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This paper looks at techniques to simplify data analysis of large multivariate military sensor systems. The approach is illustrated
using representative raw data from a video-scene analyzer. First, develop fuzzy neural net relations using Matlab. This represents the
best fidelity fit to the data and will be used as reference for comparison. The data is then converted to Boolean, and using Boolean
Decision Diagrams (BDD) techniques, to find similar relations between input vectors and output parameter. It will be shown that
such Boolean techniques offer dramatic improvement in system analysis time, and with minor loss of fidelity. To further this study,
Boolean Neural Net techniques (BNN) were employed to bridge the Fuzzy Neural Network (FNN) to BDD representations of the
data. Neural network approaches give an estimation method for the complexity of Boolean Decision Diagrams, and this can be
used to predict the complexity of digital circuits. The neural network model can be used for complexity estimation over a set
of BDDs derived from Boolean logic expressions. Experimental results show good correlation with theoretical results and give
insights to the complexity. The BNN representations can be useful as a means to FPGA implementation of the system relationships
and can be used in embedded processor based multi-variate situations.

1. Introduction

Modern radar systems trace their roots to efforts in several
countries to refine existing concepts and theories just prior
to WWII. This was the culmination of theory and systems
dating back to the 1860s. Simplistically, a transmitted electro-
magnetic signal reflects from an object back to an antenna
where the characteristics of the signal determine properties
such as location, speed and direction of the target. We take
this simple problem, a show how variable complexity grows,
and how the corresponding computational problem also
grows.

Consider a simple Time-of-Flight range detector. For a
stationary object, the range is simply determined by

R =
(
vp × t

)
2, (1)

where R = Range; vp = Speed of propagation in medium (c in
air); t = Time to receive the reflected signal.

For a moving target, radar systems use the Doppler Effect
where the relative motion between source and observer
produces a frequency shift

f = (v + vr v − vs)× f0, (2)

where f = observed frequency; f0 = transmit frequency; v =
velocity of propagation in medium; vr = velocity of target
relative to medium; vs = velocity of antenna relative to
medium.

Both equations assume colocated transmit and receive
(Tx/Rx) antennas. Azimuth and elevation information
comes with knowledge of the antenna beam position. So,
what started as a simple calculation with 2 variables, becomes
a problem with 4 variables. And, as we add moving sensors,
propagation media dielectric variations, frequency jitter,
multipath echoes, and so forth, the number of variables
grows, and the computation problem quickly overwhelms
the processor. Modern day military sensors, with video and
other multispectra imagers, capture such large amounts of
data that embedded processors are rapidly overwhelmed.
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The result then is that the embedded processor cannot
complete its computations within the prescribed cycle time,
and does not return a result or, starts to discard data,
resulting in a false answer. Given that outcome, many systems
find an “approximate” answer adequate for many mission
objectives. In this paper, we employ data from such a video
processor and show how Binary Decision Diagrams (BDD)
fidelity compares with Fuzzy Neural Network (FNN) result
quality and, how the Neural Network Model (NNM) can be
used as an indicator of the Field Programmable Gate Array
(FPGA) complexity.

The paper describes an environment for the rapid anal-
ysis, synthesis and optimization of embedded systems. The
simplification strategy involves structure reduction and is
carried out through an iterative algorithm aiming at selecting
a minimal number of rules for the problem at hand. The
selection algorithm allows manipulation of the neuro-fuzzy
model or binary decision diagram to minimize complexity
and to preserve a good level of accuracy. Since the imple-
mentation of these systems is rather complicated, we propose
a methodology which automates the entire design flow. Flex-
ibility is achieved by allowing manual intervention which is
realized via a modular implementation of algorithms which
are being provided.

2. Logic Analysis

An extension of the Time-of-Flight system is a typical track-
while-scan (TWS) radar system, which gets a discrete (tem-
porally separated) sequence of detections (“hits”) on a given
target. Each detection is of a finite, typically quite short,z
duration. From each detection a given collection of attributes
about that hit is extracted. The attributes typically include
detection time, position, and reflected intensity, as well as
various statistical moments and other mathematical features
of the detection. The goal of these radar detections is
typically to identify (detect and classify) the target of interest
and its trajectory. By successfully tracking the target in
motion, knowledge of the target can usually be substantially
improved, since repeated detections of the moving target
provide a greater volume of information and allow aggregate,
track-based, statistics to also be used.

