝑐
2
in PSO algorithm, the convergence

speed is increased and the swarm is encouraged to escape
from local optimal [8]. Some other mutation techniques are
used to mutate the positions of some particles in order to
diverge the swarm [9]. However, it is still difficult for the
modified methods above to find the global solutions for
some complex applications. In this paper, a new mutation
method called best dimension mutation (BDM) is proposed,
and it enables the particles to converge to global optimum
fast and easily escape from local optima. A new perturbation
technique inspired by quantummechanics is also introduced
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Figure 1: Single target tracking system with multiple sensors.

into original POS algorithm which is used to reinitialize
the particles positions without distorting the ongoing search
strategy when the particles are too close from each other. By
combining the twoproposedmethodologies, the particles can
escape from local optima more easily.

The rest of the paper is organized as follows. Section 2
discusses the tracking of single target using multiple noisy
sensors. Section 3 presents the BDMPSO (best dimension
mutated particle swarm optimization) algorithm. Section 4
shows our experimental results. Section 5 concludes the
paper.

2. Sensor Scheduling for Target Tracking

Figure 1 illustrates such a scene where a single target moves
across a geographical area and several sensors are used
to track the target simultaneously. The target state 𝑋

𝑘
=

[𝑥𝑘
𝑥̇
𝑘
𝑦
𝑘

̇𝑦
𝑘]

󸀠 is unknown and the brief target model is
considered as

𝑋
𝑘+1
= 𝐴𝑋

𝑘
+ 𝐵𝜔
𝑘
, (1)

where 𝜔
𝑘
is white Gaussian process noise with covariance

matrix 𝑄. The target state kinematics equation is modeled
by system matrix 𝐴 and the noise intensity is determined
by matrix 𝐵. The target state is observed by several sensors
and the measurement results are impaired by Gaussian noise.
At given time 𝑘, the measurement from the 𝑛th sensor is a
column vector given by

𝑍
𝑛

𝑘
= 𝐻
𝑛
𝑋
𝑘
+ V𝑛
𝑘
, (2)

where V𝑛
𝑘
is the measurement noise of each sensor, which

is assumed to be independent of other sensors and of the
process noise.Wemake an assumption that covariancematrix
𝑅
𝑛 and observation matrix𝐻𝑛 are previously known, and the

Kalman filtering techniques [10–13] are used to estimate the
state of the target. For a given initial error covariance 𝑃

0
, the

estimated error covariance of the state is given by

𝑃
𝑘|𝑘
= 𝑃
𝑘|𝑘−1

− 𝑃
𝑘|𝑘−1

𝐻
󸀠
𝑆
𝑛−1

𝑘
𝐻𝑃
𝑘|𝑘−1

, (3)

where

𝑃
𝑘|𝑘−1

= 𝐴𝑃
𝑘−1|𝑘−1

𝐴
󸀠
+ 𝐵𝑄𝐵

󸀠
,

𝑆
𝑛

𝑘
= 𝐻𝑃
𝑘|𝑘−1

𝐻
󸀠
+ 𝑅
𝑛
.

(4)

The base station (BS), which schedules the sensors to
be active or asleep, collects the latest information about the
deleted and newly added sensors as soon as the parameters
of the target have been obtained. In our work, we assume
that only one sensor is scheduled to estimate the state of the
target at any time. Therefore, there is only one sensor to be
activated by the BS at a time. Let 𝑁 describe the number
of latest available sensors to take measurements and 𝜇(𝑇) =
{𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑇
} represent the sensor scheduling sequence for

𝑘 = 1, 2, . . . , 𝑇, and let 𝑢
𝑘
∈ {1, . . . , 𝑁} be the activated sensor

at time step 𝑘. Our goal is to minimize the total estimated
error of the target states given by theKalman filter when 𝑘 = 1
to 𝑇 and to weigh the total sensor usage cost. Calculating the
trace of amatrix provides a cheaper andmore effectivemeans
of defining a scaler based on the estimated error covariance
than those of the other ways. Therefore, the trace of the error
covariance matrix is considered as our scaler. By using a
positive weighting factor 𝑤, we can weigh the cost between
error and usage. If the cost function 𝐽

