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We have developed compiler optimization techniques for ex-
plicit parallel programs using the OpenMP API. To enable
optimization across threads, we designed dataflow analysis
techniques in which interactions between threads are effec-
tively modeled. Structured description of parallelism and
relaxed memory consistency in OpenMP make the analyses
effective and efficient. We developed algorithms for reach-
ing definitions analysis, memory synchronization analysis,
and cross-loop data dependence analysis for parallel loops.
Our primary target is compiler-directed software distributed
shared memory systems in which aggressive compiler opti-
mizations for software-implemented coherence schemes are
crucial to obtaining good performance. We also developed
optimizations applicable to general OpenMP implementa-
tions, namely redundant barrier removal and privatization of
dynamically allocated objects. Experimental results for the
coherency optimization show that aggressive compiler opti-
mizations are quite effective for a shared-write intensive pro-
gram because the coherence-induced communication volume
in such a program is much larger than that in shared-read
intensive programs.
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1. Introduction

The OpenMP API is an emerging standard for
shared-memory parallel programming. It provides
a simple and incremental way to write parallel pro-
grams, particularly for data-parallel applications. How-
ever, naive parallelization may not achieve good per-
formance due to poor locality, large synchronization
overhead, or other reasons. In addition, the current
specification of the OpenMP API does not provide
enough means for controlling data locality or mem-
ory coherency, because these features are platform-
dependent. Compiler optimization for OpenMP pro-
grams should be effective for achieving performance
portability across various platforms and for non-expert
programmers.

We first present our framework of dataflow analy-
sis for OpenMP programs and some concrete dataflow
algorithms. We used an internal representation called
Parallel Flow Graph (PFG) to model both the intra-
and inter-thread flows of data. We describe analysis
algorithms called reaching definition analysis, mem-
ory synchronization analysis, and cross-loop data de-
pendence analysis for parallel loops to obtain dataflow
information for our optimizations.

We developed optimization techniques to reduce the
synchronization and coherence overheads and to im-
prove data locality. While these techniques are appli-
cable to any OpenMP implementation, our primary tar-
get is a compiler-directed software distributed shared
memory (DSM) system [20]. This system provides a
shared memory image on top of distributed memory
parallel computers with the assistance of a compiler that
analyzes communication patterns and optimizes coher-
ence control codes. In such a system, aggressive com-
piler optimizations are crucial to obtaining good per-
formance because a software-implemented coherence
scheme has larger coherence overhead than symmetric
multi-processors (SMPs) and hardware DSMs.

We obtained preliminary performance results using
a prototype system. From the experimental results,
we found that coherence optimization greatly impacts
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on the performance of shared-write intensive programs
because the large amount of communication is reduced
by the optimization.

This paper is organized as follows. First, we discuss
performance bottlenecks in OpenMP programs and op-
timizations that overcome them. Then, we present
dataflow analysis techniques in Section 3. Section 4
describes compiler optimizations particularly useful for
compiler-directed software DSM systems and presents
experimental results. In Section 5, related work on pro-
gram analyses and optimizations for explicit parallel
programs and software DSMs are presented. Section 6
summarizes this work.

2. Motivation

There can be several performance bottlenecks in
OpenMP programs. We discuss here bottlenecks re-
lated to control synchronization, data synchronization,
and data locality.

Threads are synchronized by directives such as the
barrier directive and the critical directive. The
parallel directive synchronizes threads by forking
or joining them. Control synchronization reduces par-
allelism in a program by forcing threads to wait until a
certain condition holds. To reduce control synchroniza-
tion overhead, the OpenMP API provides such means
as a nowait clause and orphaned directives. Multiple
parallel tasks can be put in a single large parallel region
to reduce overheads caused by the creation of separate
parallel regions for each parallel task. Doing this en-
ables programmers to optimize control synchronization
at the source level. However, there are still situations in
which it is difficult or impossible to optimize programs
at the source level. For example, to add a nowait
clause to an orphaned for directive, the programmer
must be sure that it is valid in all calling contexts.

In addition to control synchronization, shared data
must be synchronized at synchronization points in-
duced by flush operations to maintain a coherent view
of shared data. Implementation of data synchroniza-
tion, or coherence, varies from platform to platform,
so the OpenMP API provides only a generic interface
for data synchronization. Compiler optimizations such
as register allocation and code motion for shared data
are inhibited at synchronization points, and the com-
piler must insert appropriate memory barrier instruc-
tions at these points. Data synchronization tends to be
over-performed because a programmer cannot specify
shared data that must be synchronized by an implicit

flush operation, that may be frequently executed. Many
shared data items, especially array elements, do not
need to be synchronized by an implicit flush operation
in practice.