If we expand the problem to a multidimensional target
identification problem, let us consider an example of a
cluttered video image, and we need to find and classify the
target in the scene. The image attributes include distance
(to target it is called distance), aspect ratio of target (called
aspect), vertical pixel height of target (called vert), area (in
pixels it is called area) covered by target, target luminosity
(called target lum), dark area in the image (called dark area
lum), the surrounding luminosity (called surround lum), and
edge pixels (called edg pts). The object is to classify the target
(type) and assess the time taken to complete this chore.
Reproduced from [1–3] is a table, Table 1, showing rows of
such data. The data is just for illustration purpose only and
is used in calculations to illustrate the comparison between
full neuro-fuzzy analysis versus what target classification

confidence we can achieve using Boolean or fuzzy tech-
niques. The details of neuro-fuzzy techniques are not repro-
duced here [4], and, as background, the ANFIS (ANFIS =
adaptive neurofuzzy inference system. As deployed in
MatLab the Sugeno fuzzy model is where all output mem-
bership functions are singleton spikes and the implication
and aggregation methods are fixed. The implication method
is simply multiplication, and the aggregation operator just
includes all of the singletons. The Sugeno method is ideal
for acting as an interpolative supervisor of multiple linear
controllers that apply different operating conditions of a
dynamic nonlinear system. A Sugeno system is also suited for
modeling nonlinear systems by interpolating multiple linear
models) toolkit in MatLab and VeriMax analysis using
MiniTab are employed. The architecture and learning pro-
cedure underlying ANFIS (adaptive-network-based fuzzy
inference system) is a fuzzy inference system implemented
in the framework of adaptive networks. By using a hybrid
learning procedure, ANFIS can construct an input-output
mapping based on fuzzy if-then rules and stipulated input-
output data pairs.

And, as is shown [5, 6], we see that the Boolean and
fuzzy approaches increase the linguistic rules as the number
of input vectors increases. A neuro-fuzzy approach allows a
more compact and computationally efficient representation
and lends itself to adaptive schemes. And, where there
is no intuitive knowledge of input vector behaviors or
relationships to the output, these adaptive techniques in turn
help create the entire fuzzy network for us.

Looking at Table 1, for this example, we see that there
are 9 target types, and that there is little intuitive correlation
between input vectors and target type or time taken to
classify the target. Heuristic methods and expert knowledge
(described in [7]), exploit a-priori knowledge to make
inferences and help cluster the vectors and reduce system size
by eliminating some inputs.

Using the Verimax analysis in MiniTab, we calculate,
Table 2 [3], the correlation between vectors and see that vert
(number of vertical pixels) and area (area covered by target
in pixels) information is strongly correlated (95%).

There are other inferences that can also be made. But,
none that allows a simple determination of logical con-
nections. Employing the Neuro-fuzzy ANFIS function from
the MatLab toolkit, we see in Table 3, that it is possible to get
upto 87% confidence in target classification, relying on the
full data set.

Where the terms as used by MiniTab are [8] as follows.

CORR: Correlation between the original output and the
estimated output from the fuzzy neural system using
the data from each method.

TRMS: total Root mean square for the distance between the
original output and the estimated output using the
same testing data through the fuzzy neural system

TRMS =
∑n

i=1

√(
xi − yi

)2

n− 1
, (3)
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Table 1: Data reproduced from [1]. Data representing the target classification, and the various extracted attributes of the visual scene.

Target no. Distance Aspect Vert Area Target lum Dark area lum Surround lum Edgepts Search time

Type m ass (sin) Pixels (Pixels) Scene Dark Grass Pts Search time (s)

