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Stock market prediction is an important area of financial forecasting, which attracts great interest to stock buyers and sellers, stock
investors, policy makers, applied researchers, and many others who are involved in the capital market. In this paper, a comparative
study has been conducted to predict stock index values using soft computing models and time series model. Paying attention to
the applied econometric noises because our considered series are time series, we predict Chittagong stock indices for the period
from January 1, 2005 to May 5, 2011. We have used well-known models such as, the genetic algorithm (GA) model and the
adaptive network fuzzy integrated system (ANFIS) model as soft computing forecasting models. Very widely used forecasting
models in applied time series econometrics, namely, the generalized autoregressive conditional heteroscedastic (GARCH) model
is considered as time series model. Our findings have revealed that the use of soft computing models is more successful than the
considered time series model.

1. Introduction

The stock index values play an important role in controlling
dynamics of the capital market. As a result, the appropriate
prediction of stock index values is a crucial factor for
domestic/foreign stock investors, buyers and/or sellers, fund
managers, policy makers, applied researchers (who want
to improve the model specifications of this index), and
many others. Many researchers, for example, [1–4] and
others have found that the empirical distribution of stock
is significantly nonnormal and nonlinear. Stock market data
are also observed in practice chaotic and volatile by nature
(e.g., see [5–8]). That is why stock values are hard to predict.
Traditionally, the fundamental Box-Jenkins analysis has been
the mainstream methodology that is used to predict stock
values in applied literature. Due to continual studies of stock
market experts, the use of soft computing models (such as
artificial neural networks, fuzzy set, evolutionary algorithms,
and rough set theory.) have been widely established to
forecast stock market. Evidence [9, 10] suggests that the
Box-Jenkins approach often fails to predict time series when
the behavior of series is chaotic and nonlinear. Thus, soft
computing systems have emerged to increase the accuracy
of chaotic time series predictions. The reason is that these

systems have the potential to provide a viable solution
through the versatile approach to self-organization. Thus,
in forecasting literatures [11–14], it has been found that
soft computing systems yield better results compared to the
statistical time series approaches when the series is chaotic.
This paper compares forecasts of stock prices from soft
computing forecasting models and the model introduced
by [15]. Our motivation for this comparison lies in the
recent increasing interest in the use of soft computing models
for forecasting purposes of economic and finance variables.
Thus, soft computing models are used to learn the nonlinear
and chaotic patterns in the stock system. Several studies
[7, 11, and many others] have compared soft computing
models and the traditional Box-Jenkins model. However,
there are only a few comparative analyses (according to our
knowledge) between soft computing models and standard
time series statistical models [13] in case of Bangladeshi
stock indices. In this paper, we examine the performance
of the daily Chittagong stock market indices using soft
computing models and time series model. See [13] for
prediction of the daily Dhaka stock market index values.
Thus, we hope that findings of the study will be interesting
to fund managers, many businesses investors, policy makers,
academics, and others who are involved in this volatile
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Figure 1: Time plots of the indices.

market. The structure of the paper is as follows: data and
forecasting model is given in the next section. Statistical
properties and various econometric noises are discussed in
Section 3. A brief description of the considered forecasting
models is described in Section 4. Performances of the differ-
ent evaluation criterion are explained in Section 5. Finally,
concluding remarks with some proposed future research are
given in the final section.

2. Data and Forecasting Model

2.1. Data. The indices, the Chittagong Stock Exchange has
been maintaining since October 10 1995, are the stock prices
for all companies (cse-all) and for 30 selected companies
(cse-30). Thus, we considered the daily cse-all and cse-
30 [data source: http://www.cse.com.bd/] prices for the
available periods (January 1, 2005 to May 5, 2011). For a
description of the indices, see the above website.

