
Irregular Coarse-Grain Data Parallelism
under LPARX

SCOTI R. KOHN 1 AND SCOTT B. BADEN2

1Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0340
2Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093-0114

ABSTRACT

LPARX is a software development tool for implementing dynamic, irregular scientific
applications, such as multilevel finite difference and particle methods, on high-perfor­
mance multiple instruction multiple data (MIMD) parallel architectures. It supports
coarse-grain data parallelism and gives the application complete control over specifying
arbitrary block decompositions. LPARX provides structural abstraction, representing
data decompositions as first-class objects that can be manipulated and modified at run­
time. LPARX, implemented as a C++ class library, is currently running on diverse MIMD
platforms, including the Intel Paragon, Cray C-90, IBM SP2, and networks of workstations
running under PVM. Software may be developed and debugged on a single-processor
workstation. © 1996 John Wiley & Sons, Inc.

1 INTRODUCTION

An outstanding problem in scientific computation
is how to manage the complexity of converting
mathematical descriptions of dynamic, irregular
numerical algorithms into high-performance ap­
plications software. Nonuniform applications,
such as multilevel adaptive grid methods and par­
ticle methods, are particularly challenging. Cur­
rent parallel computers are much more difficult
to use than current vector machines because the
programmer must manage computational re­
sources at a very low level. Parallel compiler tech-

Received Februarv 1995
Revised August 1995

© 1996 John Wiley & Sons. Inc.
Scientific Programming. Vol. 5. pp. 185-201 (1996)

CCC 1058-9244/96/030185-17

nology does not yet afford the convenience ex­
pected by the user community [13]. While this
situation will improve with time, adequate run­
time support is essential in applications with dy­
namic, data-dependent computational structures.

We have developed the LP ARX parallel pro­
gramming system [24, 25] to simplify the develop­
ment of dynamic, nonuniform scientific computa­
tions on high-performance parallel architectures.
Such software support is essential to developing
high-performance, portable, parallel applications
software. LPARX is a domain-specific, coarse­
grain data parallel programming model that pro­
vides run-time support for dynamic, block-irregu­
lar data decompositions. General irregular block
decompositions are not currently supported by
compiled languages such as High Performance
Fortran (HPF) [21], Fortran D [19], Vienna For­
tran [12], and Fortran 90D [31]. They arise in
two important classes of applications:

186 KOHN Al\'D BADEI\0

1. Adaptive multilevel finite difference meth­
ods [8, 9, 27] that represent refinement re­
gions using block-irregular data structures

2. Parallel computations that require an irregu­
lar data decomposition [7] to balance non­
uniform workloads across parallel proces­
sors, such as particle methods [23]

LPARX hides many of the low-level details, such
as interprocessor communication, involved in
managing complicated dynamic data structures on
parallel computers. It provides the programmer
with high-level coordination facilities to manage
data locality within the memory hierarchy to mini­
mize communication costs.

LPARX should not be thought of as a "lan­
guage,'' but rather as a set of data distribution and
parallel coordination abstractions which may be
implemented in a library (as we have done) or
added to a language. The design goals of LPARX
are as follows:

1. To express irregular data decompositions,
layouts, and data dependencies at run-time
using high-level, intuitive abstractions.

2. To require only basic message-passing sup­
port and give portable performance across
diverse parallel architectures.

3. To separate parallel control and communi­
cation from numerical computation and to
allow the reuse of highly optimized numeri­
cal kernels from existing serial codes with
minimal change.

4. To permit the user to develop and debug
software on a single-processor workstation.

LPARX has been implemented as a C++ class
library and does not require special compiler sup­
port. Applications may invoke subroutines written
in languages other than C++, such as Cor Fortran.
The implementation assumes only basic message­
passing support and may run on any multiple in­
struction multiple data (MIMD) machine. LPARX
is currently running on the Intel Paragon, IBM SP2,
Cray C-90, single processor workstations, and net­
works of workstations under PVM [30].

This article is organized as follows. Section 2
provides an overview of the LP ARX programming
abstractions. Section 3 describes in detail the par­
allelization of a simple application, Jacobi relax­
ation. The parallelization of a particle calculation
is discussed in Section 4. (Structured adaptive
mesh methods are beyond the scope of this article
and are described elsewhere [24, 26].) Section 5

:' V-V-"V' ':Partitioning

..----' '"', j_- _ -t- ___ ,' Routines

LPARX

Serial Numerical Kernels

FIGURE 1 The logical organization of an LPARX ap­
plication consists of three components: partitioning rou­
tines. LPARX code, and serial numerical kernels.

presents computational results. Finally, Section 6
discusses related work and Section 7 summarizes
the contributions of LPARX.

2 OVERVIEW

LPARX provides high-level abstractions for repre­
senting and manipulating irregular block-struc­
tured data on .\11MD distributed memorv architec­
tures. In the following sections, we give an overview
of LP ARX' s facilities. We begin with a description
of the philosophy behind the LPARX model. We
introduce LPARX's data types and its representa­
tion of irregular block decompositions and present
LPARX's underlying coarse-grain data parallel
programming model. Finally, we describe the re­
gion calculus, which expresses data decomposi­
tions and dependencies in geometric terms.

2.1 Philosophy

The LP ARX parallel programming model sepa­
rates the expression of data decomposition, com­
munication, and parallel execution from numeri­
cal computation. As shown in Figure 1, LPARX
applications are logically organized into three sep­
arate pieces: partitioners, LPARX code, and serial
numerical kernels.

The LP ARX layer provides facilities for the
coordination and control of parallel execution.
LPARX is a coarse-grain data parallel program­
ming model; it gives the illusion of a single global
address space and a single logical thread of con­
trol. On a YIIMD parallel computer, the LPARX
run-time system executes in single program multi­
ple data (SPMD) mode.

Computations are divided into a relatively small
number of coarse-grain pieces; each work unit rep­
resents a substantial computation executing on a

LPARX SCPPORTS COARSE-GRAIN PARALLELISM 187

single logical processing node. LPARX does not
define what constitutes a single logical node: a
node may correspond to a single processor, a pro­
cessing cluster. or a processor subset. Parallel exe­
cution is expressed using a coarse-grain loop: each
iteration of the loop iterates as if on its own proces­
sor. The computation for each piece is performed
by a numerical kemel, and the computations pro­
ceed independently of one another. The numerical
kemels may be written in a language other than
C++, such as C, Fortran, or HPF. The advantage
of this approach is that heavily optimized numeri­
cal routines need not be reimplemented to parallel­
ize an application. Furthermore. numerical code
can be optimized for a processing node without
regard to the higher level parallelization. Kemels
may be tuned to take advantage of low-level node
characteristics, such as vector units, cache sizes.
or multiple processors.

An important part of the LP ARX philosophy
is that data partitioning for dynamic, nonuniform
scientific computations is extremely problem de­
pendent and therefore is best left to the applica­
tion. No specific data decomposition strategies
have been built into the LPARX model. Rather,
all data decomposition in LP ARX is performed at
run-time under the direct control of the applica­
tion. LPARX gives the application a uniform
framework for representing and manipulating
block-irregular decompositions. Although it pro­
vides a standard library of decomposition routines.
the programmer is free to write others.