1 4007 0.71 10 141 14 17 29 9571 14.6

1 2998 0.82 11 225 21 10 27 8927 15.2

2 3974 0.71 13 173 20 24 28 9138 12.4

3 5377 0.05 5 49 18 23 30 8970 29.8

2 1013 0.52 50 2708 19 5 34 8706 2.8

4 3052 0.00 11 100 12 18 30 8755 6.4

5 5188 0.41 9 76 18 23 28 9053 26.7

6 3679 0.12 10 96 12 20 26 8620 10.0

2 860 1.00 54 3425 9 1.5 40 8961 2.7

4 1951 0.85 16 332 15 11 27 8572 2.8

3 3992 0.79 11 154 20 19 26 9194 11.9

6 1041 0.74 24 1645 11 4 35 9074 2.5

7 2145 0.98 17 553 8 5 18 8280 3.7

3 1998 0.76 19 659 20 10 22 8739 8.1

2 4410 0.00 11 101 22 18 29 9404 12.4

1 2893 0.42 16 320 12 7 23 8670 2.5

5 1933 0.98 13 368 15 12 23 8606 4.8

1 1850 0.96 28 876 3 4 9 8464 2.8

8 1045 0.09 26 985 19 10 12 8613 12.3

2 1933 0.95 22 867 16 11 27 8376 2.8

7 4206 0.00 9 79 26 29 38 9506 15.1

1 5722 0.88 7 73 38 40 46 9044 25.6

4 4920 0.42 8 61 20 21 36 8618 12.1

6 4206 0.81 9 142 18 12 21 9152 8.0

5 2348 0.94 9 198 18 21 30 8504 5.5

1 3992 0.88 11 217 15 14 26 9078 7.8

9 4410 0.96 11 247 16 8 19 9397 9.6

8 2321 0.83 15 458 22 21 47 8365 5.1

5 3661 0.76 9 84 17 25 23 8807 7.5

3 3670 0.00 13 192 14 15 27 8483 6.1

7 1671 1.00 19 893 15 13 31 8959 3.5

4 4345 0.81 8 63 15 12 20 9021 12.3

2 3662 0.57 10 203 26 25 44 8702 5.4

5 633 0.71 50 4403 20 5 39 8741 2.5

3 492 0.07 57 3045 20 16 23 8992 2.2

4 1497 0.78 16 560 10 7 20 9014 5.8

5 1041 1.00 33 1613 17 5 32 8486 2.6

1 2891 0.99 19 486 12 12 35 9021 12.1

7 5147 0.93 5 81 18 27 34 9075 34.9

6 1648 0.59 18 648 23 7 37 9070 2.7

8 948 0.73 35 1463 18 5 38 8790 3.7

7 3662 0.41 12 188 19 25 39 8524 5.8

6 2900 0.00 17 340 20 10 49 8791 4.1

2 5136 0.00 10 79 25 16 27 8941 10.6

where xi is the estimated value and yi is the original
output value.

STD: Standard deviation for the distances between the
original output and the estimated output using the
same testing data through the fuzzy neural system.

MAD: Mean of the absolute distances between the original
output and the estimated output using the same
testing data through the fuzzy neural system.

EWI: The index value from the summation of the values
with multiplying the statistical estimation value by its
equally weighted potential value for each field.



4 Advances in Fuzzy Systems

Table 2: Reproduced from [1]. Verimax analysis using MiniTab tool to calculate covariance between input vectors.

Distance Aspect Vert Area Target lum Dark area Surround Edgepts

Distance 1 −0.24 −0.79 −0.72 0.37 0.72 0.06 0.41

Aspect −0.24 1 0.08 0.12 −0.24 −0.25 −0.08 −0.10

Vert −0.79 0.08 1 0.95 −0.19 −0.58 0.07 −0.19

Area −0.72 0.12 0.95 1 −0.14 −0.53 0.15 −0.13

Target lum 0.37 −0.24 −0.19 −0.14 1 0.62 0.52 0.25

Dark area 0.72 −0.25 −0.58 −0.53 0.62 1 0.32 0.22

Surround 0.06 −0.08 0.07 0.15 0.52 0.32 1 0.04

Edgepts 0.41 −0.10 −0.19 −0.13 0.25 0.22 0.04 1

Table 3: Correlation and other analysis of data from [1–3].

CORR TRMS STD MAD EWI ERR

2 factor 0.77 5.73 3.60 5.35 14.92 13.44

3 factor 0.56 6.65 5.81 6.21 19.11 20.52

4 factor 0.46 7.59 14.39 7.09 29.62 16.55

5 factor 0.22 21.11 32.05 19.70 73.63 58.87

6 factor 0.71 6.92 10.46 6.46 24.13 18.03

7 factor 0.84 3.31 4.83 3.09 11.39 8.05

Original 0.87 2.84 4.40 2.65 10.02 7.38

ERR: The error rate is

ERR =
n∑

i=1

(
E(i)−O(i)

E(i)
× 100

)
, (4)

where n is the number of testing data, E(i) is the
estimated output, and O(i) is the actual output.

This forms our baseline. We now compare this analysis to
what we can get if the data in Table 1 is converted to Boolean.
This Boolean data is presented in Table 4.