It is true people trend to invest in stock market because
it has high returns over time. Stock markets are generally
affected by economic, social, political, and even psycholog-
ical factors. These factors interact with each other in a very
complicated manner. That is why stock data are observed,
chaotic and volatile by nature. It is well known that chart is
the best way to visualize trend and chaotic behavior if present
in any price series. Thus, to understand the behaviors of
considered indices, cse-all and cse-30 are plotted against time
in Figure 1. It is very clear that there is a decreasing trend with
respect to time. There are some reasons why these sorts of
trend exist. See http://www.cse.com.bd/ for details. It is also
observable from this plot the behaviors of these selected price
series are not linear. This means series can appear volatile
with moves that look chaotic. Some sort of nonlinearity can
also be present in the selected series.

2.2. Forecasting Models. Since our series are time series, so
we have selected the most commonly used time series model,

Table 1: Data description and proposed model.

Indices Size Proposed AR(p) model

cse-all 1540× 1 AR(2)

cse-30 1540× 1 AR(4)

namely, the autoregressive (AR) model of order p. The model
is defined for each of considered series as follows:

cse-allt = α + βt + ρicse-allt−i + et, t = 1, 2, 3, . . . ,n,
(1)

cse-30t = α + βt + ρicse-30t−i + et, t = 1, 2, 3, . . . ,n,
(2)

where α is an intercept, β is the deterministic trend, t is
the time variable, ρi are the lag orders of the AR(p) model,
and et ∼ N(0, σ2). The appropriate lags of the series are
selected by the Bayesian Information Criterion (BIC). Other
information criterions, for example, Akaike Information
Criterion (AIC), Schwarz Information Criterion (SIC), and
others can also be used to select the lag order of the AR
components of our selected models. See Table 1 for data size
and proposed AR(p) model.

3. Statistical Properties of Data

3.1. Numerical Summary. To understand the characteristics
of the selected indices, summary statistics are tabulated in
Table 2. It is clear from the above table, most of times,
that cse-all and cse-30 indices are observed 8691 and
7259.9, respectively. Standard deviation measures confirm
to us that the considered prices are not equal to 8691 and
7259.9. The expected range of cse-all and cse-30 prices
can be estimated as 8691 ± 5883.3 and 7259.9 ± 4668.6,
respectively. Skewness measures indicate to us that stock
market indices display right skewed distributions. It means
that most of prices are below the average prices. Kurtosis
measures also indicate to us that price indices are not normal.

3.2. Time Series Properties. It is now a well-established
stylized fact that most time series are nonstationary and
contain a unit root (e.g., see [14]). The conventional
approach of time series is based on the implicit assumption
that the underlying data series is stationary. This assumption
was rarely questioned until the early 1970s and numerical
analysis proceeded if all-time series were stationary. Numer-
ous studies (e.g., [14–16] and many others) have suggested
that most time series are nonstationary and therefore, the
assumption of stationarity is unrealistic. Thus, prior to
model specifications and the estimations, the stationary
property of the data series is routinely tested. Otherwise,
the study can yield unrealistic results. That is why to select
appropriate forecasting model for our study, we have tested
first stationarity property of the considered series.

3.2.1. Stationarity Tests. There are many stationarity tests
available in time series literature. For details, see [17–19] and
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Table 2: Numerical properties of the selected indices.

Indices Mean Median Standard deviation Skewness Kurtosis

cse-all 8.6916e + 003 7.6318e + 003 5.8833e + 003 0.5404 2.9063

cse-30 7.2599e + 003 6.5434e + 003 4.6686e + 003 0.4604 3.6754

Table 3: Stationarity test results.

Indices ADF(p) statistic P value (critical value) for the ADF test PP(L) statistic P value (critical value) for the PP test

cse-all −0.9888(2) 0.9434(−3.4144) −1.13(12) 0.9227(−3.4144)

cse-30 −1.2330(4) 0.9022(−3.4144) −1.29(10) 0.8877(−3.4144)

“p” and “L” indicate lag order to remove serial correlation.
Decision rule: If P value < level of significance (α), then accept null hypothesis.

