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A hybrid self-adaptive harmony search and back-propagationmining systemwas proposed to discover weighted patterns in human
intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of
these weighted patterns. Comparing these weighted patterns with the popular intron consensusmodel, it is clear that the discovered
weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete.

1. Introduction

Pre-mRNA splicing was a critical event in gene-expression
pathways andmainly involved in intron removing [1]. Introns
were noncoding segments in gene sequences conjoined with
the protein-coding exons at splicing sites (see Figure 1). Iden-
tifying introns was the foundations for predicting the gene’s
structures and functions; therefore, predicting introns effec-
tively and precisely would provide great helps in uncovering
the secrets of genes [2]. Intron splicing accomplished by the
spliceosome is closely related with four cis-acting elements,
that is, the 5 splicing sites (5SS), the 3 splicing sites (3SS),
the poly-pyrimidine tract (PPT), and the branch point (BP)
[3]. Intron identification and qualification heavily depend on
the four splicing signals, and, consequently, intronic sequence
patterns are crucial in intron-related researches, especially in
predicting the 5SS and 3SS.

Some efforts have been devoted to specifying sequence
features of introns, and conceptual information such as
bimodal GC% distribution [4], statistical features [5], and
motifs [6] were found, but these patterns lacked concrete
and specific descriptions, thereby making them hard to be

used as basis of computational predictions and analyses. One
more thing should be noticed is that the above-discovered
patterns were all statistically significant only, and prejudging
weights without testing the effectiveness might take a lot of
risks in biased decisions. If going one step further tomake the
patterns biologically significant, it would be very inspiring.

The essentials comprising patterns were seriously
explored and termed computational concerns.Three compu-
tational concerns were firstly identified as expressions,
locations, and ranges. Expressions are the representations of
patterns such as consensus, locations are start positions in
sequences, and ranges are their possible lengths. Further-
more, for discovering biologically meaningful patterns, the
weight concern was proposed for specifying the biological
significance.

In this paper, patterns with four concerns were termed
the weighted patterns. A postjudged weights discovering
the methodology using hybrid self-adaptive harmony search
(SAHS) and back-propagation (BP) algorithms were devised
and implemented to fulfill the idea of weighted patterns.
The entire processes of discovering weighted patterns were
fulfilled through a frame-relayed search method [7] together
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Figure 1: An illustration of pre-mRNA to mature mRNA.

with a hybrid SAHS-BP and sensitivity analysis as depicted in
Figure 2.

2. SAHS-BP and Sensitive Analysis

In [8], Liou andHuang divided the intronic sequence features
(ISF) into two categories: the uniframe pattern (UFP) and the
multiframe pattern (MFP), where UFPs are the intraframe
patterns andMFPs are the interframe patterns. Based on their
frequencies and distributions, the significant UFPs focus on
vertical distributions of tandem repeats, and the significant
MFPs focus on horizontal ones, as shown in Figure 3. For
detailed discussions on intronic sequence features and frame-
relayed search method, see [7, 8].

After obtaining the patterns by frame-relayed search
method [7], their relative importance could be derived from
a new hybrid SAHS-BP mining system. The basic idea
is to extract the instinct relationships between the input
attributes and the output responses from the trained network
by means of a postsensitivity analysis. Subsequently, the
relative importance of input attributes could be determined
according to these relationships. Thus, the quality of the
relative importance is highly dependent on the network.

2.1. Hybrid SAHS-BP. Artificial neural networks (ANN) are
robust and general methods for function approximation,
prediction, and classification tasks.The superior performance
and generalization capabilities of ANN have attracted much
attention in the past thirty years. Back-propagation (BP)
algorithm [9] (i.e., the most famous learning algorithm
of MLP) has been successfully applied in many practical
problems. However, the random initialization mechanism of
ANN might cause the optimum search process (the learning
problem can be though as search through hypotheses for the
one best fit the training instances [10]) to fail and return
an unsatisfied solution, since the back-propagation is a local
search learning algorithm [11]. For example, once the random
initialization of the synaptic weights led to the search process
start from hillside 1 as shown in Figure 4, BP algorithm
would update the synaptic weights and go along the gradient
direction. Consequently, it seems hopeless to reach a better
solutionnear the global optimum in valley 2.Therefore, lots of
trials and errors were the general guideline in most practical
usage.