Verimax analysis when we employ Boolean relationships
to determine the correlation functions shows correlation
between the original output and the estimated output to be
82%. This compares well with the FNN analysis and is a rea-
sonable approximation of the original data. It is this accept-
able degradation that provides an opportunity to use Binary
Decision Diagrams and Boolean techniques, to reduce the
number of variables and to simplify the computational prob-
lem. The general correlation similarities between vectors are
approximately preserved. And, again, vert and area vectors
have high correlation. Thus, using the premise that an
approximate answer is better than no-answer. The simple
Boolean quantization of the raw data, provides a reasonable
estimate as compared to the full data set, fuzzy inferences.

3. Boolean Decision Diagram Techniques

The analysis techniques used above show that reasonable
computation reduction can be achieved by data quantization
implying that using full-precision data as baseline, we still
achieve approximately 82% fidelity in the correlation data
using Boolean quantization of the data. This opens the door

to using Boolean Decision tools for rapid, reasonable fidelity
and analysis of the system.

Let us again start with the data in Table 4—which is the
Boolean representation of the raw data. We find that we have
8 input variables and 1 output vector called search time,
that is, the time required to correctly classify the target type.
As shown in [2, 7], the correlation matrix for the Boolean
data also shows that, because it has such high correlation
between adjacent vectors, we can simply eliminate the vert or
area vectors and, using a-priori knowledge for this specific
problem, that target lum and edge pts vectors also can be
combined in an OR function to some extent. Finally, that
distance and target lum also can be OR combined to further
reduce the matrix. We can then develop a 4-variable matrix
to develop a set of linguistic rules.

Table 5 shows such a reduced vector representation of
the original raw data. And, this is specific for this problem,
other problems, and, using specialized knowledge [7] we can
use the analysis techniques shown to reduce the input vector
dimension.

Using Boolean Decision Diagram techniques, this is
represented as

f =
∑

(0, 1, 2, 3, 5, 6, 7, 10, 13, 14). (5)

From this, we can create the K-map (Figure 1) of the above
linguistic rules:

And, we can re-write f as:

f = BCD + AB + CD + AC. (6)

The complexity of circuit and systems design increases
rapidly. Therefore, in seeking efficient algorithms and data
structures, we choose, binary decision diagrams (BDDs).
These have been used in a wide variety of applications and
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Table 4: This Boolean data is presented in Table 4.

Target no. Distance Aspect Vert Area Target lum Dark area lum Surround lum Edgepts Search time

Type m ass (sin) Pixels (Pixels) Scene Dark Grass Pts Search time (s)

1 1 1 0 0 0 0 0 1 0

1 1 1 0 0 1 0 0 0 0

2 1 1 0 0 1 1 0 1 0

3 1 0 0 0 0 1 1 1 1

2 0 1 1 1 1 0 1 0 0

4 1 0 0 0 0 0 1 0 0

5 1 0 0 0 0 1 0 1 1

6 1 0 0 0 0 1 0 0 0

2 0 1 1 1 0 0 1 1 0

4 0 1 0 0 0 0 0 0 0

3 1 1 0 0 1 0 0 1 0

6 0 1 0 0 0 0 1 1 0

7 0 1 0 0 0 0 0 0 0

3 0 1 0 0 1 0 0 0 0

2 1 0 0 0 1 0 0 1 0

1 0 0 0 0 0 0 0 0 0

5 0 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0

8 0 0 0 0 1 0 0 0 0

2 0 1 0 0 0 0 0 0 0

7 1 0 0 0 1 1 1 1 0

1 1 1 0 0 1 1 1 1 1

4 1 0 0 0 1 1 1 0 0

6 1 1 0 0 0 0 0 1 0

5 0 1 0 0 0 1 1 0 0

1 1 1 0 0 0 0 0 1 0

9 1 1 0 0 0 0 0 1 0

8 0 1 0 0 1 1 1 0 0

5 1 1 0 0 0 1 0 0 0

3 1 0 0 0 0 0 0 0 0

7 0 1 0 0 0 0 1 1 0

4 1 1 0 0 0 0 0 1 0

2 1 1 0 0 1 1 1 0 0

5 0 1 1 1 1 0 1 0 0

3 0 0 1 1 1 0 0 1 0

4 0 1 0 0 0 0 0 1 0

5 0 1 1 0 0 0 1 0 0

1 0 1 0 0 0 0 1 1 0

7 1 1 0 0 0 1 1 1 1

6 0 1 0 0 1 0 1 1 0

8 0 1 1 0 0 0 1 0 0

7 1 0 0 0 1 1 1 0 0

6 1 0 0 0 1 0 1 0 0

2 1 0 0 0 1 0 0 1 0

were intensively studied. And, the Boolean Decision Diagram
as Figure 2.