The exploitation of data locality is also important,
especially for distributed shared memory systems in
which memory access latency varies depending on the
location of the data to be accessed. Programmers can
use data placement or data distribution pragmas if such
features are supported by the implementation, or they
can write programs taking account of the default data
placement policy, such as first-touch placement. The
alternative is compile-time analysis of data access pat-
terns and automatic data placement or distribution. Pri-
vatization of dynamically allocated objects is also ben-
eficial because the current OpenMP API do not support
dynamic allocation of private data, even though such
data objects may be allocated on remote nodes in a
DSM.

In some cases a programmer can overcome these
problems by careful design of the algorithms and appro-
priate use of the OpenMP API [7,26]. However, there
are cases in which programmers cannot control pro-
gram behavior at the source level because the OpenMP
API is designed independently of the platform archi-
tecture and thus do not provides means to utilize the
platform-dependent features.

There are two approaches to dealing with platform-
dependent issues. First, programmers can use non-
standard features such as vendor-specific directives,
sacrificing portability. The second is to put such bur-
den on the OpenMP implementation, i.e., the compiler
and runtime system. The latter approach is preferable
because it does not sacrifice portability. Since many
OpenMP programs are written in a very structured man-
ner, it is easier to analyze and optimize programs ef-
fectively compared with parallel programs using other
multi-threading APIs such as POSIX threads.

In addition to the portability, another reason to val-
idate compiler optimization is that many application
programmers are not experts at parallel programming.
Such non-expert programmers do not want to spend
much time improving their programs and tend to write
less efficient programs with simple structures, e.g., by
using loop-level parallelization only.

3. Parallel dataflow analysis

We developed dataflow analysis techniques for
OpenMP programs to enable aggressive optimization.
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#include <math.h>
double sub(double *a, double *b, int n) {
  double s = 0.0;
#pragma omp parallel
{
  int i;
  double tmp;
#pragma omp for
  for (i = 1; i < n; i++) {
    a[i] = (b[i] - b[i-1])/2.0;
    tmp = fabs(a[i]-b[i]);
#pragma omp critical
      if (tmp > s) s = tmp;
    }
  }
  return s;
}

Fig. 1. An example OpenMP program.

Our analyses use an internal representation that mod-
els both intra-thread flow of control and data synchro-
nization across threads. They also consider the se-
mantics of OpenMP directives. The relaxed memory
consistency in OpenMP enables efficient and effective
dataflow analyses for parallel programs because inter-
actions between threads need to be accounted for only
at synchronization points.

3.1. Internal representation

We first define the internal representation, called
Parallel Flow Graph (PFG), we use to model control
flow within each thread and synchronization between
threads.

The PFG of an OpenMP program is a tuple
(N, E, s, e) where:

– N is a set of nodes,
– E is a set of directed edges, and
– s and e are the entry and the exit nodes of the

program, respectively.

Figure 1 shows an example OpenMP program, and
its parallel flow graph is depicted in Fig. 2.

A node in N represents either a basic block or an
OpenMP directive. We call the nodes representing ba-
sic blocks sequential nodes and the nodes representing
OpenMP directives directive nodes. Sequential nodes
are created in a manner similar to that of nodes in a
control flow graph for sequential programs. Directive
nodes are created according to the usage of the direc-
tive. A directive used as if a single statement, e.g.,
barrier andflush, is represented by a single direc-
tive node. A directive used as a construct is represented
by a pair of directive nodes representing the entry and
exit of the construct. In the figure, sequential nodes

a[i]=(b[i]-b[i-1])/2.0;
tmp=fabs(a[i]-b[i]);

enter critical

if(tmp>s)

s=tmp;

exit critical

exit for

For(i=0,n,1)

enter parallel

exit parallel

s=0.0;

return s;

s

e

Fig. 2. A parallel flow graph.

and directive nodes are represented by rectangles and
ovals, respectively. A subset of directive nodes, which
imply flush operations, are also called synchronization
nodes and are represented by thick ovals in the figure.