𝑇
is defined to measure

the performance of the state’s cumulative root mean square
error and to weigh sensor usage cost for the time horizon
{1, 2, . . . , 𝑇}, then

𝐽
𝑇
=

𝑇

∑

𝑘=1

{𝑃 (𝑢
𝑘
) + 𝑤𝑐

𝑘
(𝑢
𝑘
)} , (5)

where 𝑃(𝑢
𝑘
) = √trace(𝑃𝑘|𝑘(𝑢𝑘)) represents the square root of

the error covariance associated with the selected sensor 𝑢
𝑘

at instant time 𝑘. The 𝑛th sensor usage cost at 𝑘th instant
time is 𝑐

𝑘
(𝑛) and 𝜔 ∈ 𝑅

+ is a constant weight coefficient.
Our objective is to find an optimal sensor sequence which
can produce the minimum cost at the entire time horizon.



Mathematical Problems in Engineering 3

The optimal sensor sequence is described as 𝜇∗(𝑇) = {𝑢∗
1
,

𝑢
∗

2
, . . . , 𝑢

∗

𝑇
}:

𝜇
∗
(𝑇) = argmin

∀𝑢𝑘

{

𝑇

∑

𝑘=1

{𝑃 (𝑢
𝑘
) + 𝑤𝑐

𝑘
(𝑢
𝑘
)}} . (6)

From (6), we can see that there are total 𝑁𝑇 possible
combinations to schedule the sensors. Up to now many
optimal algorithms have been proposed to solve this sensor
sequence problem.Dynamic programming (DP) and branch-
and-bound (BB) were used to solve such problem, but the
computational cost rose exponentially alongwith the increase
in the number of sensors and the sequence length [14].

Rollout Algorithm (RA) is closely approximate to a
dynamic programming method which can overcome the
exponential computational cost problem [15], and it can pro-
duce attractive suboptimal results not worse than traditional
heuristic methods.

SlidingWindow (SW) is another suboptimal method and
its window size will balance the computational cost and final
results.

The PSO algorithm can be used to solve above target
tracking problem [16], but the quality will dramatically
decreasewith the increment of the sensors. An improved PSO
algorithm will be proposed in Section 3 and it will produce
acceptable global optimization result.

3. Best Dimension Mutated Particle
Swarm Optimization

3.1. Best DimensionMutation. Our goal is to develop a meth-
odology which is able to converge faster than PSO algorithm
while ensuring the solution is near optimal. In GA (genetic
algorithm) or any hybridized PSO algorithm, dimensions of
particles are just selected by an assigned probability 𝑃 for
mutation. The performance of PSO algorithm varies with
different values of 𝑃 for different cases. High value of 𝑃 may
result in the swarm divergence and misleading results in
some applications. Our methodology aims to speed up the
searching process with simple and useful mutation ways.The
proposed technique inspired from quantum theory is the key
measure to improve the performance of PSOalgorithmwhich
can perturb the particles when they are too close from each
other.

The PSO algorithm performs very rapid convergence rate
at the beginning and will slow down during the remaining
searching process [17], and sometimes the velocity of a
particle will be zero at the end.This brings about the particles
stagnated in local optima [18]. The new mutation technique
will relocate the particles to new positions and keep moving
around the searching space. The conventional mutation is
carried out by selecting one or more dimensions of a particle
probabilistically and then added a disturbance factor with
special distribution [19, 20].

We developed a new mutation technique called best
dimension mutation (BDM) which will find the best dimen-
sion to perform mutation at each iteration step, and the
selected dimension will be replaced by a random value from
the searching space as follows:

(1) randomly select one particle𝑋
𝑖
from the swarm pop-

ulation𝑋
𝑖𝑡
= (𝑋
1

𝑖
, 𝑋
2

𝑖
, . . . , 𝑋

𝐷

𝑖
);

(2) randomly select 𝑠 number of dimensions in position
vector of the selected particle and perform mutation
for all selected dimensions separately. The mutated
particles 𝑋