Having this Boolean Decision Diagram, we can apply the
analysis tools [9–11] readily available for such analysis. This
shows how a complex video scene, once it is translated into

desired attributes, can then be analyzed using BDD tech-
niques to yield fast approximate solutions to the data clas-
sification problem. Research exists [12] on how to generate
FPGA using BDDs, and in this paper we acknowledge that
numerous researchers have used BDD synthesis for FPGA
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0 4 12 8

1

1

1 1 1

1

1 1

1

1 1

5 13 9

3 7 15 11

2 6 14 10

K-map for Boolean relationships

A

B

C

D

Figure 1: K-map of data represented by Table 5.
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f = BCD + B + CD + C

f = CD + CD + Cf = CD + C

f = D

f = BCD + CD

f = CD f = CD + CD

f = Df = D

Figure 2: Boolean Decision Diagram for data represented by Table 5.

performance optimization. Additionally, recent publications
[13–16] show that such order-reduction models are created
and changed throughout the development process process
and [13, 14] argue that if one looks at the idea of model
checking as a constraint checking problem, then the BDD-
based symbolic model checking indeed is capable of verifying
systems with a large number of states. This is in agreement
with our main thesis as well, that is the analysis of abstract
models using such order-reduction analysis will have great
impact in reducing computational load on embedded pro-
cessors. The authors of [15, 16] note that it is indeed possible
to reduce (replace) the initial set of input variables with their
linear combinations and that such path reduction (order
reduction) can be compared using spectral techniques,
or weighted autocorrelation techniques, to compare and
approximate accuracy degradations.

4. Proposed Algorithm

The proposed algorithm to implement the above technique is
illustrated in this section. The input space is reduced and the

number of rules is decreased, and the simulation results illus-
trate the approach is practicable, simple, and effective and
the performance index is not significantly degraded. The
video scenes, in this illustrative example, are first converted
recognition attributes as required by the classification algo-
rithm. And, using FNN and ANFIS techniques, a baseline
answer fidelity index is generated. Then, the data streams are
converted to Boolean and checked to see that resultant
fidelity degradation is acceptable. This assessment can be
rule-set or can rely on expert a-priori knowledge to judge
when the quantization is acceptable. Then, using Factor and
Cluster techniques, the problem size is reduced first by com-
bining or eliminating the input vectors, and then, by selecting
orthogonal data rows, such that a full set of outcomes is
represented. Finally, use BDD techniques, to draw K-map
diagrams and to develop a Boolean equation to solve the
problem.

The synthesis, optimization, and implementation of
embedded systems is rather complicated, and we propose a
methodology which automates the entire design flow. Flex-
ibility is achieved by allowing manual intervention which is
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Table 5: Original visual scene data, after Boolean quantization, and
after factor reduction.

Target type A B F G Output

1 1 1 0 0 1

1 0 1 0 1 1

2 1 1 1 0 1

3 1 0 1 1 1

2 0 1 0 1 0

4 1 0 0 1 1

5 1 0 1 0 1

6 1 0 1 0 1

2 0 1 0 1 0

4 0 1 1 1 0

3 1 1 0 0 1

6 0 1 0 1 0

7 0 1 0 1 0

3 0 1 0 1 1

2 1 0 1 0 1

1 0 1 0 1 0

realized via a modular implementation of algorithms which
are being provided. This is represented in the following flow
(see Figure 3).

Assume there are n by p matrix with p-1 input variables
and one output.

(1) Using the raw data, and FNN, ANFIS function from
the MatLab toolkit, calculate the correlation matrix,
R, between variables of data set. This correlation is
the benchmark correlation between variables and can
be used later to decide the validation of reducing
procedure.

(2) Review input vector correlation data, to determine
which variables can be reduced (or combined).

(3) Use iterative convergence to reduce/combine input
vectors. Each time verifying that the resultant data is
reasonably correlated to the original data.

(4) Convert remaining data stream to Boolean. Typically
this binary representation is of a reduced set of input
variables.