Table 4: Linearity test results.

Indices cse-all cse-30

Engle test statistic 53.52 54.35

P value 0.0 0.0

others. To test the nonstationarity behavior of our considered
models (1)-(2), we have used most commonly applied unit
root tests, namely, the Augmented Dickey Fuller (ADF) test
proposed by Said and Dickey [20] and the test proposed
by Phillips and Perron (PP) [21]. For test procedures, see
[17]. MATLAB commands that Adftest and pptest are used
to compute the ADF and the PP statistics and results are
reported in Table 3. Note that under the null hypothesis
of the ADF and PP tests the series assumed nonstationary
and that under the alternative hypothesis the series is
stationary. Results show us all series are nonstationary
(because P value > α,α = 0.05). Thus, null hypothesis of the
tests is accepted. Then we have taken the first difference of
the series to remove non-stationarity and applied then again
the ADF test and the PP test. These test results show us in first
differences that considered series are stationary. These results
are not reported for spaces but are available on request. The
effect of these tests will be shown when our forecasting model
is used, the model is used in first differences.

3.3. Linearity Test. There are many statistical techniques
available in literature to test whether the series is linear or
nonlinear. To select appropriate forecasting method, we have
tested also linearity of the considered models (1) and (2).
These tests are based on the ordinary least square method
residuals. The statistical test proposed by Engle [5] is used to
test the presence of nonlinear dependence. For details of the
test procedure, see [22]. Linearity test results are tabulated in
Table 4. Results show that at the 5% level of significance (α),
nonlinearity is present (check the P-value) in our considered
series. Just a note here under the null hypothesis, the series
are considered linear and under the alternative hypothesis,
the series are considered nonlinear. Table 4 results show
us P-value is less than α which indicates rejection of the
null hypothesis. So Table 4 results confirm to us that our
considered series are nonlinear.

Table 5: GA options.

Step Algorithm option

Creation Uniform, normal

Fitness
scaling

Rank, proportional, top (truncation), linear scaling,
shift

Selection
Roulette, stochastic uniform selection, tournament,
uniform

Crossover
Binary-valued (single-point, two-point, n-point,
uniform) real-valued (intermediate, line)

Mutation Gaussian, uniform

Reinsertion Pure, uniform, elitist, fitness-based

4. Models Used for Prediction

Considered statistical tests results show that our selected
series are nonstationary, nonlinear, and chaotic (Figure 1).
To remove nonstationarity, we used the series in first
differences. We have selected nonlinear forecasting models to
forecast Chittagong stock indices, which has also the ability
to capture chaotic behavior. We have chosen the following
models to forecast considered indices. A brief description of
the considered forecasting models is given below.

4.1. Soft Computing Model. We have chosen two very popular
and widely used models, namely, the genetic algorithm (GA)
model and the neuro-fuzzy model.

4.1.1. GA Model. Holland [23] introduces this technique. It
is a technique based on the “Darwin’s Principle of Natural
Selection” and is used to solve optimization problems. The
basic idea is to select the best, discard the rest. To handle
the complex multidimensional behaviors of a system, this
approach has been used efficiently in forecasting literature
(e.g., [23–26] and others). See Figure 2, for the flowchart
that illustrates the basic steps in a GA. See Table 5, for the
standard GA options. A brief explanation of each step is as
follows.

Step 1. Create an initial population consisting of random
chromosomes. To understand the GA process, for example,
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Figure 2: Flowchart of a GA model.

Table 6

RMSE: 26.19 32.09 53.75 20.18 18.67 66.64

Fit (RMSE): 1.2 0.8 0.4 1.6 2.0 0

pdf of RMSE: 0.2 0.13 0.06 0.26 0.33 0

cdf of RMSE: 0.2 0.33 0.39 0.65 0.98 1.0

for an AR(2) model, consider the following random popula-
tion of 6 chromosomes with 4 parameters each: (0.13, 0.01,
0.84, 0.68), (0.20, 0.74, 0.52, 0.37), (0.19, 0.44, 0.20, 0.83),
(0.60, 0.93, 0.67, 0.50), (0.27, 0.46, 0.83, 0.70), and (0.19,
0.41, 0.01, 0.42). Population size is chosen usually from 100–
500. Larger population may produce more robust solution.