Our approach to data decomposition differs
from most parallel languages, such as HPF [21],
which require the programmer to choose from a
small number of predefined decomposition meth­
ods. Vienna Fortran [12] provides some facilities
for irregular user-defined data decompositions but
limits them to tensor products of irregular 1d de­
composltlons. Block-irregular decompositions
may be constructed using the pointwise mapping
arrays of Fortran D [19]; however, pointwise de­
compositions are inappropriate and unnatural for
calculations which exhibit block structures. Be­
cause pointwise decompositions have no knowl­
edge of the block structure, mapping information
must be maintained for each individual array ele­
ment (instead of for each block) at a substantial
cost in memory and communication overheads.

Once a decomposition has been specified, the
details of the data partitioning are hidden from the
application. The programmer can change parti­
tioning strategies without affecting the correctness
of the underlying code. Thus, LPARX views parti-

tioners as interchangeable, and the application
may change decomposition strategies by simply
invoking a different partitioning routine.

At the core of LP ARX is the concept of struc­
tural abstraction. Structural abstraction enables
an application to express the logical structure of
data and its decomposition across processors as
first-class, language-level objects. The key idea is
that the structure of the data-the "floorplan"
describing how the data are decomposed and
where the data are located-is represented and
manipulated separately from the data. LPARX ex­
presses operations on data decompositions and
communication using intuitive geometric opera­
tions, such as intersection, instead of explicit in­
dexing. lnterprocessor communication is hidden
by the run-time system, and the application is
completely unaware of low-level details. We note
that although the LP ARX implementation is cur­
rently limited to representing irregular, block­
structured decompositions, the concept of struc­
tural abstraction is general and extends to other
classes of applications, such as unstructured finite
element meshes [4].

2.2 LPARX Data Types

LPARX provides the following three abstract
data types:

1. Region: an object representing a subset of
array index space

2. Grid: a dynamic array instantiated over a
Region

3. XArray: a dynamic array of coarse-grain
elements, Grids, distributed over pro­
cessors

The Region provides the basis for structural
abstraction. Ann -dimensional Region represents
a subset of Z", the space of n -dimensional integer
vectors. The Region does not contain data ele­
ments. as an array, but rather represents a portion
of index space. In the current implementation of
LPARX, we restrict Regions to be rectangular;
however, the concepts described here apply to ar­
bitrary subsets of Z" [4]. Although there is no iden­
tical construct in Fortran or C, the Region is re­
lated to array section specifiers found in Fortran-
90. Unlike Fortran-90 array section specifiers, the
Region is a first-class object and may be assigned
and manipulated at run-time. The concept of first­
class array section objects was introduced in the
FIDIL programming language [22].

188 KOHN A:'\ID BADE!'>

The Grid is a dynamic array defined over an
arbitrary rectangular index set specified by aRe­
gion. The Grid is similar to an HPF allocatable
array. Each Grid remembers its associated Re­
gion, which can be queried, a convenience that
greatly reduces bookkeeping for dynamically de­
fined Grids. (Compare this to C, which requires
the programmer to keep track of bounds for dy­
namically allocated array storage.) All Grid ele­
ments must have the same type: they may be inte­
gers, floating point numbers, or any user-defined
type or class. For example, in addition to repre­
senting a finite difference mesh of floating point
numbers, the Grid may also be used to implement
the spatial data structures [23] common in particle
calculations. Grids may be manipulated using
high-level block-copy operations, described in
Section 2. 4.

LP ARX is targeted toward applications with ir­
regular, block structures. To support such struc­
tures, it provides a special array-the XArray­
for organizing a dynamic collection of Grids. Each
Grid in an XArray is arbitrarily assigned to a
single processor; individual Grids are not subdi­
vided across processors. The XArray can be
viewed as a coarse-grain analogue of a Fortran D
array decomposed via mapping arrays, except that
XArray elements are themselves arrays (Grids).

The Grids in an XArray may have different
origins, sizes, and index sets: but all Grids must
have the same spatial dimension. When creating
anXArray, the user provides an array of Regions
representing the structure of the Grids and a
corresponding array of processor assignments:
LPARX provides a default assignment of Grids
to processors if none is given. An XArray is in­
tended to implement coarse-grain irregular de­
compositions; thus, each processor is typically a,;­
signed only a few Grids.

LPARX defines a coarse-grain looping con­
struct-£ or _all-which iterates concurrently
over the Grids of an XArray. The semantics of
for _all are similar to HPF' s INDEPENDENT for­
all [21 J; each loop iteration is executed as if an
atomic operation. In writing a for _all loop, the
programmer is unaware of the assignment of
Grids to processors-each XArray element is
treated as if it were assigned to its own processor­
and the LPARX run-time system correctly man­
ages the parallelism.

The XArray of Grid structure provides a com­
mon framework for implementing various block­
irregular decompositions of data. This framework
is used by the load-balancing utilities found in

LPARX's standard library and also in application­
specific routines, such as a grid generator for an
adaptive mesh refinement calculation. Figure 2
shows decompositions arising in two different ap­
plications. In each case, the data have been di­
vided into Grids, each representing a different
portion of the computational domain, which have
been assigned to an XArr ay. The following section
provides more detail about how XArrays are used
to organize a parallel computation.

2.3 Coarse-Grain Parallel Computation

Recall that an LPARX application consists of three
components: partitioning routines, LP ARX code,
and serial numerical kemels. Here we show how
these pieces work together in an application.
LPARX provides the programmer with a simple
model of coarse-grain parallel computation by

1. Decomposing the computational structure
into an array of Regions.

2. Specifying an assignment of each Region in
(1) to a processor.

3. Creating an XArray of Grid representing
the decomposition of space generated in (1)
and (2).

4. Satisfying data dependencies between
Grids in the XArray using LPARX's com­
munication facilities (described in the fol­
lowing section).

o. Perform calculations on the Grids in the
XArray in parallel using the coarse-grain
for_allloop.

The decomposition in (1) may be managed ex­
plicitly by the application, such as in generating
refinement regions. or by load balancing utilities
that implement partitioning strategies. LPARX has
a standard library of partitioners that implement
recursive coordinate bisection [7] and uniform
block partitioning.

The assignment of Regions to processors in
(2) provides applications the flexibility to delegate
work to processors. In generaL this information
will be returned bv the routine which renders the
partitions. This step may be omitted. in which case
LPARX generates a default assignment.

Using the partitioning information and the pro­
cessor assignment information. the application in­
stantiates in (3) an XArray of Grid implementing
the data decomposition. LPARX creates Grids
based on the supplied Region information and
assigns them to the appropriate processors.

LPARX SCPPORTS COARSE-GRAIN PARALLELISM 189

proceaorl

XArrays

FIGURE 2 Two example,; of an XArray of Grid data structure. The recursive bisection decomposition on the left
is usually employed in particle calculations. The structure in the middle is typical of a single-level mesh refinement
in adaptive mesh methods. On the right, we show one possible mapping of XArray elements to processors. ~ote
that the XArray is a container for the Grids and its elements arc Grids, not pointers.

After the decomposition and allocation of data,
applications typically alternate between steps
(4) and (5). In (4), data dependencies between
the Grids in the XArray are satisfied using
LPARX's region calculus and copy operations,
described in the following section. After commu­
nication completes, the application computes in
parallel on the Grids in the XArr ay using a
for_all loop. For each Grid, a numerical rou­
tine is called to perform the computation; the
computation executes on a single logical node
which may actually consist of many physical
processors. The execution of for_all assumes
the Grids are decoupled: they are processed
independently and asynchronously.

2.4 The Region Calculus

LP ARX defines a region calculus which enables
the programmer to manipulate index sets (Re-

lt*S

g ions) in high -level geometric terms. In this sec­
tion, we provide a brief overview of the most im­
portant region calculus operations-intersection
and grow-and describe a high-level block copy
operation called copy-on-intersect.