(5) Then, using Factor and Cluster techniques, the prob-
lem size is reduced first by combining or eliminating
the input vectors, and then, by selecting orthogonal
data rows, such that a full set of outcomes is repre-
sented. This can be performed, based on heuristic, a-
priori, or correlation analysis.

(6) Repeat MiniTab/VeriMax analysis to validate that the
resultant correlation value is within acceptable range
as compared to the full-fidelity FNN correlation
value. This step can be automated via a rule set, or
can include judgment, depending on confidence in
the factoring algorithms.

(7) Next, use BDD techniques, to draw K-map diagrams
and to develop a Boolean equation to solve the
problem.

(8) Create the BDD to represent the Boolean relation-
ship.

(9) Verify the diagram with representative cases.

(10) Use FPGA design techniques, to convert the BDD to
code.

(11) The system is now ready to take a raw stream of input
data and yield a high efficiency solution to the target
classification problem.

5. Analysis and Conclusion

Binary Decision Diagrams are generated by applying Shan-
non expansion [16] repeatedly to a logic function to yield a
multivalued decision diagram. This is usually a (very) large
matrix, generally unsolvable by embedded processors having
finite memory and limited cycle-time before a decision must
be rendered. Cluster decomposition (i.e., circuit partition-
ing) is also possible, but, generally this leads to several
smaller matrices that must be solved simultaneously and
also requires a fuzzy-logic arbitration algorithm to decide on
the outcome. Further, when such subcircuits have fanouts,
[16], the number of BDD nodes may increase exponentially
thereby defeating the intent of Order Reduction algorithm.
The study in [15] also confirms that the number of
paths (order) is a function of the weighted autocorrelation
coefficients and that it is possible to minimize the number
of paths by constructing an ordered set of basis vectors
of high weighted autocorrelation value. This is the key
to use auto-correlation analysis to find relations between
input vectors and output parameter, also to convert dynamic
data to Boolean, that is, a 1-bit A/D approach, to create
both a reduced-order circuit, and to simplify analysis. This
technique of both order reduction (linearly combining input
vectors) and input data-resolution reduction (converting
from full-dynamic range data to Boolean data) still yields
adequate quality results.

In summary, a high number of input parameters can
result in a large number of rules that are computationally
difficult to handle. Hence, it is imperative to develop the
techniques, which can reduce the input parameters such that
the original system and reduced systems have approximately
the same behavior. In this paper, we have taken multi-variate
streams of as-available data from a video scene analyzer and
have created a technique for order reduction, and of digiti-
zation, such that the problem can reasonably be reduced to
a Boolean problem, and, that this Boolean problem can then
be solved using well-known techniques for Boolean Decision
Diagrams. In the context of the example chosen for this
paper, data streams from a video recorder are selected and
analyzed for target classification efficiency. It is shown that an
original 8 input-parameter data set with an 87% confidence
full fuzzy neural net analysis, the reduced order problem
was converted to a 4-variable problem, and the technique
was able to generate a reasonably accurate 82% accurate
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Input raw multivariate data streams

Calculate the eigenvalues from the

correlation matrix of the original data

to determine orthogonality of the input

variables

Using the reduced factor stream of input variables, determine
the new correlation values

Convert the data to Boolean and repeat the

correlation analysis

Generate K-map and Boolean Decision

Diagrams to represent the relationships as

determined by K-map

Generate FPGA code

System ready for validation and

implementation

Select the number of reduced factors based upon the

accumulation of variances, or using apriori or heuristic

input. Reduce the input variables

Validate that this is

acceptable

Validate that this is

acceptable

Figure 3: Flowchart for the proposed algorithm.

solution. And, that such a reduced-order problem can then
be converted to a Boolean relationship. Existing research
[9–12] shows how to convert this relationship to a FPGA
design, such that, for this example, such video data can be
quickly analyzed and a reasonably accurate answer generated.
So while it is possible to have larger and larger processors
and more and more complex code, often in many military
applications, an approximate answer is adequate. And, that
answer can be calculated using order-reduction techniques
outlined herein, and then completely solved using BDD
techniques.

From this study, we may decide the best heuristic and
fuzzy techniques and also when the usage of fuzzy or heuris-
tic method is better than the other. These are of significant
advantage in satellite sensors where power and compute
capacities are limited, and where such approximations can
then cue more detailed analysis if warranted.
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