Step 2. Fitness scaling is used to provide a measure of how
selected chromosomes perform in the problem domain. The
AR(2) model fitness is evaluated through a criterion like
RMSE (CC, MAE can be also used). For the AR(2) model,
we get RMSE: 26.19, 32.09, 53.75, 20.18, 18.67, and 66.64.
Using the linear-ranking process, for example, (details, see
Pohlheim [27]), Fit(RMSE): 1.2, 0.8, 0.4, 1.6, 2.0, 0.

Step 3. Based on Step 2 results, choose parents for the next
generation. To understand it, consider the distribution found
in Tables 5 and 6.

It is observed that chromosome 5 is the fittest chromo-
some, because it occupies the largest interval, whereas
chromosome 3 is the second least fit chromosome as the
smallest interval. Chromosome 6 is the least fit interval that
has a fitness value of 0 and gets no chance for reproduction.
Using for example, the roulette wheel method (purpose is to
eliminate the worst chromosomes and to regenerate better
substitutes), selected 4 parents are: (0.20, 0.74, 0.52, 0.37),
(0.13, 0.01, 0.84, 0.68), (0.27, 0.46, 0.83, 0.70), and (0.13,
0.01, 0.84, 0.68).

Next step is to produce offspring from selected parents by
combining entries of a pair of parents (known as crossover)
and also by making random changes to a single parent
(known as mutation).

Step 4 (GA operator-1). Basic operator for producing new
(improved) chromosomes is known as crossover (a version of
artificial mating). It produces offspring that have some parts
of both parents genetic material. Offspring are produced
using the intermediate crossover method, because this is a
method proposed to recombine for parents with real-valued
chromosomes (see details, Pohlheim [27]). Thus, crossover
offspring are (0.16, 0.16, 0.85, 0.57), (0.13, 0.22, 0.76, 0.43),
(0.13, 0.15, 0.83, 0.69), and (0.26, 0.45, 0.84, 0.68).

Step 5 (GA operator-2). Offspring are mutated after produc-
ing crossover offspring and this GA operator increases the
chance that the algorithm will generate better fittest RMSE
than the Step 4. GA creates 3 types of offspring: elite offspring
(number of best RMSE values in the current generation that
are guaranteed to survive to the next generation), crossover
offspring, and mutation offspring. To understand it, consider
an example: suppose that the population size is 20 and
the elite count is 2. If crossover fraction is 0.8, then the
distribution of offspring is 2 elites, 14 (18∗0.8) are crossover
offspring, and the remaining 4 are mutation offspring. Just
to know, a crossover fraction of 1 means all offspring other
than elite are crossover offspring, while a crossover fraction
of 0 means that all offspring are mutation offspring. How
offspring are produced under the mutation process, see
Pohlheim [27]. The mutation offspring are found (0.16, 0.17,
0.85, 0.56), (0.13, 0.22, 0.76, 0.43), (0.13, 0.14, 0.83, 0.69),
(0.26, 0.45, 0.84, 0.68), respectively.

Step 6. Once offspring have been produced using Steps 4–
5, offspring fitness (i.e., RMSE values) must be determined
(procedure similar to Step 2). We get improved RMSE: 23.37,
28.13, 24.11,18.62.
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Figure 3: AN ANFIS system.

If less offspring are produced than the original popula-
tion size, then to maintain size, offspring have to be rein-
serted into the old population. By this step, it is determined
which chromosomes will be replaced by offspring. Using for
example, the fitness-based reinsertion method, the following
RMSE are found: 20.18, 18.67, 18.62, 23.37, 24.11, and 28.13.