An edge in E represents either flow of control or
the ordering of synchronization events. Control edges,
represented by solid arrows, represent possible flow of
control in a single thread. Edges between sequential
nodes are created in a manner similar to that of se-
quential programs. However, edges from or to direc-
tive nodes are created somewhat differently according
to the semantics of the directive. For example, for the
for directive in Fig. 2, we create edges as if at most
one iteration can be executed; in other words, we do
not create a back edge. Instread, a edge from the entry
of the construct to the exit of that is created to rep-
resent the fact that some thread may not be assigned
any loop iterations. Such representation of the for di-
rective reflects the semantics of the for construct: all
iterations of the loop are executed independently and
no loop-carried dependence is assumed, unless explicit
synchronization is performed in the loop body.

Synchronization edges, represented by dashed ar-
rows, represent event-ordering constraints between
synchronization nodes. A synchronization edge from
node n to node m indicates that the synchronization
represented by node m may occur immediately after
the synchronization event represented by node n, in
either the same or in different threads.

We can model many parallel dataflow problems by
using a parallel dataflow analysis (PDA) framework
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composed of a parallel flow graph, a lattice of dataflow
information, and a set of transfer functions, in a man-
ner similar to that of dataflow analysis frameworks for
sequential programs. In such PDA frameworks, in-
teractions between threads are reflected by propagat-
ing dataflow information via synchronization edges.
Transfer functions associated with directive nodes rep-
resents the semantics of OpenMP directives and clauses
associated with them. In the following sections, we
present some algorithms for concrete dataflow analysis
problems.

3.2. Reaching definitions analysis

Reaching definitions analysis is a widely used
dataflow problem. This finds definitions that can possi-
bly reach each program point without intervening def-
initions of the same variable. In our analysis, reach-
ing definitions are considered to take account of both
intra- and inter-thread flow of data. We first describe
a reaching definitions algorithm for scalar variables to
explain the basic idea of dataflow analysis for OpenMP
programs.

A lattice of dataflow information L(V,∩,∪) is con-
structed as follows. Let V be a set of definitions within
the given program. Operators ∩ and ∪ are intersection
and union, respectively. We consider only references to
shared variables; any definition of a privatized variable
is not a member of V .

We also compute Gen and Kill sets for each node in
the PFG. These sets for sequential nodes are computed
similarly to sequential programs, except that references
to privatized variables are ignored. For directive node,
we compute these sets considering the semantics of
each directive and the clauses associated with it.

Let’s consider the construction of Gen and Kill sets
for a for directive as an example. We have two di-
rective nodes for a for construct: one for entry and
one for exit. At the entry node, all definitions for
variables privatized in the construct are killed because
the values of those shared variables become undefined.
We also add dummy definitions at the exit node for
variables appearing in the lastprivate clause or
the reduction clause of the for construct. Other
clauses of the for construct do not affect the Gen and
Kill sets of the directive nodes.

Using Gen and Kill sets for each node, we can
construct dataflow equations for reaching definitions
analysis as follows:

In(n) = ∪p∈pred(n)Out(n) (1)

Out(n) = Gen(n) ∪ (In(n) − Kill(n)). (2)

Note that the set of predecessors of node n in the PFG,
denoted by pred(n), include predecessors with respect
to both sequential and synchronization edges. We can
solve the dataflow equations by the iterative algorithm
over the PFG. Though the dataflow equations are iden-
tical to that of the reaching definitions analysis for
sequential programs, parallelism is introduced by the
construction of transfer functions and propagation via
synchronization edges.

3.3. Memory synchronization analysis

Reaching definitions analysis, described in the pre-
vious section, is the extension of a dataflow problem
for sequential programs into a parallel setting. In con-
trast, memory synchronization analysis does not have a
sequential counterpart. Memory synchronization anal-
ysis finds the variables that must be synchronized at
each synchronization point.

Shared data in OpenMP programs is synchronized
by the flush operations which are performed only at
flush directives or other directives that imply flush
operations. Therefore, between such synchronization
points, a compiler can optimize programs without con-
sidering interactions between threads. At synchroniza-
tion points, however, extra memory accesses and mem-
ory barrier instructions are inserted by the compiler,
resulting in data synchronization overhead.

In practice, there are many implicit flush operations
executed in an application, and all visible shared data
are synchronized at such operations. This leads to a
large amount of redundant memory synchronization, a
serious problem for software DSMs. The purpose of
memory synchronization analysis is to find the minimal
set of memory synchronizations required for correct
execution and to remove or improve memory synchro-
nization operations. If a compiler detects shared data
that do not have to be synchronized at a certain syn-
chronization point, that data can be allocated to a reg-
ister or moved across that synchronization point. Such
information can also be used for detecting redundant
control synchronizations, as explained in Section 4.3.