𝑀
are given by 𝑋

𝑀
= (𝑋

𝑀1
, 𝑋
𝑀2
, . . . ,

𝑋
𝑀𝑠
), where 𝑋

𝑀𝑚
= (𝑋
1

𝑖
, . . . , 𝑋

𝑑−1

𝑖
, 𝑟, 𝑋
𝑑+1

𝑖
, . . . , 𝑋

𝐷

𝑖
)

and 𝑟 = rand𝑑
𝑖
(max𝑋 −min𝑋) +min𝑋;

(3) select the particle denoted by 𝑋∗
𝑀𝑚

with the best
performance out of 𝑠 number of mutated particles
𝑋
𝑀
and the parent particle 𝑋

𝑖𝑡
, considering problem

𝑋
∗

𝑀𝑚
= argmin

∀𝑋
𝑓(𝑋),𝑋 ∈ {𝑋

𝑖𝑡
, 𝑋
𝑀
};

(4) update position of the particle by the best mutated
one. The velocity of the particle can be calculated as
𝑋
𝑖𝑡+1
= 𝑋
∗

𝑀𝑚
, V
𝑖𝑡+1
= 𝑋
𝑖𝑡+1
− 𝑋
𝑖𝑡
.

Figure 2 illustrates the flowchart of the proposed BDM
procedure. It was observed that if more number of dimen-
sions were selected at the beginning of the search process,
the particles would find better solution in a short time period
and the divergence of the swarm was more efficient. How-
ever, the computational complexity will increase with more
dimensions.Therefore, we experimentally found that the per-
formance and computational efficiency of the algorithm can
be increased by selecting all of dimensions for a short period
and gradually decreases toward the end of the search process.
Figure 3 illustrates the selection of number of dimensions
as number of iterations increase. The maximum number of
iterations is denoted by 𝐼MAX. The mutation is carried out
only for one particle in the swarm and it makes an additional
𝑠 number of fitness evaluation at each iteration step.

3.2. Refreshing Particles Based on QuantumTheory. The per-
formance of the BDM methodology above can be increased
by selecting all of the dimensions for a short period of time
at the beginning and gradually decreasing toward the end
of the searching process. However, the problem of getting
stuck in local optima would occur inevitably. Therefore,
a perturbation technique is applied to the particles when
they are too close from each other. The particle’s position
can be reinitialized with two different strategies as fol-
lows.

(1) Use Gaussian distribution with the mean as global
best solution 𝐺

𝑡
and the variance as 𝐿% of the search

space to generate the particles:

𝑋
𝑖𝑡

∼

𝑋𝑖𝑡
̸= 𝐺𝑡

𝑁(𝐺
𝑡
, 𝐿) . (7)

(2) Use the delta potential well distribution to generate
the particles as used in [21]:

𝑋
𝑖𝑡

∼

𝑋𝑖𝑡
̸= 𝐺𝑡

𝐺
𝑡
±

lg (1/𝑢)
2𝑔 ln√2

𝐿, (8)

where 𝑢 is a random number in the range (0, 1] and 𝑔
is a constant variable.
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Figure 2: The flowchart of the proposed method of best dimension mutation (BDM).
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Figure 3: Selection of number of dimensions with number of
iterations.

The particles generated by delta potential well distribu-
tion and Gaussian distribution are denoted by Qps and Gps,
respectively, in Figure 4. Both quantum distribution (delta
potential well) andGaussian distribution have a great chances

to generate particles close to gbest (global best) position as
shown in Figure 4. However, the delta potential distribution
produces some particles significantly far away from gbest
position. This is the tunneling effect; that is, particles have
a great chance to reach the global optima even if the global
optima should be far away from the local optima [21]. We
tested the performance of the PSO algorithm with both par-
ticles generating techniques. We experimentally found that
the particles generatedwith quantumbased technique in PSO
algorithm produce better results than those produced with
Gaussian techniques. Therefore, we will use delta potential
well to generate the particles when they are too close to each
other in this paper.