On the other hand, a new metaheuristic optimization
algorithm-harmony search (HS) with continuous design

variables was proposed recently [12]. This algorithm is
conceptualized using the musical improvisation process of
searching for a perfect state of harmony. Harmony search
exhibits a nice global search property and seldom falls into
a trap. Moreover, the HS has been successfully applied to
several real-world optimization problems [13]. A recently
developed variant of HS, called the self-adaptive harmony
search (SAHS) [14], used the consciousness (i.e., harmony
memory) to automatically adjust its parameter values. The
self-adaptive mechanism not only alleviates difficulties of
parameter setting but also enhances precision of solutions.

According to these observations, we are motivated to
combine the advantages of SAHS and BP together and
complement their own weaknesses. SAHS is used as an
initializer of the neural network, that is, the generator of
initial synaptic weights of BP. In otherwords, the lowest valley
in Figure 4 is first found by SAHS; then a gradient descent-
based ANN would go down carefully to obtain a precise
solution. Finally, a sensitivity analysis was conducted on the
well-trained network to estimate the relative importance of
input attributes.

2.2. Sensitivity Analysis. Sensitivity analysis is a common
technique to realize the relationships between input variables
and output variables. It could be used to check the quality of
a hypothesis model as well. The basic idea behind sensitivity
analysis is to slightly alter the input variables, and then the
corresponding responses with respect to the original ones
would reveal the significance of the variables. Therefore, the
most important part of sensitivity analysis is to determine
the adequate measurements as disturbance of input variables.
Although applying sensitivity analysis to neural networks had
been studied in some works [15, 16], their purposes were
usually identifying important factors only, while we go one
step further, in this work, not only significant input attributes
will be recognized but also the relative important of themwill
be estimated.We proposed a newmeasurement, disturbance,
for the relative sensitivity.

Definition 1. The elements of disturbance instances used in
the sensitivity analysis are defined as follows:

𝑥𝑚 =

{

{

{

(1 ⊗ 𝑑) × 𝑥𝑚, if 𝑚 = 𝑗,

𝑥𝑚, otherwise,
∀𝑥𝑚 ∈ 𝑥

𝑖

𝑗↑
, (1)

where 𝑥𝑖
𝑗↑
is the 𝑖th instance in the training set, with the 𝑗th

attribute increased according to the disturbance ratio 𝑑; that
is, the symbol⊗ denotes a plus sign. In otherwords, except the
𝑗th attribute, all other attributes of the 𝑖th instance are fixed.
Similarly, 𝑥𝑖

𝑗↓
is with the 𝑗th attribute decreased; that is, the

symbol ⊗ denotes a minus sign.
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Figure 2: Procedure for discovering weighted patterns.

Definition 2. The relative sensitivity of 𝑗th attribute is defined
as follows:
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(2)

where function net is the trained network, and the relative
sensitivity is normalized by the minimal sensitivity attribute
among all attributes.

3. Experiments

3.1. Data Sets. Since the lengths of introns are varied vio-
lently, for determining an adequate sequence length for
pattern discovery, a pilot study on sequence compositions of
introns is performed (data not shown here). As a result, we
found that introns are very different from random sequences
around 97 bps in the flanking regions of 5SS and 3SS.
Therefore, we defined position 97 as the start position of the
last frame, and then the final sequence length in the data
sets would be 101 bps. For the completeness of analysis, all
introns in human chromosome 1 (NCBI human genomebuild
36.2) were extracted, and the final data set comprised 22,448
sequences.

3.2.WeightedUFPs andMFPs. TheweightedUFPs andMFPs
discovered by the proposed SAHS-BP mining system and
sensitivity analysis are listed in Tables 1 and 2, respectively.
To verify the effectiveness of these weighted codons for qual-
ifying human introns, a two-layer classifier was constructed
to test the significance of these weights.

3.3. Two-Layered Classifier. In order to reveal the strength
of discovered weighted patterns, a simple two-layered lazy
classifier was constructed. The well-known nearest neighbor
classifier was adopted as the based classifier due to its
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Figure 3: Tandem repeats of condons from the UFPs and MFPs.

simplicity and efficiency. In contrast to an eager classifier,
the lazy nearest neighbor classifier only memorizes the entire
training instances in the training phase and then classifies the
testing instances based on the class labels of their neighbors
in the testing phase. In other words, the basic idea behind
the nearest neighbor classifier is well explained by the famous
idiom “Birds of a feather flock together.”