Our memory synchronization analysis algorithm
finds a sufficient condition for memory synchroniza-
tion that ensures correct execution. The algorithm is
comprised of the following steps.

1. Analyze direct reaching definitions for each syn-
chronization node. Direct reaching definitions
for node n are definitions that possibly reach node
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n without intervening definitions or flush opera-
tions of the same variable. Let RDefGen(n) be
the set of direct reaching definitions for node n.

2. Analyze exposed uses for each synchronization
node. Exposed uses for node n are uses that
are reachable from node n without intervening
definitions of the same variable. Note that such
uses may be executed in a thread different from
that in which synchronization node n is executed.
Let RUse(n) be the set of exposed uses for node
n. RUse sets can be computed by the backward
propagation of uses over the PFG.

3. Let WSync(n) be the set of definitions that may
need to be synchronized at synchronization node
n. Then WSync(n) is computed by the follow-
ing formulae:

WSync(n)
(3)

= RDefGen(n) ∩ RUse(n)

Here, may information for WSync sets is computed
because may information for the RDefGen and RUse
sets are used; must information can be computed using
the must information for direct reaching definitions and
exposed uses. The set of uses that may need to be
synchronized at synchronization node n, RSync(n), is
computed in a similar manner.

When a definition in set WSync(n) is executed, the
modified variable must be synchronized before execut-
ing node n, because other threads may use the value
assigned by those definitions after synchronization at
node n. Conversely, when a use in set RSync(n) is
executed, the variable to be read must have been syn-
chronized after executing node n,because other threads
may have modified the variables to be used before syn-
chronization at node n.

3.4. Cross-loop data dependence analysis for parallel
loops

So far we have described dataflow analysis tech-
niques for scalar variables. In this section we deal with
array dataflow analysis.

Parallel loops in OpenMP programs are doall type
loops, i.e., there are no loop-carried data dependencies
without explicit synchronization. Therefore, data de-
pendence analysis within a single parallel loop is not
so important. In contrast, cross-loop data dependence
analysis for parallel loops is effective for optimizing
communications for software-implemented coherence
schemes.

We extended the reaching definition analysis algo-
rithm in Section 3.2 to deal with array sections. We
denote a section of array A as A[lb : ub], where the
lower bound of the section is lb and the upper bound
is ub. Array section analysis algorithms are similar to
their sequential counterpart, except for the way to deal
with OpenMP constructs. For example, we compute
array sections defined in a parallel loop as follows:

1. Compute array elements defined in the loop body.
In this step, the loop counter of the parallel loop
can appear in the array bounds. Other variables
appearing in the array bounds must be loop in-
variant.

2. At the barrier synchronization immediately suc-
ceeding the parallel loop, replace the loop counter
in the array bounds with the loop bound, thereby
extending an access to an array element to an ac-
cess to an array section. Before that barrier, it is
not guaranteeded that all definitions in the loop
are observable by all thread.

If precise information cannot be computed, we can ap-
proximate it in a conservative manner. All definitions
in a parallel loop reach successive memory synchro-
nization points, unless they are killed by intervening
definitions of that array. Similarly, all uses in a parallel
loop are exposed to previous memory synchronization
points, unless they are killed by intervening definitions
of that array.

The array sections computed for each parallel and
serial loop are propagated over a parallel flow graph
and Def-Use chains are computed for the arrays. Cross-
loop data dependence analysis is then performed for
each Def-Use pair.

Cross-loop data dependence analysis for parallel
loops is performed in a manner similar to that for se-
quential loops [28]. First, the loop bounds are adjusted
so that both loops have identical bounds. The cross-
loop dependence distance from the subscript expres-
sions is then computed.

We can find possible inter-thread data dependence
from the cross-loop data dependence, because the
cross-loop data dependence exposes inter-iteration data
dependence and thus we can find possible data depen-
dence between chunks. In any scheduling policy, only
array elements that have inter-chunk data dependence
cause inter-thread data dependence. Moreover, inter-
thread data dependence can be completely computed at
compile-time if the scheduling policy is static. In
this way, we find data sharing patterns in arrays and use
that information for optimization.
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Fig. 3. The compiler-directed software DSM system.

4. Optimization in a compiler-directed software
DSM

4.1. System overview

We are developing a compiler-directed software
dstributed shared memory system (CD-SDSM) for
OpenMP [20]. The CD-SDSM transparently executes
OpenMP programs on a cluster of SMPs. Since fine-
grain coherence control is performed by software, the
compiler can optimize coherence operations by using
source-level information. Such optimization is crucial
to obtaining good performance on such systems.