The parameter 𝐿 decides the position of the particles
around gbest position. We can see from Figure 5 that the
particles generated with larger 𝐿 value are comparatively far
away from gbest (where 𝐺

𝑡
= 0). We assigned larger 𝐿 from

the start and linearly reduced it to zero with the increment
of iterations to ensure the convergence of the particles. The
algorithmwill be very slow if the positions of the particles are
calculated in each iteration, so we refresh the particles after
𝑡cap predefined iterations. We investigated the impact of 𝑡cap
on final results and the value was chosen empirically.
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Figure 5: Particles generated with different 𝐿 values (𝐿
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2
= 5,

𝐺
𝑡
= 0, and 𝑔 = 2.5).

3.3. Sensor Scheduling by BDMPSO. We assumed that we
did not know the target parameters such as system matrix
𝐴, noise intensity 𝐵, and covariance matrix 𝑄 until the
target appeared in the sensor field. Once the target has been
detected the base station will awaken available sensors for
target observing. After all information about the target and
sensors has been collected, there will be a short period of time
to schedule the sensor sequence. Therefore, the BDMPSO
algorithmwill be applied to produce optimal sensor sequence
with the minimum iterations. As the number of sensors is
discrete, we use rounding method to discretize the dimen-
sions. Also the replacement mechanism is used when a parti-
cle goes beyond the search space as shown below:

𝑋
𝑑

𝑖𝑡
= round [rand𝑑

𝑖
(max𝑋 −min𝑋) +min𝑋] . (9)

The flowchart of the proposed BDMPSO is illustrated in
Figure 6.

The entire procedure of BDMPSO procedure for sensor
scheduling can be described as below.

(1) At 𝑡 = 1 randomly select particles from {𝑥
𝑖1
∈ {𝑢
1
, 𝑢
2
,

. . . , 𝑢
𝑇
}}

𝑛𝑝

𝑖=1
, and each ofwhich indicates a correspond-

ing feasible sensor sequence. Initialize velocity 𝑉
𝑖0
,

own best position𝑝
𝑖0
, and global best position𝐺

0
, and

set temp = 0.
(2) At iteration 𝑡, if temp = 𝑡cap (a predefined number of

iterations), refresh all the particles except the global
best one using delta potential well distribution and set
temp = 0; else goto Step 3.

(3) Randomly select a particle𝑋
𝑖𝑡
from the swarm popu-

lation and perform the BDM and go to Step 4.
(4) Evaluate the fitness value and update the own best 𝑝

𝑖𝑡
,

global best 𝐺
0
, velocity 𝑉

𝑖𝑡
, and position𝑋

𝑖𝑡
for all 𝑛

𝑝

particles. Increment temp by one and go to Step 5.
(5) If 𝑡 = 𝐼MAX then go to Step 6; else increment 𝑡 by one

and go to Step 2.
(6) The optimal sensor sequence of the problem is

returned by the global best particle at the end of the
{𝑢
∗

1
, 𝑢

V
2
, . . . , 𝑢

∗

𝑇
} = 𝐺
𝐼MAX.

4. Simulation Results

In this section, we tested a single target tracking in a 2-dimen-
sional Cartesian space, and the state of the target evolved
with linear Gaussian dynamics. Our experiments used the
constant velocity in target model. Therefore, the covariance
matrix 𝑄 and system matrix A can be described as follows:

𝐴 =

[

[

[

[

1 Δ𝑡 0 0

0 1 Δ𝑡 0

0 0 1 Δ𝑡

0 0 0 1

]

]

]

]

,

𝑄 = 𝑞Δ𝑡 =

[

[

[

[

[

[

[

[

[

[

[

[

[

[

Δ𝑡
2

4

Δ𝑡

2

0 0

Δ𝑡

2

1

Δ𝑡

2

0

0 0

Δ𝑡
2

4

Δ𝑡

2

0 0

Δ𝑡

2

1

]

]

]

]

]

]

]

]

]

]

]

]

]

]