The intersection of two Regions is simply the
set of points which the two have in common. The
dark shaded area in Figure 3a represents the inter­
section of Regions RandS. Regions are closed
under intersection-the intersection of two Re­
gions is always another Region. If two Regions
do not overlap, the resulting intersection is said to
be empty.

Grow () surrounds a Region with a boundary
layer of a specified width. It takes two argu­
ments-a Region and an integer-and returns
a new Region which has been extended in each
coordinate direction by the specified amount.
Figure 3b shows the Region resulting from
Grow(R, 1).

21--1-+~*
1~-L~~~-L~~~-L~

4 5 17

(a) (b) (c)

FIGURE 3 (a) The dark shaded area is intersection of Regions Rand S, denoted by R * S. (b) An example of
using Grow () to add a boundary layer to a Region. (e) L sing Grow () and intersection to caleulate data dependencies
for a ghost cell region.

190 KOHN A]'I;D BADEN

Copy-on-intersect coordinates data motion be­
tween two Grids. Here we represent copy-on­
intersect with¢::. The statement G ¢:: H, where G

and Hare Grids, copies data from H into G where
the Regions of G and H intersect. Another form,
G ¢:: H on R, where R is a Region, limits the copy
to the index space in which G, H, and R intersect.

We now show how these simple but powerful
operations are used to calculate data dependen­
cies. One common communication operation in
scientific codes is the transmission of data to fill
ghost cells, boundary elements added to a proces­
sor's local data partition. The region calculus rep­
resents the processor's local partition as a Region.
We Grow() the Region to define ghost cells and
then use intersection to calculate the Region of
data required from another processor. Finally, a
block copy updates the ghost region's data values,
as shown in Figure 3c. Recall that copy-on-inter­
sect copies values that lie in the intersection of the
ghost region and interacting blocks. The calcula­
tion of data dependencies involving no explicit
computations involving subscripts. The region cal­
culus is independent of the Grid dimension, and
the same operations work for any problem dimen­
sion. All bookkeeping details and interprocessor
communication are managed by the run-time sys­
tem and are completely hidden from the user.

3 A SIMPLE PROGRAMMING EXAMPLE

In this section, we illustrate how to use LP ARX to
parallelize a simple application, Jacobi relaxation
on a rectangular domain. For concreteness, we
will use C++ notation. Although this particular
computation is neither irregular not dynamic, it is
easy to explain, and the techniques used to paral­
lelize it under LP ARX generalize to far more elabo­
rate irregular computations. We will discuss these
in Section 3. 5.

3.1 Problem Description

Consider the Laplace equation in two dimensions:

f:..u = 0 inn

subject to Dirichlet boundary conditions on an,
the boundary of n:

u = f on an,

where f and u are real-valued functions of two
variables and the domain n is a rectangle. we

(a) (b)

FIGURE 4 (aj A finite difference mesh defined over
the 2d Region [0: M+1, 0: N+1] with interior
[1: M, 1: N] . (b) A blockwise decomposition of the com­
putational space into 24 subblocks. The lightly shaded
area shows the ghost region for a typical partition.

discretize the computation using the method of
finite differences, solving a set of discrete equations
defined on a regularly spaced mesh of (M + 2) X

(N + 2) points in Z 2 .

The boundary points of the mesh, which contain
the Dirichlet boundary conditions for the problem,
are located along x-coordinates between 0 and
M + 1 and along y-coordinates between 0 and N
+ 1, as shown in Figure 4a. We number the interior
points of the mesh from 1 toM in the x-coordinate
and from 1 toN in they-coordinate. This interior
region is defined as follows:

Region2 Interior(l,l,M,N)

LPARX strongly types all Regions by the number
of spatial dimensions; thus, Region2 represents
a 2d Region, Region3 a 3d Region, and so on.

To parallelize Jacobi relaxation, we decompose
the computational domain into subdomains and
assign each subdomain to a processor. A standard
blockwise decomposition for 24 processors is
shown in Figure 4b. Each subdomain is aug­
mented with a ghost cell region, which locally
caches either interior data from adjoining subdo­
mains or Dirichlet boundary conditions. We re­
fresh the ghost cell regions before computing on
each subdomain. Each processor then updates the
solution for the subdomains it owns; this computa­
tion proceeds in parallel and each processor per­
forms its calculations independently of the others.

3.2 Decomposing the Problem Domain

LPARX does not predefine specific data-partition­
ing strategies; rather, data partitioning is under
the control of the application. One possible parti-

LPARX SCPPORTS COARSE-GRAil'< PARALLELISM 191

tioning which is defined in LP ARX' s partitioning
library is the uniform BLOCK decomposition em­
ployed by HPF. By convention, LP ARX expects
the partitioner to return an arrav ofRegi ons which
describe the uniform partitioning:

Region2 *Partition= Uniform(Interior, P)

The partitionerUniform takes two arguments: the
Region to he partitioned and the desired number
of suhdomains. usually the number of processors.
After determining the partitioning of space, we ex­
tend each subdomain with ghost cells. The exact
thickness of the ghost cell region depends on the
finite difference stencil employed in the finite dif­
ference scheme. We will use a five-point finite dif­
ference stencil to solve Laplace's equation: thus.
the ghost cell region is one cell thick. We apply the
grow () function to augment each sub domain of
Partition [) with a ghost region*:

Region2 *Ghosts = grow(Partition, P, 1)

The computational domain is now logically di­
vided into an array of 2d Regions called Ghosts.
We will allocate a 1d XArray of 2d Grids of
double to implement this data decomposition: the
kth Grid will be assigned to the kth processor. We
declare the XArray of Grids structure using:

XArrayl(Grid2(double)) U

and instantiate the storage using XAll oc () :

XAlloc(U, P, Ghosts)

XAlloc () takes three arguments: the XArray to
he allocated, the number of elements to be allo­
cated, and an array of Regions, one Region for
each element in theXArray. Note that all Grids in
anXArraymusthave the same type (e.g., double)
and dimension; of course, the Grids in anXArray
may he defined over different Regions.

When defining an XArray with XAlloc (),we
may optionally supply a processor assignment for
each XArray component. If no such processor as­
signment is specified, as in the code above, then
LPARX chooses a default mapping. To override
the default, we provide an array of integer proces-

* Grow () is overloaded in the obvious wav to handle arravs
of Regions. · ·

void main(const int argc, char ••argv)
{

II Initialize M, N, and h (not shown)

II Get the number of nodes (number of partitions)
const int P = mpNodes();

II Partition the computational space
Region2 Interior(l,l,M,N);
Region2 •Partition = Uniform(Interior, P);
Region2 •Ghosts = grow(Partition, P, 1);

II Allocate and initialize the data (not shown)
XArray1(Grid2(double)) U;
XAlloc(U, P, Ghosts);

II Relax until the solution has converged
do {

dU = relax(U, h);
} while (dU >Epsilon);

I I Exit program
}

FIGURE 5 LPARX code. which partitions the compu­
tational space. allocates tlw XArray of Grids struc­
ture and calls tht> Jacobi relaxation routine (describt>d
in Section 3.3).

sor identifiers, one for each XArray element, as
an optional fourth argument to XAlloc () :

XAlloc(U, P, Ghosts, Mapping)

Such a mapping may be used to better balance
workloads or to optimize interprocessor communi­
cation traffic for a particular hardware intercon­
nect topology.