Our CD-SDSM consists of an OpenMP compiler and
a runtime library. Figure 3 depicts components of the
CD-SDSM. The compiler translates OpenMP programs
into multi-threaded C programs with runtime library
calls. The generated C programs are compiled by a
native C compiler and linked with our runtime library
and others. Generated executable code is executed on
each SMP node in an SPMD fashion. A part of the
address space in each process running on SMP nodes
is virtually shared between nodes, and the coherence of
the shared space is maintained by software. The shared
space is divided into 64-byte segments called lines, and
these lines are the units of coherence control. In naive
instrumentation, the compiler insert coherence control
codes (check codes) for each shared data access. The
compiler optimizes these codes by using source-level
information so as to reduce the coherence overhead. In
the rest of this section, we describe optimizations for
our CD-SDSM. These techniques can more or less be
applied to other platforms such as SMPs, CC-NUMAs,
and page-based software DSMs.

4.2. Coherence optimization

Coherence overhead is a serious problem for soft-
ware DSMs. The memory synchronization analysis
described above finds minimal synchronization opera-
tions for correct execution. Therefore, we flush shared
variables at each synchronization point only if that data
needs to be synchronized at that point. This optimiza-
tion greatly reduces the coherence overhead for implicit
flush operations. We also optimize coherence opera-
tions for arrays according to their sharing patterns.

We will explain coherence optimization by using
the example OpenMP program shown in Fig. 4. This
program is a stencil code that solves Laplace equations
by an iterative method. Three variables are shared
across threads in this program. Arrays u and uu are
two-dimensional arrays and most of their elements are
modified and read in each iteration of the outermost
loop. Scalar variable err holds the value of the norm.

Figure 5 shows the translated code fragment of the
first parallel loop in the program shown in Fig. 4.
This code was naively translated and check codes
were inserted into each shared data access. Function
check before read() checks the status flags of the

lines to be accessed and updates the lines if they hold
stale values. Function check before write() is
similar except that a line is not updated if the entire line
is to be modified. Function check after write()
writes modified data back to the home node and in-
validates copies on other nodes. These three check
codes are basic ones; more sophisticated check codes
are available for optimizations.

In this non-optimized code, the execution overhead
of the check codes is very large, and single thread exe-
cution is ten times or more slower than serial execution.
Therefore, optimization of check codes is crucial for
obtaining good performance.

Figure 6 shows the another translated code fragment
in which optimizations without parallel dataflow anal-
ysis are performed. In this case, the check code for
a loop invariant variable n is hoisted out of the loop,
and check codes for consecutive data are merged into a
check code for a larger region.

Parallel dataflow analysis enables further optimiza-
tion. Figure 7 shows the reference pattern of array uu
in the case of four thread execution. We also assume
that the value of variable n is 100. The figure shows
references for each array section accessed by thread T2.
For example, array section uu[25][1 : 100] is modified
and read by thread T1 and read by thread T2. Threads
T3 and T4 do not access this section. Therefore, the
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double u[2048+2][2048+2], uu[2048+2][2048+2], err;
int n;
#pragma omp parallel shared(u,uu,err,n)
{
  int i,j,k;
  double err_local,tmp;
  do {
#pragma omp for nowait
    for (i=1;i<=n;i++) 
      for (j=1;j<=n;j++)
        uu[i][j]=u[i][j];
    err_local=0.0;
#pragma omp single
    err=0.0;
    /* implicit barrier */
#pragma omp for nowait
    for (i=1;i<=n;i++)
      for (j=1;j<=n;j++) {
        u[i][j]=(uu[i-1][j]+uu[i+1][j]+uu[i][j-1]+uu[i][j+1])/4.0;
        tmp=fabs(u[i][j]-uu[i][j]);
        if (tmp>err_local) err_local=tmp;
      }
#pragma omp critical
    /* implicit flush */
    if (err_local>err) err=err_local;
    /* implicit flush */
#pragma omp barrier
  } while (err>1.0e-5);
}

first parallel loop

Fig. 4. A Laplace equation solver.

for (i=lb;i<=ub;i++) [
  // update lines if they are stale

  _check_before_read(&n,sizeof(int));

  for (j=1;j<=n;j++)

    // update lines if they are stale

    _check_before_read(&u[i][j], sizeof(double));

    _check_before_write(&uu[i][j], sizeof(double));

    uu[i][j] = u[i][j];

    // write back to the home and invalidate other copies

    _check_after_write(&uu[i][j], sizeof(double));

  }

 _barrier();

}

Fig. 5. Non-optimized code.

coherence of this section has to be maintained only
for T1 and T2. Moreover, reaching definition anal-
ysis for the array sections showed that array section
uu[25][1 : 100] is modified by thread T1 in the first
parallel loop and used by threads T1 and T2 in the
second parallel loop. This implies that communication
required for coherency occurs at the end of the first
parallel loop and that the needed operation is a copy
from T1 to T2. Using such information, the compiler
can generate explicit writer-initiated communication to
update copies on other nodes.