,

(10)

where the scalar quantity 𝑞 dominates the intensity of system
noise and the state updates with time step Δ𝑡. We assigned
𝑞 = 20 and Δ𝑡 = 1 for all of the experiments.The sensor mea-
surement showed a linear correlation of the target state and
was impaired bywhiteGaussian noise in (2). All of the sensors
are homogeneous, and the error covariances and usage costs
differ from one another. The observation matrix 𝐻 is a unit
matrix with 4 by 4 for all sensors. There are 24 sensors used
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Figure 6: The flowchart of the proposed procedure for the BDMPSO algorithm.

for the experiments all together and the error covariances of
which can be described as follows:

𝑅
1
= 10
3
[

[

[

[

2 0 0 0

0 1.5 0 0

0 0 200 0

0 0 0 1.5

]

]

]

]

,

𝑅
2
= 10
3
[

[

[

[

2.5 0 0 0

0 0.5 0 0

0 0 100 0

0 0 0 0.5

]

]

]

]

,

𝑅
3
= 10
3
[

[

[

[

150 0 0 0

0 0.5 0 0

0 0 1.5 0

0 0 0 1.5

]

]

]

]

,

𝑅
4
= 10
3
[

[

[

[

200 0 0 0

0 1.5 0 0

0 0 200 0

0 0 0 1.5

]

]

]

]

,

(11)

where the other sensors’ error covariance eigenvalues are
larger thanR

4
. Among the entire timehorizon, the usage costs

are defined as 𝑐(1) = 65, 𝑐(2) = 25, 𝑐(3) = 40, and 𝑐(𝑛) =
60, for all 𝑛 ≥ 4. Therefore, the optimal solution including
𝑅
1
, 𝑅
2
, 𝑅
3
, and 𝑅

4
produced by sensors such that 𝑛 > 4

should be the same as that produced by four sensors only.
The intention in generating these covariances is to change the

landscape of the problemwith the global solution unchanged.
For all experiments the weighting factor𝑤 in (5) is assigned 1.
We have measured the performance of the proposed method
in contrast to PSO with time varying parameters (PSO-
tp), Comprehensive Learning PSO [22] (CLPSO), Rollout
Algorithm using PSO (RA1), Rollout Algorithm using one
step-look-ahead (RA2), and SlidingWindow (SW) approach.
The set values of BDMPSO are 𝑡cap = 30, 𝐿 = 2%, 𝑐 = 40, and
𝑛
𝑝
= 30 and the rest parameters are the same as in [23].
Firstly, we tested the ability of proposed algorithms with

the length of the sensor scheduling sequences varying. Table 1
shows the average results over 30 independent runs for
all six different methods in different time horizons (the
best costs are highlighted). For the algorithms above, the
maximumfitness evaluation (FE) is 20000 with the exception
of BDMPSO, being 15000. We can see from Table 1 that the
performances of the RA2, SW, and PSO-tp decrease with the
sequence length increasing. However, the performances of
BDMPSO will not be affected by the increasing number of
dimensions. By combining best dimensionmutation and new
refreshment technology, the performance of the BDMPSO
algorithm makes a much more enhancement than others.

Secondly, we analyzed the performance of the PSOs (PSO
algorithms) by varying numbers of sensors. Table 2 shows
the average results over 30 independent runs for (the best
costs are highlighted) all six different methods. The fitness
evaluations (FEs) are assigned to 20000 for all the PSOs. As
the SW and RA2 are deterministic means, the results are
the same for different cases. The performances of RA2 and
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Table 1: Comparison of cumulative cost for different time horizons.

𝑇
SW
(103)

RA1
(103)

RA2
(103)

PSO-tp
(103)

CLPSO
(103)

BDMPSO
(103)

30 2.576 2.641 2.498 2.479 2.542 2.396
40 3.295 3.592 3.426 3.192 3.252 3.159
50 4.315 3.971 4.201 3.859 3.883 3.736
60 4.855 4.732 5.076 4.621 4.597 4.527
70 5.662 5.319 6.125 5.302 5.304 5.204
80 6.174 6.201 6.823 6.343 5.902 5.842
90 6.822 6.924 7.418 6.912 6.587 6.721
100 7.252 7.427 8.421 7.724 7.403 7.196
110 8.961 8.093 9.381 8.581 8.067 8.036
120 9.382 8.801 10.24 9.304 8.812 8.512

Table 2: Comparison of cumulative cost for different numbers of
sensors.