The Euclidean distance is the original proximity measure
between a test instance and a training instance used in the
nearest neighbor classifier. A weighted Euclidean distance
could be extended as 𝑑(𝑥, 𝑥) = 𝑠𝑞𝑟𝑡(∑𝑛

𝑖=1
𝑤𝑖(𝑥𝑖−𝑥



𝑖
)
2
), where

𝑛 is the number of dimensions and 𝑤
𝑖
, 𝑥
𝑖
, and 𝑥

𝑖
are the

𝑖th attribute of weight vector 𝑤, training instance 𝑥, and test
instance 𝑥, respectively.

The experiment was carried out with the 10-fold cross-
validation for each specific 𝑘 (i.e., the 𝑘 closest neighbor).
First, the whole sequence was randomly divided into 10
divisions with the equal size. The class in each division
was represented in nearly the same proportion as that in
the whole data set. Then, each division was held out in
turn and the remaining nine-tenths were directly fed into
the two-layered nearest neighbor classifier as the training
instances. Since every sequence could be expressed as two
parts (i.e., uniframe patterns and multiframe patterns), the
first layered nearest neighbor classifier filtered out those non-
intron candidates based on the weighted uniframe patterns.
Finally, the prediction was made by the second layered
nearest neighbor based on the weighted multiframe patterns.
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Table 1: UFPs of 5SS and 3SS.

ID Weight Expression Location Range
5SS

1 5.30 AAG 1 5
2 2.01 GAG 1 5
3 3.98 GTA 1 5
4 2.02 TAA 1 5
5 2.32 TGA 1 5
6 4.54 AGT 4 5

3SS
7 3.12 ACA 1 5
8 6.26 CAG 1 5
9 1.00 CCA 1 5
10 1.09 GCA 1 5
11 2.69 TAG 1 5
12 2.33 TCA 1 5
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Figure 4: Optimization surface.

The flowchart of two-layered nearest neighbor classifier is
shown in Figure 5.

3.4. Numerical Results. In this subsection, the performance
comparisons between the weighted 𝑘-NN classifier and the
conventional one are presented. Although no explicit weight
vectors were used in the conventional 𝑘-NN classifier, the
Euclidean distance indirectly implied the same importance
of all input attributes. Here, we used identity vectors (i.e.,
all elements in the vector are one) as its weight vectors and
conducted the experiment in the same process as shown
in Figure 5 for the performance comparisons. The reported
values of performance evaluation measures here are the
averages from the 10-fold cross-validation.

As shown in Figures 6, 7, 8, and 9, the numerical results
clearly indicate that the weighted 𝑘-NN classifier performs
much better than the conventional one in terms of error, F-
measure, and the recall on different 𝑘, except precision. In
addition to error decreased from25.21% to 16.88%on average,
F-measure (or recall) is also increased 12.73% (or 14.21%),

Table 2: MFPs of 5SS and 3SS.

ID Weight Expression Location Range
5SS

1 2.15 TTT 7 5
2 1.23 TGG 7 5
3 3.13 GGG 7 5
4 1.00 CTG 7 5
5 6.49 TTT 10 17
6 2.25 TGG 10 17
7 3.42 TCT 10 17
8 8.45 GGG 10 17
9 4.52 CTG 10 17
10 23.76 TTT 25 68
11 5.90 TGG 25 68
12 9.66 TCT 25 68
13 34.39 GGG 25 68
14 11.63 CTG 25 68
15 17.72 AAA 25 68
16 7.11 TTT 91 11
17 2.02 TCT 91 11
18 4.18 GGG 91 11
19 3.23 CTG 91 11
20 3.65 AAA 91 11