Figure 8 shows fully optimized code for the same
parallel loop. In it, explicit remote copies are gener-
ated for the accesses to array uu. Since our platform is

// check for a loop invariant variable
_check_before_read(&n, sizeof(int));

for (i=lb; i<=ub; i++) {

  // merged check codes

  _check_before_read(&u[i][1], sizeof(double)*n);

  _check_before_write(&uu[i][1], sizeof(double)*n);

  for (j=1; j<=n; j++)

    uu[i][j] = u[i][j];

  _check_after_write(&uu[i][1], sizeof(double)*n);

}

_barrier();

Fig. 6. Optimized code without PDA.

an SMP cluster, and threads running on the same node
have consecutive thread numbers, adjacent threads may
be executed on the same node. Therefore explicit re-



138 S. Satoh et al. / Compiler optimization techniques for OpenMP programs
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Fig. 7. Reference pattern of array uu.

for (i=lb;i<=ub;i++)
  for (j=1;j<=n;j++)

    uu[i][j] = u[i][j];

// update the copy on the previous node

if (_is_first_thread_on_node() && _my_node_no > 0) 

  _update(&uu[lb][1], sizeof(double)*n, _my_node_no-1);

// udpate the copy on the next node

if (_is_last_thread_on_node() && _my_node_no < _n_nodes-1)

  _update(&uu[ub][1], sizeof(double)*n, _my_node_no+1);

_barrier();

Fig. 8. Optimized code with PDA.

mote copy is performed only when the reader thread is
executed on an adjacent node.

For accesses to array u, no check codes are inserted
because each element of array u is accessed by only
a single thread within the entire parallel region. In
other words, elements of array u are not shared between
threads.

In this way, we can optimize coherence opera-
tions aggressively using parallel dataflow informa-
tion. Though this kind of optimization is specific to
compiler-directed software DSMs, optimizations pre-
sented in the next two sections are beneficial on many
platforms.

4.3. Redundant barrier removal

Compiler optimization to find and remove redundant
barriers is beneficial for several reasons:

– Barrier synchronization imposes a large overhead
on programs that have poor load balance.

– Coherence overhead associated with barrier syn-
chronization on software DSMs is much larger
than that on SMPs and hardware DSMs.

– Coarse-grain parallelization is better than paral-
lelizing each loop separately using theparallel
for directive. When a compiler merges multi-
ple parallel regions into one larger parallel region,
there will be many redundant barriers.

The memory synchronization analysis presented in
Section 3.3 can be used to detect redundant barriers. If
WSync(S) ∩ RSync(S) = ∅ for barrier S, no inter-
thread flow dependencies require barrier synchroniza-
tion at S, because if there is an inter-thread flow de-
pendence across S for variable v, the writer of v must
flush v at the synchronization point preceding barrier S
and the reader of v must flush v at the synchronization
point following barrier S. Possible inter-thread output
dependence and anti dependence can also be found us-
ing the sets computed in the memory synchronization
analysis.

Figure 9 shows an example of redundant barrier re-
moval. Variables a, b, and c in the code fragment
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#pragma omp for
  for (i=0;i<n;i++) {
    a[i] = ...;
  } // barrier S1

#pragma omp single
{
  for (i=0;i<n;i++)
    ... = a[i];
  b = ...;
} // barrier S2

#pragma omp for
  for (i=0;i<n;i++) {
    c[i] = ...;
  } // barrier S3
  ... = b;

WSync RSync

{c[0:n-1]} {b}

{b} { }

{a[0:n-1]} {a[0:n-1]}

S3

S2

S1

barrier

Fig. 9. Redundant barrier removal.