𝑁
SW
(103)

RA1
(103)

RA2
(103)

PSO-tp
(103)

CLPSO
(103)

BDMPSO
(103)

3 7.476 7.324 7.389 7.395 7.557 7.242
6 7.476 7.406 7.389 7.413 7.562 7.392
9 7.476 7.364 7.389 7.630 7.642 7.331
12 7.476 7.426 7.389 7.598 7.585 7.329
15 7.476 7.524 7.389 7.621 7.612 7.326
18 7.476 7.631 7.389 7.655 7.620 7.346
21 7.476 7.630 7.389 7.623 7.632 7.363
24 7.476 7.762 7.389 7.692 7.593 7.379

BDMPSO are better than the others’. However, it can be seen
from Table 2 that the performances of PSO-tp and CLPSO
decrease when the number of sensors increases, and easily
get stuck in local optima. The BDMPSO produces the better
results for all of the cases.

Thirdly, we compared the performance of PSOs with
different numbers of FEs. The parameters were assigned to
the same numbers except for the FEs which varied from
10000 to 40000. Table 3 shows the average results over 30
independent runs for (the best costs are highlighted) all six
different methods with sequence length of 100 units. It can be
seen fromTable 3 that the proposed BDMPSOachieves better
result than other variant PSO algorithms and it converges to
desired results in fewer iterations, but other PSOs will need
considerably more numbers of FEs to achieve comparative
result. Therefore, the proposed BDMPSO algorithm is more
suitable for nearly linear problems in less time.

5. Conclusions

Wehave presented an improved PSO algorithm and applied it
to the target tracking problem.The best dimension mutation
methodwith quantumbased reinitialization techniquemakes
the particles escape from the local optima correspondingly
easier and accelerates the convergence rate. Relatively this

Table 3: Comparison of cumulative cost for different FEs.

FEs PSO-tp (103) CLPSO (103) BDMPSO (103)
Number of sensors𝑁 = 3

10000 7.812 7.509 7.348
15000 7.712 7.496 7.337
20000 7.712 7.400 7.315
30000 7.702 7.327 7.298
40000 7.642 7.307 7.297

Number of sensors𝑁 = 6
10000 7.713 8.904 7.405
15000 7.532 7.987 7.359
20000 7.501 7.640 7.313
30000 7.487 7.462 7.297
40000 7.486 7.462 7.297

Number of sensors𝑁 = 9
10000 9.387 9.846 7.409
15000 9.346 9.105 7.412
20000 8.615 8.510 7.406
30000 8.559 7.559 7.413
40000 8.578 7.542 7.357

Number of sensors𝑁 = 12
10000 11.762 10.824 7.768
15000 11.516 9.637 7.422
20000 11.327 9.120 7.425
30000 10.678 8.249 7.516
40000 10.519 7.348 7.496

Number of sensors𝑁 = 15
10000 12.513 11.305 8.098
15000 12.249 10.190 7.416
20000 12.301 9.598 7.387
30000 12.209 8.315 7.375
40000 11.879 7.627 7.375

Number of sensors𝑁 = 18
10000 14.138 11.467 8.304
15000 14.030 10.654 7.412
20000 13.975 10.213 7.327
30000 13.567 8.649 7.310
40000 13.439 7.781 7.309

Number of sensors𝑁 = 21
10000 14.725 11.496 8.398
15000 14.098 10.912 7.406
20000 14.134 10.146 7.378
30000 13.320 8.697 7.294
40000 13.140 8.416 7.292

Number of sensors𝑁 = 24
10000 15.412 11.849 8.792
15000 14.678 11.102 7.509
20000 14.355 10.534 7.376
30000 14.297 8.912 7.324
40000 14.295 8.246 7.324
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methodology does not increase the computational cost sig-
nificantly compared with the original PSO algorithm and
also it is more easily to implement. To sum up, the proposed
BDMPSO algorithm shows better performance and achieves
the results faster than other existing ones for target tracking
problem. We plan to focus on shortening the convergence
time of BDMPSO algorithm in further work.
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