3SS
21 7.63 TTT 4 5
22 5.08 TCT 5 5
23 33.13 TTT 7 17
24 11.63 TGT 7 17
25 25.46 TCT 7 17
25 3.80 CTG 7 17
27 3.20 ATT 7 17
28 20.08 TTT 22 47
29 7.39 TGT 22 47
30 12.52 TCT 22 47
31 9.78 CTG 22 47
32 7.07 ATT 22 47
33 17.48 AAA 22 47
34 2.11 TTT 67 8
35 1.76 TCT 67 8
36 2.28 CTG 67 8
37 1.89 ATT 67 8
38 2.25 AAA 67 8
39 1.51 TTT 75 5
40 1.27 CTG 75 5
41 1.02 ATT 75 5
42 1.23 AAA 75 5
43 8.31 TTT 76 26
44 3.41 ATT 76 26
45 9.53 AAA 76 26

respectively. From the perspective of 𝑘 value used in 𝑘-NN,
slightly better numeric results could be obtained from both
weighted and conventional nearest neighbor classifiers for
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Figure 5: Two-layered nearest neighbor classifier.
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Figure 6: Error of the conventional 𝑘-NNclassifier and theweighted
𝑘-NN classifier on different 𝑘.

Table 3:The 𝑃 values of the 𝑡-test on the weighted and conventional
𝑘-NN classifiers.

#𝑘 Measure
Error F-measure Precision Recall

1 2.35𝐸 − 09 4.58𝐸 − 09 1.23𝐸 − 05 2.13𝐸 − 09
3 7.64𝐸 − 08 5.67𝐸 − 09 1.89𝐸 − 05 4.23𝐸 − 07
5 1.87𝐸 − 09 3.56𝐸 − 08 0.09 3.87𝐸 − 08
10 6.43𝐸 − 08 2.33𝐸 − 10 0.87 7.56𝐸 − 09

𝑘 = 3. Furthermore, one might argue that both weighted
and conventional 𝑘-NN achieve such high scores in precision
and relatively low scores in recall; that is, there are few
predicted false positives and lots of predicted false negatives
in both models. However, we believe that the reason for
this circumstance is due to the inherent model bias and
lazy characteristics of the nearest neighbor method. It lacks
the ability to well describe the learning concept because the
basic idea is merely distance comparisons. Nevertheless, such
a simple weak classifier is appropriate to demonstrate the
effectiveness of the weighted patterns.

Besides, since a limited number of samples were used
to compare the performances of two models, we want to
know whether the better performance of the weighted 𝑘-
NN classifier is just as a result of the chance effects in
the estimation process (i.e., the 10-fold cross-validation).
More precisely, we should determine whether the observed
difference of performance measures between two classifiers

0.9

0.8

0.7

0.6

0.5
1 3 5 10

Conventional 𝑘-NN
Weighted 𝑘-NN

F-measure

Figure 7: F-measure of the conventional 𝑘-NN classifier and the
weighted 𝑘-NN classifier on different 𝑘.
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Figure 8: Precision of the conventional 𝑘-NN classifier and the
weighted 𝑘-NN classifier on different 𝑘.

is really statistically significant (i.e., significantly better).
Therefore, we used a paired 𝑡-test [17] on the weighted 𝑘-NN
classifier and the conventional one with a 95% confidence
coefficient. Table 3 reveals that the weight vectors not only
significantly reduce the classification error of simple nearest
neighbor classifiers but also significantly improve recall and
F-measure. In other words, the predicted true positives are
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Figure 9: Recall of the conventional 𝑘-NN classifier and the
weighted 𝑘-NN classifier on different 𝑘.

enhanced, and the false negatives are reduced as well. Thus,
we could claim that some meaningful characteristics for
intron identification are really enclosed in the weighted
patterns.

4. Discussions

Intron identification played a key role in gene-expression
researches, and pattern recognition was the basis for com-
putationally predicting exon-intron junction sites. For dis-
covering biologically meaningful patterns in introns, three
computational concerns (pattern representation, position in
sequences, and the spread range of patterns) were firstly
identified by frame-relayed search method [7]. After that,
a hybrid self-adaptive harmony search (SAHS) and back-
propagation (BP) mining system was devised and imple-
mented to fulfill the idea of mining weighted patterns. The
weighted patterns clearly provide more specific and concrete
information about introns.Thus, they should be of potentials
in promoting the progress of gene analyses, providing great
helps in discriminating authentic splicing sites from fictitious
ones and revealing the visions of in silico validation of intron
candidates.
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