After instantiating the XArray, we are ready to
compute. The main computational loop is as
follows:

do {
dU relax(U, h);

} while (dU > Epsilon) ;

where relax() is a subroutine which performs
communication and the relaxation computation,
his the spacing.of the finite difference mesh, dU is
the maximum change in magnitude of the solution
over all points in the interior of the computational
box, and Epsilon is a user-supplied convergence
con~ition. The LPARX code is summarized in Fig­
ure 0.

Note that we may change the data-partitioning
scheme at any time without affecting the correct­
ness of the code. For example, the "box-like" par­
titioning may he replaced with a strip decomposi-

192 KOHN AND BADEN

double relax(XArray1(Grid2(double))t U, const double h)
{

II Refresh the ghost cell regions
FillPatch(U);

II Compute in parallel over all subgrids
double dU z 0.0;
for_all_l(i, U)

Region2 inside= grow(U(i).region(), -1);
const Point2 nl ~ inside.lower();
const Point2 nh = inside.upper();
const double dE= smooth5(U(i).data(), nl, nh, th);
dU = MAX(dU, dE);

end_for_all

II Find the maximum change over all the processors
mpReduceMax(tdU);

return(rO);
}

FIGURE 6 The parallel Jacobi relaxation routine calls
FillPatch () and smoothS(), a computational kernel
written in Fortran.

tion or even a recursive bisection decomposition
simply by calling a different partitioner. No other
changes would need to be made. Furthermore, the
computational domain need not be restricted to a
rectangle; it may be an "L" -shaped region or. in
general, any irregular collection of blocks.

3.3 Relaxation

Function relax() performs the major tasks in
solving the Laplace equation: It invokes Fill­
Patch () to refresh the ghost cell regions and calls
the computational kernel, smooth5 () . The code
for relax() is shown in Figure 6.

The for _all loop in Figure 6 computes in par­
allel over the Grids of U. In LPARX C++ code,
looping constructs are typed by the dimension of
the arrays over which they iterate. Thus, the for_
all_l in re 1 ax () iterates using induction vari­
able i over the ld XArray U. (We typically drop
the dimension qualifier when discussing a looping
construct in general terms.) The for _all loop is
a parallel loop which executes each iteration on
the processor which ownst the corresponding ele­
ment of the XArr ay. Serial iterations are specified
using the for loop, whose syntax is identical to
the for _all. For executes every iteration of the
loop on each processor. Both LPARX looping con-

t Ownership, however, is generally hidden from the pro­
grammer.

structs implicitly extract from the XArray the in­
dex space over which to iterate.

Because separately compiled modules may not
understand class Grid or even the notion of C++
classes (e.g., Fortran), LPARX provides Grid
member functions to extract data and the bound­
ing box of a Grid in a standard form understand­
able by other languages. LPARX is currently tar­
geted to Fortran users; thus, the implementation
stores Grid data in column major order. Language
interoperability is an important software engineer­
ing feature which enables LPARX applications to
reuse existing serial numerical kernels with only
modest reprogramming, significantly reducing
software development time.

The smoother in our example. smooth5 () , is
written in Fortran. By Fortran parameter passing
convention, all arguments must be passed by refer­
ence (i.e., through a pointer). Member function
data() returns a pointer to the Grid's data ele­
ments, in our case double: upper() and
lower () return the lower and upper bounds of
the Region of U. The Point class is a low-level
LP ARX class which represents an integer vector;
in the call to smooth5 () , Point data values are
type-cast by C++ into a ld integer array.

Because LPARX runs in SP"1D mode, the val­
ues of the convergence check dU will he different
on each processor. The reduction function
mpReduceMax () takes the maximum over all the
local values and returns the global maximum
value. Various forms of reduction functions are
provided by LP ARX' s standard library [6].

3.4 Fi llPa tch ()

The FillPatch () code shown in Figure 7 up­
dates the ghost cell regions of each subgrid with
data from the interior (nonghost cell) sections of
adjacent subgrids. For every pair of Grids U (i)
and U (j) . Fi llPatch () copies into the ghost
cells of U (j) the overlapping nonghost cell data
from U (i) . Aggregate data motion between Grids
is handled through the copy() member function:

U(j) .copy(U(i), inside)

Recall that copy-on -intersect copies data from
Grid U(i) intoGrid U(j) wheretheRegions
of the two intersect with the third argument. in­
side, which is a Region. This operation enables
efficient data copies between grids. ignoring points
which are not shared.

LPARX SUPPORTS COARSE-GRAIN PARALLELISM 193

void FillPatch(IArray1(Grid2(double))l: U)
{

II Parallel loop over all aubgrida in U
for_all_1(i, U)

II Trim avay the ghost cell region
Region2 inside • grow(U(i) .region(), -1);

II Copy interior boundary data from overlapping grids
for_1(j, U)

}

U(j) .copy(U(i), inside);
end_for

end_for_all

Ghost Cells
, I,
' '

' ' ' - -r-----r ----r--
' ' ' ' ' ' '

- -r-----r -\---~--
' ' '
' ' '

---~-----~-- -~--·
' ' ' ' ' '

Partition

'
' ' ' ' ·------

'
' '

' : •------

FIGURE 7 Function FillPatch () updates ghost cell
regions of Grid U (j) with nonghost cell data from ad­
jacent Grids U (i).

The outer for _all loop iterates in parallel over
all Grids of U. For each of these Grids, the for
loop checks intersections against all of the other:j:
Grids ofU. LPARX is careful about how it handles
communication; in localized computations such
as Jacobi, many of these block copies are likely to
be empty. In such cases, LPARX avoids unneces­
sary communication and copying through optimi­
zations built into the run -time system [24].

Fi llPatch () may be converted from 2d to 3d
simply by replacing Grid2 with Grid3 and Re­
gion2 with Region3; the structural abstractions
of intersection and copy-on-intersect work inde­
pendently of the problem dimension. Likewise, we
can replace double with any other C++ type or
class. ~ote also that FillPatch () does not as­
sume a simple uniform partitioning; in fact, this
same code will work for any style of data parti­
tioning.

3.5 Dynamic and Irregular Computations

We have used LPARX to develop a straightforward
parallel implementation of Jacobi relaxation, a
simple application requiring only a uniform static

+For computations where the structure of the lV blocks is
simple and static. as in our .Jacobi code. the OIN2) algorithm
is naive. However. the communication structure for dynamic
irregular computations is neithPr static nor regular and thus
cannot be easilv predicted.

data decomposition. In this section, we briefly
show how the LP ARX parallelization mechanisms
can be used to address dynamic, irregular compu­
tations such as structured adaptive mesh methods
[9]. Details can be found elsewhere [24, 26, 27].

Structured adaptive mesh methods represent
the solution to partial differential equations using
a hierarchy of irregular but locally structured mes­
hes. We represent each level of this adaptive mesh
hierarchy as an XArray of Grid. Unlike the Jacobi
example·, each mesh level typically consists of an
irregular collection of blocks. Instead of the uni­
form block partitioner, the application calls error
estimation and regridding routines that perform
data decomposition at run-time. Fi llPatch ()
works without change because LP ARX' s structural
abstractions apply equally well to both uniform
decompositions and irregular block structures. Of
course, the adaptive application adds other rou­
tines to manage the transfer of numerical informa­
tion between levels of the hierarchy (e.g., interpola­
tion operators). The key observation, however, is
that the LPARX abstractions used in the Jacobi
code generalize immediately to dynamic, irregular
computations.