0

10

20

30

40

50

60

1x1 1x2 1x4 2x1 2x2 2x4 4x1 4x2 4x4 8x1 8x2 8x4

N ode s  x T hre a ds

E
xe

c.
 T

im
e(

se
c)

S e r ia l w /o P D A w / P D A

Fig. 10. Execution times of Laplace.

are shared variables. In this fragment, implicit bar-
rier S2 is not required for inter-thread flow dependence
because WSync(S2) = {b} and RSync(S2) = ∅,
so WSync(S2) ∩ RSync(S2) = ∅. There are no
output or anti dependencies across barrier S2 be-
cause RDefGen(S2) ∩ RDefGen(S3) = ∅ and
RDefGen(S3)∩RUseGen(S1) = ∅. Therefore, the
removal of barrier S2 does not introduce race condi-
tions or other unexpected flow of data.

In practice, redundant barrier removal should be ef-
fective in the following cases:

– in combination with optimizations to merge mul-
tiple parallel regions into a large single parallel
region,

– in orphaned barrier directives where redundancy
depends on the calling context of the function.

4.4. Privatization of dynamically allocated objects

The OpenMP specification does not support priva-
tization or selective flush operations for dynamically
allocated objects. This leads to large redundant coher-
ence overheads for such objects. We can find dynam-
ically allocated private data and optimize the program
as follows. If no shared pointers point to a dynamically
allocated data, that data cannot be accessed by threads
other than the thread in which that data is allocated. We
allocate such objects in a private space, e.g., a private
heap or a stack, and remove any coherence operations
for such objects. This optimization improves not only
the coherence overheads but also the data locality.

4.5. Performance evaluation

We evaluated the effectiveness of compiler optimiza-
tions for our compiler-directed software DSM by using



140 S. Satoh et al. / Compiler optimization techniques for OpenMP programs

Table 1
Execution times and speedups of the Laplace program

#Nodes without PDA with PDA
×#CPUs Time (sec.) Speedup Time (sec.) Speedup

Serial 40.58 1.00 – –
1 × 1 48.53 0.84 40.53 1.00
1 × 2 29.27 1.39 25.80 1.57
1 × 4 20.10 2.02 18.51 2.19
2 × 1 46.20 0.88 20.22 2.01
2 × 2 32.66 1.24 12.94 3.14
2 × 4 26.06 1.56 9.88 4.11
4 × 1 37.96 1.07 10.13 4.01
4 × 2 31.50 1.29 8.44 4.81
4 × 4 25.48 1.59 6.71 6.05
8 × 1 37.80 1.07 6.27 6.47
8 × 2 35.72 1.14 6.41 6.33
8 × 4 33.59 1.21 6.60 6.15

two data-parallel applications with different memory
access characteristics. Since these programs does not
have redundant barriers or dynamically allocated pri-
vate data, we evaluated effectiveness of coherence opti-
mizations solely. We used prototype compiler and run-
time system for experiments, and a part of optimization
is performed by hand.

We used a 200-MHz PentiumPro-based SMP cluster,
COMPaS [19]. It has eight 4-way SMP nodes, con-
nected via a Myrinet network interface. We used the
Solaris 2.5.1 operating system and the Solaris thread
library for intra-node parallelism. For communication
via Myrinet, we used the NICAM communication li-
brary.

The first example, an explicit Laplace equation
solver, is the stencil code presented in Fig. 4. Arrays
uu and u are both 2048 × 2048 in this experiment,
and it takes 20 iterations of the outer-most loop. Fig-
ure 10 shows the execution times for different numbers
of nodes and for different numbers of threads on each
node. Table 1 shows execution times and speedup.

In the Laplace program, most shared data are mod-
ified and read in each iteration of the outer-most loop.
Therefore, performance is unacceptable due to coher-
ence overhead when all shared data are kept coherent
at each synchronization point. However, our optimiza-
tion using parallel dataflow analysis removes the coher-
ence operations for most shared data. The differences
between serial execution time and single-thread execu-
tion times represents the execution overhead of check
codes. By using PDA, that overhead is greatly reduced
because check codes for non-shared data are removed.
Optimization using PDA also reduces communication
overhead when multiple nodes are used. When the case
of without PDA, redundant update of shared lines oc-
cured frequently and most of them are removed when

Table 2
Execution times and speedups of the JOR program

#Nodes without PDA with PDA
×#CPUs Time (sec.) Speedup Time (sec.) Speedup

Serial 18.72 1.00 – –
1 × 1 20.59 0.91 18.80 1.00
1 × 2 11.80 1.59 10.86 1.72
1 × 4 6.08 3.08 5.64 3.32
2 × 1 10.36 1.81 9.47 1.98
2 × 2 6.06 3.09 5.52 3.39
2 × 4 3.25 5.76 2.98 6.28
4 × 1 5.27 3.55 4.80 3.90
4 × 2 3.24 5.78 2.86 6.55
4 × 4 2.17 8.63 1.73 10.82
8 × 1 2.83 6.61 2.55 7.34
8 × 2 2.53 7.40 1.72 10.88
8 × 4 2.39 7.83 1.89 9.90

the case of with PDA. It should be noted that we had
poor scalability within our SMP nodes due to the small
bandwidth of the shared bus and poor performance of
barrier and lock operations limited the performance
when larger number of nodes are used.