If termination criteria are not defined, GA returns to
Step 3 and continues up to Step 6. It is satisfied when either
maximum number of generations is achieved or when all
chromosomes in the population are identical (i.e., converge).
The creator sets this number before running GA, which
ensures that GA does not continue indefinitely.

4.1.2. Adaptive Network Fuzzy Integrated System (ANFIS)
Model. The second widely used soft computing model
we have selected is the ANFIS model. In computing the
literature, Jang [8] proposed this model. This model is a
combination of two intelligence systems: neural network
(NN) system and fuzzy inference system (FIS). This is
also known as NN-fuzzy integrated system, where the NN
learning algorithm is used to determine parameters of FIS.
NNs are nonlinear statistical data modeling tools and can
capture and model any input-output relationships. FIS is the
process of formulating the mapping from a given input to
an output using the fuzzy logic. This mapping provides a
basis from which decisions can be made or patterns can be
discerned. The process of FIS involves membership functions
(mfs), fuzzy logic operators, and if-then rules. The structure
of ANFIS (see Figure 3 for its architecture) has 5 layers: (a) 1
input layer, (b) 3 hidden layers that represents mfs and fuzzy
rules, and (c) 1 output layer. ANFIS uses the Sugeno-fuzzy
inference model to be the learning algorithm. As an example,
the fuzzy if-then rules for the first-order Sugeno-fuzzy model
can be expressed as follows.

Rule 1. If x (input 1) is A1 and y (input 2) is B1, then f1
(output) = p1x + q1y + r1.

Rule 2. If x (input 1) is A2 and y (input 2) is B2, then f2
(output) = p2x + q2y + r2.

The learning algorithm of ANFIS is a hybrid algorithm,
which combines the gradient descent (GD) method and
the least square estimation (LSE) for an effective search of
parameters. ANFIS uses a two-pass of learning algorithm to
reduce error: forward pass and backward pass. The hidden
layer is computed by the GD method of the feedback
structure and the final output is estimated by the LSE method
(for details, see [8]).

4.2. Time Series Model: GARCH Model. Since our considered
series are time series, to compare the performances of the
soft computing models, a very popular time series model,
namely, generalized autoregressive conditional heteroscedas-
tic (GARCH) model is selected from time series economet-
rics literature. A brief description of this model is discussed.

In 1986, Bollerslev invented the GARCH model. To un-
derstand it clearly, consider an AR(1) model:

stockpricet = Constant + stockpricet−1 + et,

t = 1, 2, . . . ,n,
(3)

where stockpricet is the observed cse-all and cse-30 prices.
Here, the current volatility depends not only on the past
errors, but also on the past volatilities. Suppose et = εtσt,
where σt = β0 +

∑q
i=1 βie

2
t−i +

∑p
j=1 γjσt− j with β0 > 0,βi ≥

0 (i = 1, 2, . . . , q), γj ≥ 0 ( j = 1, 2, . . . , p), and εt ∼ N(0, 1),
known as an GARCH process of orders p and q. This model is
widely used to know the volatility nature that exists generally
in the time series data. For details, see [6].

5. Discussion of Results

Forecasting with 100% accuracy may be impossible, but we
can do our best to reduce forecasting errors. Thus, to find
the error level between observed and predicted stock series
that means the forecasting performances of the considered
models are evaluated against the following widely used
statistical measures, namely, root mean square error (RMSE),
correlation coefficient (CC), and coefficient of determination
(R2).
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Table 7: Computational settings for selected forecasting models.

GA ANFIS GARCH

(1) Population size—3000, generated at
random from the uniform probability
distribution.

(1) Input—Lags of cse-all and cse-30
cse-all and cse-30: Fitted GARCH (2,1) and
GARCH (1,1) Selection Process: BIC.