4 PARTICLE METHODS

In Section 3, we described an application which
applied work uniformly over the problem domain.
We now address an application for which load bal­
ancing becomes an issue, particle dynamics. In
particle dynamics, bodies called particles move
under mutual interaction, congregating and dis­
persing unpredictably with time. The computation
proceeds over a series of discrete timesteps. At
each step, the algorithm evaluates the force on
every particle and advances the particles in their
mutually induced force field. The force evaluation
is typically the most time-consuming portion of
the calculation.

A naive force evaluation scheme would, for a
system of N particles, calculate all O(N2) particle­
particle interactions directly. Rapid approximation
algorithms [2, 3] accelerate the force evaluation
by calculating direct interactions only for those
particles lying within a specified cut-off distance.
The remaining nonlocal interactions, which we will
not describe here, are calculated separately. Be­
cause the computational work required to calcu­
late the force on a particle depends on the local
particle density, a simple uniform partitioning

194 KOH~ Al\D BADE!\

-4 .• ·.-

FIGURE 8 A uniform block decomposition (left) of a particle calculation is unable to balance a nonuniform workload
distribution: the workload is directly related to particle density. Recursive bisection (center and right) adjusts the
assignment of work to processors according to the workload distribution. Partitionings must change dynamically in
accordance with the redistribution of the particles. Several repartitioning phases have occurred between the times
represented by the two snapshots at the center and the right.

scheme such as that used in Section 3 cannot bal­
ance the nonuniform workloads.

To accelerate the search for neighboring parti­
cles. we sort the particles into a mesh; each element
(or bin) of the mesh contains the particles assigned
to the corresponding region of space. A 2d applica­
tion represents this binning stmcture as a 2d Grid
of particle lists [23]:

Grid2(PList) bins(domain)

where PLi st is the user-defined type implement­
ing the particle list and domain is a Region which
describes the computational box. The computa­
tional work carried bv each bin is a function of the
local density of particles. the cut-off distance. and
the force law.

Particle methods are difficult to implement on
parallel computers because they require dynamic
load balancing to maintain an equal distribution
of work: the computational cost of the force evalu­
ation is not the same for all particles and varies with
time. Furthermore, in partitioning the problem, we
would like to take advantage of the spatial locality
of the particle-particle interactions. By subdividing
the computational space into large, contiguous
blocks. we can minimize communication since
nearby particles are likely to be assigned the
same processor.

We illustrate the need to handle load balancing
in Figure 8, which depicts a uniform block decom­
position of the computational space. Each of the
sixteen blocks has been assigned to a processor

numbered from pO to p15. Such a uniform decom­
position does not efficiently distribute workloads;
for example. no work has been assigned to proces­
sors p4, p5, p10. and p11.

A better method for decomposing non-uniform
workloads is shown in Figure 8 (center and right),
which illustrates two irregular block assignments
rendered using recursive bisection [7]. In these
decompositions, each processor receives approxi­
matelv the same amount of work. Because the dis­
tribution of particles changes over time, we must
periodically redistribute the workload across pro­
cessors to maintain load balance.

As in the case of the Jacobi example of Section
3. we represent the parallel partitioning of the
space as an array of Regions and the computa­
tional structure as an XArr ay:

XArrayl(Grid2(PList)) bins

where each 2d Grid contains the PList data for
its corresponding data partition. l'\ote that this rep­
resentation is independent of whether the parti­
tioning is regular or irregular.

The domains of the subproblems are deter­
mined by a partitioning utility which endeavors to
evenly divide the work among the processors. The
partitioner requires that the application furnish an
estimate of the cost of updating the particles in
each bin. The binning array must be periodically
repartitioned in response to the changing spatial
workload distribution.

The partitioning introduces data dependencies

LPARX SLPPORTS COARSE-GRAI:~ PARALLELISYI 195

void Rebalance (XArray1 (Grid2 (PList)) t Bins,
XArray1 (Grid2 (PList))t NewBins,
Region2 •Part)

(1) Grid2(double) Work a EstimateWork(Bins);
(2) Region2 •NewPart • RCB(Work, P);
(3) Region2 •Ghosts • grow (New Part, P, NGHOST);
(4) XAlloc(NewBins, P, Ghosts);

(5) for...al.L1 (I, NewBins)
for-1 (J, Bins)

NewBins(l) .copy(Bins(J), Part[J]);
end....for

encLtor..all
}

Bins(J) NewBins(I)

FIGURE 9 LP ARX code for partitioning the particle
caleulation. The programmer supplies the application­
specific function EstimateWork(). The LPARX li­
brary provides a default partitioning function RCB () . P
gives the number of processors and NGHOST the width
of the ghost cell region.

between the subproblems: particles near the
boundary of a partition interact with particles be­
longing to other processors. One solution is to have
each processor locally cache copies of off-proces­
sor particles. As in the Jacobi example, each local
partition is extended with a ghost cell region. Prior
to each force evaluation, these ghost regions are
filled in with the most recent off-processor particle
data. Cnlike Jacobi, the communication stn1cture
for ghost cells is no longer regular and varies with
time. However, because the region calculus hides
details about data decomposition, we can use the
same LPARX algorithm as in Section :3.4. In fact,
we only need to change double to PList in the
LPARX code of Figure 7.

In summary, there are five steps to dynamic load
balancing in LPARX: (1) estimate how much work
is required to compute the forces for the particles
in each bin, (2) partition the bins according to (1)
and assign the partitions to processors, (3) pad
each partition with a ghost cell region. (4) allocate a
new binning array using the partition information.
and (5) copy the particles from the old binning
arrav into the new one.

These activities are handled by Rebalance () ,
shown in Figure 9. The workload estimation (line

1) procedure is application specific and is written
by the programmer: typically. timing information
from the last timestep may be used. The partitioner
(2) takes the workload estimate and returns a de­
scription of the balanced subproblems. LPARX
provides a standard library to handle the common
eases, such as recursive bisection, but because
LPARX supports user-level data decompositions,
programmers are free to write their own. LPARX
provides a default assignment of partitions to pro­
cessors. but the programmer may override the de­
fault if necessary. Finally. LPARX allocates the
new binning array (4) using the partitioning. The
new binning structure NewBins is initially empty;
the two nested loops (5) copy the values from the
old structure Bins. For each I and J, New­
Bins (I) is assigned the portion of Grid
Bins (J) that overlaps with J's associated par­
tition.

5 COMPUTATIONAL RESULTS
AND PERFORMANCE

LPARX has been implemented as a C++ run-time
library with classes for Point, Region, Grid, and
XArray. A Point is an integer vector and is used
to construct Regions. Grid elements may be
standard C++ types (double, int, float), struc­
tures, or other C++ classes. Further implementa­
tion details can be found in the LPARX User's
Guide [6 J.

LPARX requires only a standard C++ compiler
such as GNC g+ +, and LP ARX code rna y be freely
mixed with calls to other C++. C. or Fortran func­
tions. In facL many LPARX applications use a
programming style which mixes both Fortran and
C++ code: LPARX uses C++ data structures to
manage dynamic memory allocation, and Fortran
provides highly optimized and vectorized numeri­
cal kernels. Furthermore, programmers may not
be required to rewrite highly optimized Fortran
kernels when parallelizing an application.