The second example is a Jacobi overrelaxation solver
(JOR). This program solves linear equations Ax = b
by an iterative method. Matrix A is 4096 × 4096 and
it iterates eleven times. The structure of the program
is similar to that of the Laplace program, except that
it computes the value of vector x rather than of two-
dimensional matrix u. Therefore, most shared data,
matrix A and vector b, are not modified in the paral-
lel region. This means that the volume of coherence-
induced communications is much smaller even if the
program was optimized without PDA.

Figure 11 and Table 2 shows the execution times and
speedup of the JOR program. In this case, the per-
formance improvement due to the aggressive optimiza-
tions using parallel dataflow analysis was mainly the
reduction of the execution overhead of the check codes.
It had a smaller impact on performance than reducing
the communication volume. Similar to Laplace, we
had poor performance on 8-node configuration due to
poor performance of barrier and lock operations.

5. Related work

Research on analyses or optimizations of OpenMP
programs is still rare, but there are several articles on
other explicit parallel programs.

General frameworks for analyzing explicit parallel
programs were presented by Chow and Harrison [2],
Grunwald and Srinivasan [5], and Ferrante et al. [4].
In their work, cobegin/coend parallelism [2], event
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synchronizations [5], and doall loops [4] are consid-
ered. In addition, Grunwald and Srinivasan [5] point
out the advantages of relaxed memory consistency for
compiler optimizations.

Static single assignment (SSA) form for parallel pro-
grams was proposed by Srinivasan et al. [25]. Novillo
et al. [16] and Lee et al. [15] presented optimization
algorithms using concurrent SSA form. Collard [3]
proposed array SSA form for parallel programs.

Knoop and Steffen [10] presented a code motion al-
gorithm for cobegin/coend parallel programs. Kr-
ishnamurthy and Yelick [13] proposed communication
optimization for SPMD programs with shared vari-
ables. Pugh and Rosser [17] presented communication
optimization within a single parallel loop.

Previous work on analyses and optimizations for ex-
plicit parallel programs dealt with programs whose par-
allelization constructs or semantics are different from
those of the OpenMP API. The differences in the se-
mantics of the parallel loops and memory consistency
model make the algorithms quite different.

Chiueh and Verma [1], Scales et al. [22], Schoinas
et al. [24], and Inagaki et al. [9] presented software
DSMs that rely on aggressive compiler optimizations.
However, the compiler optimizations in these papers
are limited to optimizations within the interval between
adjacent synchronization points and thus cannot opti-
mize across threads, as our method can. Hu et al. [8],
Scherer et al. [23], and Sato et al. [21] described page-
based software DSMs for OpenMP but did not mention
compiler optimizations.

Tseng [27] and Han and Tseng [6] demonstrated the
effectiveness of compiler optimizations for DSMs by
eliminating or lessening the control synchronizations.
Koufaty and Torrellas [12] described compiler opti-
mizations for data forwarding. We can perform simi-
lar optimizations for OpenMP programs by using our
analysis techniques.

6. Conclusion

We presented parallel dataflow analysis and opti-
mization algorithms for OpenMP programs. We de-
signed an internal representation that represents both
intra- and inter-thread flows of data. The semantics of
OpenMP directives and clauses were considered when
constructing transfer functions of dataflow equations.
Using such a dataflow analysis framework, we can ana-
lyze dataflow information across multiple threads. Op-
timization techniques using parallel dataflow informa-
tion were originally designed for a compiler-directed
software DSM system, but they are also applicable to
other OpenMP implementations. Preliminary perfor-
mance results on a compiler-directed software DSM
show that our coherence optimization greatly impacts
the execution performance of shared-write intensive
programs.

We are implementing the algorithms described in this
paper in an OpenMP compiler [18], and we will evalu-
ate the effectiveness of our optimization techniques by
using more applications.
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