(2) Fitness function—RMSE of model
(2.2.1-2.2.2); Fitness scaling—Linear ranking
process.

(2) 2 mfs (type Gaussian) for each of input
variables. Thus, 8 if-then fuzzy rules were
learned.

(3) Selection-Roulette wheel.

(4) Crossover-fraction: 0.95; Intermediate
method.

(5) Mutation-fraction: 0.05; Uniform
method.

(6) Reinsertion: The fitness-based reinsertion
method.

(7) Termination Criteria—Maximum
number of generations, assumed 200.

Table 8: Performances for training data.

Forecasting models
cse-all cse-30

RMSE CC R2 RMSE CC R2

GA 6.79 0.94 0.88 6.95 0.91 0.82

ANFIS 6.89 0.93 0.86 6.83 0.92 0.84

GARCH 7.34 0.91 0.82 7.56 0.88 0.77

Note: We considered January 1, 2005 to January 1, 2009 as a training period.

Table 9: Performances for testing data.

Forecasting models
cse-all cse-30

RMSE CC R2 RMSE CC R2

GA 5.37 0.96 0.92 6.48 0.94 0.88

ANFIS 6.93 0.94 0.88 5.59 0.97 0.94

GARCH 8.58 0.89 0.79 7.89 0.90 0.81

Note: We considered February 1, 2005 to May 5, 2011 as a testing period.

Note that a smallest value of RMSE indicates higher
accuracy in forecasting, and higher R2 value indicates better
prediction. All computational works were carried out using
the programming code of MATLAB (version 7.0). We have
selected January 1, 2005 to January 1, 2009 as the training
periods and rest of periods as the testing periods. See Table 7
for computational parameters for all selected forecasting
models. Tables 8 and 9 summarize the performances of
different considered forecasting models where the training
and testing data are achieved for prediction of stock values
using the considered error measures RMSE, CC, and R2.
In terms of all measures, our training results show that for
the cse-all price series, the GA forecasting model performed
better (noted smallest RMSE values, highest CC, and R2

values) than other forecasting models, followed by the ANFIS
forecasting model and the GARCH forecasting model. For
the cse-30 series, we found that the ANFIS forecasting model
performed better than the other forecasting models. After
the models are built using the training data, considered

series forecasted over the testing data and performances are
reported in Table 9. The testing results when compared to
our considered forecasting models show again that the daily
cse-all price series forecasting ability of the GA forecasting
model is higher than the other forecasting models. We noted
for the cse-30 price index, the ANFIS forecasting model
performed (lowest value of RMSE, highest values of CC and
R2) better than the other forecasting models.

6. Conclusion and Future Works

It is well known that soft computing models pay particular
attention to nonlinearties which in turn help to improve
complex data predictions. In this paper, we forecasted Chit-
tagong stock price index for all companies and stock price
index for 30 selected companies for the period from January
1, 2005 to May 5, 2011. Recent time series literature suggests
that most stock price series are nonstationary, contains a unit
root. For this reason to make appropriate predictions, using
unit root tests, first we tested nonstationarity properties
because our considered series are time series. Our test results
suggested that the series are nonstationary. To remove this
noise from the series, we used the series in first differences.
Then we tested linearity of the series using the statistical
linear test. Test result showed us that the two considered
series are nonlinear. Thus, we selected two very well-
known soft computing models, namely, the GA forecasting
model and the ANFIS forecasting model. To compare the
performances of these two models, we also selected most
popular nonlinear time series forecasting model. According
to our findings, we would like to conclude that applied
workers should select the GA forecasting model to forecast
future daily stock price index for all selected companies. In
case of daily stock price index for 30 selected companies,
the ANFIS forecasting model is more successful than the
other considered forecasting models. We believe our findings
will be helpful for researchers who are planning to make
appropriate decisions with this complex variable. Our next
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step is to improve and compare the predictions with other
recently proposed model, for example, rough set theory and
other. This is left for future research.
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