Some current LPARX applications include a 2d
geographically structured genetic algorithm appli­
cation [20], a 3d smoothed particle hydrodynam­
ics method [24;, an adaptive eigenvalue solver for
the first principles simulation of real materials [11,
24], and a dimension-independent code for 2d,
3d. and 4d connected component labeling for spin
models in statistical mechanics [18]. ln the follow­
ing sections, we provide a brief analysis of LPARX
overheads and computational results for the
smoothed particle hydrodynamics application.

196 KOH:'Ii A~D BADE~

Table 1. Software Version Numbers and Compiler Optimization Flags for the LPARX Computations*

C++ Fortran

Machine Compiler Optimization Compiler Optimization Operating System

Alphas
C-90
Paragon
SP2

g++ v2.6.2
CCv1.0.1.1
g++ v2.6.2
x1C v2.1

-02
-02
-02 -mnoieee
-0 -Q

f?? v3.3
eft?? v6.0
if?? v4.5.2
xlf v:3.1

-04
-01
-04 -Knoieee
-03

OSF/1 1.2 (PV,\1 v3.1.5)
L:\"ICOS 8.02.2
OSF I 1 1.0.4 R1.2.4
AIX v3.2

* All fwnchmarks used LPARX release v2.0.

Software versions and compiler options for all
computations are reported in Table 1.

5.1 LPARX Overheads

To provide an estimate of LP ARX overhead. we
implemented a 3d Jacobi iterative solver with a 19-
point stencil in LPARX and by hand using message
passing. \Ve chose the Jacobi application because
it was simple enough to parallelize by hand. Paral­
lelizing a real application (e.g., the smoothed parti­
cle hydrodynamics code described in the following
section) without software support such as that pro­
vided by LPARX would require a significant in­
vestment of programming pffort.

Table 2 compares the performance of the two
codes for a 100 X 100 X 100 mesh on 32 Paragon
nodes. The hand-coded application made anum­
ber of simplifying assumption:,;, namely that each
processor was assigned only one subgrid and that
the problem was static so that it could precompute
communication schedules. w-ithout these simpli-

Table 2. LPARX Overheads for a 3d Jacobi
(19-point stencil) Relaxation Calculation on a
100 X 100 X 100 Mesh on 32 Paragon Nodes*

Bv LPARX :'lio
I land v2.0 Barrier

Total time (ms) 118.8 126.8 120.3
Computation (ms) 99.9 99.9 99.9
Communication (ms) 18.9 26.9 20.4
.'\1essages (kilobytes) :36.5 38.1 37.4
Message starts 11.5 21.5 11 .. 5

* The ·'Bv Hand .. application was parallelized usinf! onlv
messagP passinf!. The numbers for LPARX v2.0 reflect the
current LPARX implementation. and the ·''Jo Barrier" num­
bers estimate the performance of LPARX without the global
barrier svnchronization. All numbers measure the wall-dock
time for one iteration of the alf!orithm and were averaged over
100 iterations. ,\Iessage statistics represent single-processor
averages for one itPration.

fying assumptions, the hand implementation
would have been considerably more difficult.
While such assumptions may apply to this simple
example. they are not valid for the dynamic irregu­
lar applications which are the intended target of
LPARX. For example, adaptive mesh calculations
may assign several subgrids to each processor, and
particle methods change communication depend­
encies as particles move.

Table 2 reports five performance numbers:
total time, computation (i.e., relaxation) time,
communication (i.e .. FillPatch ()) time, total
number of bytes cmnmunicated, and total nurn­
her of message sends. All numbers are reported
per iteration and were averaged over 100 it era­
tions. The performance numbers in the ·'By
Hand" column reflect the message-passing im­
plementation: the "LPARX v2.0" column repre­
sents the performance of the current LPARX
software release.

The LPARX computation time is identical to
that of the message-passing code: LPARX over­
heads appear only in the communication rou­
tines. The LPARX communication time is 42%
slower than the message-passing version. This
translates into an overall execution time which
is 7% longer than the equivalent message-pass­
ing code.

The LPARX code communicated approxi­
mately 5% more bytes than the message-passing
implementation. Part of this overhead is duf' to the
additional information which must be communi­
cated with each LPARX message. Because LPARX
cannot assume that only one subgrid is assigned
to each processor (as was assumed in the hand­
coded version), it must incorporate descriptive in­
formation into each message identifying the sub­
grid where data are to be stored. This overhead
depends on the problem dimension and adds
between 48 (1d) and 108 (4d) bytes to each
LPARX message.

Most of LPARX's communication overhead

LPARX SUPPORTS COARSE-GRAil\" PARALLELIS:\1 197

can be attributed to the extra messages sent as
part of its synchronization protocol. At the end
of a communications loop, LPARX detects the
termination of communication via a global reduc­
tion and barrier synchronization, which account
for the additional message sends. However, it is
possible to eliminate this costly synchronization
through some simple run-time schedule analysis
techniques [17]. The results of these optimiza­
tions are reported in the "1\"o Barrier'' column
of Table 2. LPARX overheads now drop to ap­
proximately 1% to the total execution time of
the program.

5.2 Smoothed Particle Hydrodynamics

~We present performance figures for a 3d smoothed
particle hydrodynamics (SPH3D) applicationll
[29]. The computational structure of SPH3D is
similar to molecular dynamics and other particle
calculations which exhibit short-range interac­
tions. Each particle interaction is expensive, re­
quiring approximately 100 floating point opera­
tions. Table 3 and Figure 10 present performance
results for the SPH3D code on the Crav C-90,
Intel Paragon. IBYl SP2,11 and a network ~f Alpha
workstations connected by a CIGAswitch running
PVM. Time is reported in seconds per timestep.
Simulations were run with 12k, 24k, 48k. and 96k
particles. All floating point arithmetic was per­
formed using 64-bit numbers. The applications
code was identical on all machines except that the
C-90 version gathered and scattered particles to
obtain longer vector lengths.

Although the numerical kernels of SPH3D vec­
torized on the C-90. the kerneb are rather compli­
cated and contain a number of conditionals which
hinder efficient utilization of the vector units. Fur­
thermore, even though the C-90 code gathers and
scatters particles to increase vector lengths, vectors
are still quite short. These vectorization limitations
are intrinsic to the algorithm and are not artifacts
of parallelization. For 48k particles, hardware per­
formance monitors on the C-90 reported an aver­
age performance of 200 megaflops and an average

§ The ori!-(inal scqu<>ntial SPH:~D code was prmided bv .John
\Vallin (Institute for Computational Sciences and lnfonnatics
at Geor!!e Mason Univcrsitv) and Curtis Struck-Marcell !De­
partment of Physics and Astronornv, Iowa State Cniversity).

II The SP2 results were obtaint>d on a preproduction machine
at the Cornell Theorv Center: these times should improve as
the svstem is tuned and enters full production use.

vector length of sixty. For this problem size, one
processor of the C-90 is roughly equivalent to 8
Alpha processors. 16 Paragon processors, or 4
SP2 processors.

The C-90 and the Alpha cluster exhibited rela­
tively poor performance on the smallest problem
size (12k particles). The Alphas suffered because
of the high overheads of message passing through
PVl\L in larger problems. this overhead was hidden
by the increased computational costs of particle
interactions. Poor performance on the C-90 was
due to short vector lengths. The Cray C-90 times
improved relative to the other machines for the
largest problem size because of increased vector
lengths. Because LPARX applications are portable
across a diversity of high-performance machines.
the computational scientist may choose the most
cost-effective architecture (e.g.. Cray C-90 or
Alpha cluster) for a particular problem size.

6 RELATED WORK

LPARX's Region abstraction and its region calcu­
lus are based in part on the domain abstractions
explored in the scientific prognunming language
FlDlL [22j. FlDIL's domain calculus provides op­
erations such as union and intersection over arbi­
trary index sets: LPARX extends FIDlL"s calculus
operations to provide structural abstractions for
data decomposition and interprocessor communi­
cation. Whereas FlDlL supports the notion of arbi­
trary nonrectangular index sets, LPARX restricts
index sets to be rectangular. A prototype of
LPARX. called LPAR [S J, supported FIDlL-style
regions, but these incurred a high-performance
penalty in applications that did not require the
added generality. We believe that the programmer
should pay the price of such generality only when
necessary and advocate the inclusion of more gen­
eral FIDlL regions as a separate type. Crutchfield
and Welcome [15] independently developed simi­
lar abstractions based on FlDIL for single-proces­
sor architectures. Based on this framework. thev
have developed domain-specific libraries for
adaptive mesh refinement applications in gas dy­
namics. The LPARX software is currently being
employed to support these libraries on parallel
computer architectures. A form of region abstrac­
tion is used in the programming language ZPL
[28]. although ZPL 's regions are not first class
objects: they are used as an execution mask for
data parallel computation whereas LPARX ab-

198 KOHr-,- A'-'D BADE:\'

Table 3. This Table Presents SPH3D Performance Results on a Cray C-90, Intel Paragon, IBM SP2, and
an Alpha Workstation Farm Running PVM*

Cray C-90 Time Alpha Time
Particles p = 1 P=8

12K 2.90 2.2
24k 5.98 4.98
48k 14.8 15.6
96k 38.4 56.4

Intel Paragon Performance

p = 8 p = 16 p = 32 p = 64

Particles Time Speedup Time Speedup Time Speedup Time Speedup

12k 2.2:~ 1.0 1.40 1.6 0.998 2.2 0.722 3.1
24k 7.61 1.0 4.73 1.6 2.50 3.0 1.68 4.5
48k 28.5 1.0 17.8 1.6 7.72 3.7 4.73 6.0
96k 114 1.0 70.7 1.6 27.8 4.1 17.6 6.5

IBM SP2 Performance

p = 4 p = 8 p = 16

Particles Time Speedup Time Speedup Time Speedup

12k 1.28 1.0 0.803 1.6 0.563 2.3
24k 4.12 1.0 2.44 1.7 1.57 2.6
48k 16.1 1.0 8.85 1.8 5.50 2.9
96k 59.9 1.0 .34.6 1.7 21.5 2.8

* All timPs are in seconds per tirnestep. Crav times were avera!(ed overS timesteps. Alpha timPs over SO timesteps. and all other
times over 100 tinH~steps. The C-90 measurements are CPU times on a production svstem; measurements on the Alpha famL
Parawm. and SP2 are wall-clock times since processor nodes are not time shared. For the Paragon and SP2, speedups are reported
relative to the smallest number of processors usPd to /(ather data. Some of thPse numbers are presented in Figure 10.

stractions specify data decompoi-iition and express
communication dependencies.

In contrai-it to LPARX. HPF [21] represents
data decompositions using an abstract index space
called a template. Arrays are mapped to templates
and templates are decomposed across processors
through compile-time directives. Because tem­
plates are not language-level objects, the program­
mer has limited control over data decomposition;
templates cannot be defined at run-time nor
passed across procedure boundaries. To avoid
these limitations. Vienna Fortran [12] omits tem­
plates but includes more general data decomposi­
tion directives. However, data decompositions are
restricted to tensor products of 1 d irregular decom­
positions. and it is unclear how Vienna Fortran
will support dynamic irregular blocking structures
such as those required by adaptive mesh refine­
ment and recursive coordinate bisection decompo­
sitions.

The pC++ programming language [10] imple-

ments a collection abstraction which includes a
coarse-grain data parallel loop over objects within
the collection: pC+ + employs a data decomposi­
tion scheme similar to that of HPF. The Multiblock
PARTI [1] and CHAOS [16]libraries provide run­
time support for data parallel compilers such as
HPF. CHAOS is targeted towards unstructured
calculations such as sweeps over finite-element
meshes or sparse matrix calculations. ~uhiblock
PARTI hai-i been targeted to applications with a
small number of large. static blocks (e.g .. irregu­
larly coupled regular meshes [14]).

7 CONCLUSIONS

LP ARX is a portable programming model and run­
time system which supports coarse-grain data par­
allelism efficiently over a wide range of ~11Y1D par­
allel platformi-i. Its structural abstraction enablei-i
the user to manipulate data decompositions as

LPARX SCPPORTS COARSE-GRAI'J PARALLELIS~1 199

100

0.
,S!
1/1
Q)

E 10 F
~
0.
1/1
"'0 c:
0
0

~

Number of Particles

FIGURE 10 This f!raph compares SPH3D perfor­
mance results for a Cray C-90. Intel Paragon. IB~ SP2,
and an Alpha workstation farm runninf! PVM. ~leasure­
ments were f!athered as described in Table 3. The num­
ber of processors for a particular machine was chosen
to provide performance rouf!hly comparable to a sinf!le
processor of a Cray C-90: processor numbers are given
in part>ntheses.

first-cia~~ objects. Its philo~ophy is that data parti­
tioning for irregular algorithms are heavily problem
dependent and therefore must be under the control
of the application. LPARX is intended for applica­
tions with changing nonuniform workloads. such
as particle methods. and for calculations with dy­
namic, block-irregular data structures. such as
adaptive mesh refinement. LPARX does not apply
to unstructured methods, e.g., sweeps over finite
element meshes or sparse matrix problems. which
are supported by CHAOS.

LP ARX provides three new data types: an index
set-valued object called a Region, a dynamic
array called a Grid. and an array of distributed
coarse-grain elements called an XArray. Efficient
block copies over Grids hide interprocessor com­
munication and low-level bookkeeping details.
Coarse-grain data parallelism over XArrays is
provided via the for_all loop. Region calculus
operations express data dependencies in geometric
terms independently of the spatial dimension and
data decomposition. Such abstractions enable the
programmer to reason about an algorithm at a high
level. While we have emphasized the utility of
structural abstraction for multiprocessors, such

methods also apply to single-processor systems.
Many scientific applications. such as adaptive
mesh refinement. exhibit irregular data structures
and communication patterns independent of the
parallelism. The region calculus provides a power­
ful methodolo~ory for describing and managing
such irregularity.

LPARX reduces software development costs by
promoting reusability and portability. Applications
can be developed and debugged on workstations
and then moved to parallel platforms for produc­
tion runs. Existing optimized serial numerical ker­
nels may be used. often with few changes, in paral­
lelized applications. Region calculus operations
are dimension independent: thus. the same data
decomposition and data communication code can
be used for 2d and 3d versions of an application.
The programmer can develop a simpler 2d version
of the problem. and. when confident that the code
has been debugged. apply the computational re­
sources of a parallel machine to the full 3d appli­
cation.

LPARX separates parallel execution and data
communication from computation. Numerical
kernels may be optimized and tuned for a process­
ing node without regard to the higher-level paral­
lelism. Parallel performance is intimately tied to
single-node performance: therefore. it is vital that
computational scientists can optimize numerical
code to reflect specific node characteristics.

The true test of a software development tool
is whether it is accepted by the user community.
LPARX is currently employed in diverse scientific
collaborations. ineluding adaptive mesh refine­
ment for gas dynamics. smoothed particle hydro­
dynamics. genetics algorithms .. and adaptive ei­
genvalue solvers for the first principles simulations
of real materials. The LPARX software is being
used bv researchers at the Cniversitv of California. . .
San Diego. George .\1ason Lniversity. Lawrence
Livermore 1\"ational Labs. and the Cornell Theory
Center. LPARX has enabled scientists to reduce
the development time of challenging applications
on high-performance parallel computers.

SOFTWARE AVAILABILITY

The LPARX software libraries, the smoothed par­
ticle hydrodynamics application, and an adaptive
mesh refinement method for eigenvalue problems
in materials design are available via the ·world
Wide Web at address http: I /www-cse.
ucsd. edu/users/skohn/lparx. html. The

200 KOHl'\ A:\ID BADE:'\

software is also available through the San Diego
Supercomputer Center.

ACKNOWLEDGMENTS

We thank Greg Cook, Stephen Fink, Chris Myers.
and Charles Rendleman for their useful sugges­
tions on how to improve LPARX. This work was
supported by NSF contract ASC-9110793 and
Ol\"R contract l\00014-93-1-0152. Intel Paragon
and Cray C-90 time were provided by a UCSD
School of Engineering Block Grant. Access to the
DEC Alpha workstation farm was provided by the
San Diego Supercomputer Center, and access to
the IBYI SP2 was provided by the Cornell Theory
Center. Portions of this paper are taken from
Kohn's Ph.D. dissertation [24].

REFERENCES

[1] G. Agrawal. A. Sussman, and J. Saltz, ·'An inte­
grated runtime and compile-time approach for
parallelizing structured and block structured ap­
plications,'' IEEE Trans. Parallel Distrib. S)·stems
(in press).

[2] A. Almgren, T. Buttke. and P. Colella, .. A fast
vortex method in three dimensions," in Proceed­
ings of the 1Oth AIAA Computational Fluid D.Y­
namics Conference, I lonolulu. Hawaii, June
199L pp. 446-455.

[3] C. R. Anderson. "A method oflocal corrections for
computing the velocity field due to a distribution of
vortex blobs:']. Computational Ph_ys .. vol. 62,
pp. 111-123, 1986.

[4] S. B. Baden, S. J. Fink. and S. R. Kohn, ·'Struc­
tural abstraction: A unifying parallel program­
ming model for data motion and partitioning in
irregular scientific computations," in prepara­
tion, 1996.

[5] S. B. Baden and S. R. Kohn, "Portable parallel
programming of numerical problems under the
LP AR system,"]. Parallel Distrib. Comput., vol.
27,pp. 38-55,1995.

[6] S. B. Baden, S. R. Kohn, S . .\1. Figueira, and
S. J. Fink, ''The LPARX user's guide v2.0,'' l:ni­
versity of California-San Diego, La Jolla, CA.
Tech. Rep .. :\lov. 1994.

[7] M. J. Berger and S. H. Bokhari, "A partitioning
strategy for nonuniform problems on multiproces­
sors," IEEE Trans. Computers, vol. C-36. pp.
570-.580, 1987.

[8] M. J. Berger and P. Colella, "Local adaptive mesh
refinement for shock hydrodynamics,'']. Compu­
tational Ph_ys., vol. 82, pp. 64-84, 1989.

[9] M. J. Berger and J. Oliger, '·Adaptive mesh re­
finement for hyperbolic partial differential equa­
tions,.,]. Computational Phys., vol. 53, pp. 484-
512, 198-t.

[10] F. Bodin, P. Beckman, D. Gannon. S. :\larayana,
and S. X. Yang, .. Distributed pC+ +: Basic ideas
for an object parallel language.··]. Sci. Program­
ming, vol. 2. 199:3.

[11] E. J. Bylaska, S. R. Kohn. S. B. Baden. A. Edel­
man, R. Kawai. M. E. G. Ong. and .1. H. Weare.
·'Scalable parallel numerical methods and soft­
ware tools for material design.·· in Proceedings of
the Sel'enth SIAM Conference on Parallel Process­
ingfor Scientific Computing, "San Francisco. CA,
February 1995.

[12] B. Chapman, P. ~1ehrotra. H. ~loritsch, and II.
Zima. "Dynamic data distribution in Vienna For­
tran." in Proceedings of Supercomputing '93. No­
vember 1993.

[131 B. Chapman. P. Ylehrotra, and H. Zima.
"Extending HPF for advanced data parallel
applications."' ICASE, Tech. Rt>p. 94-:34, May
1994.

[14] C. Chase, K. Crowley, .1. Saltz. and A. Reeves,
·• Parallelization of irregularly coupled regular
meshPs. '' I CASE. l\ASA Langley Research Cen­
tPr. Tech. Rep. 92-1. January 1992.

[15] W. Y. Crutchfield and M. L. Welcome, "Object
oriented implementation of adaptive mesh rP­
finement algorithms,'']. Sci. Programming, vol.
2, pp. 145-156. 1993.

[16j R. Das. M. Cysal, J. Saltz. and Y.-S. Ilwang,
"Communication optimizations for irregular sci­
entific computations on distributed memory ar­
chitectures,"]. Parallel Distrib. Cornput. (to
appear).

[17] S. J. Fink, S. B. Baden. and S. R. Kohn .. '·Flexible
communication schedules for block structured ap­
plications,'' in preparation. 1996.

[18] S. J. Fink, C. Huston, S. B. Baden, and K . .Jansen,
.. Parallel cluster identification for multidimen­
sional lattices'' IEEE Trans. Parallel Distrih. S:ys­
tems, 1995 (submitted).

[19] G. Fox, S. Hiranandani. K. Kennedv. C. Koelbel.
U. Kremer, C. Tseng, and M. \Vu, "Fortran D
language specification," Department of Computer
Science, Rice University, Houston. TX, Tech. Rep.
TR90-141, Dec. 1989.

[20] W. E. Hart, ·'Adaptive global optimization with
local search," PhD thesis .. Cnivcrsity of California
at San Diego, 1994.

[21] Iligh Performance Fortran Forum, High Perfor­
mance Fortran Language Specification, 1'\ovem­
bcr 1994.

[22] P. N. Hilfinger and P. Colella, "FIDIL: A language
for scientific programming," Lawrence Livermore
National Laboratory, Livermore, CA, Tech. Rep.
t:CRL-98057. Jan. 1988.

[23] R. W. Hockney and J. W. Eastwood. Computer

LPARX SUPPORTS COARSE-GRAIN PARALLELISM 201

Simulation Using Particles. New York: McGraw­
Hill, 1981.

[24] S. R. Kohn, "A parallel software infrastructure for
dynamic block-irregular scientific calculations,"
PhD thesis, University of California at San Diego,
June 1995.

[25] S. R. Kohn and S. B. Baden, "A robust parallel
programming model for dynamic non -uniform sci­
entific computations,'' in Proceedings of the 1994
Scalable High Performance Computing Confer­
ence, May 1994.

[26] S. R. Kohn and S. B. Baden, "A parallel software
infrastructure for structured adaptive mesh meth­
ods," in Proceedings of Supercomputing '95, De­
cember 1995.

[27] S. R. Kohn and S. B. Baden, "The parallelization
of an adaptive multigrid eigenvalue solver with
LP ARX," in Proceedings of the Seventh SIAM

Conference on Parallel Processing for Scientific
Computing, San Francisco, CA, February 1995.

[28] C. Lin and L. Snyder, "ZPL: An array sublan­
guage," in U. Banerjee, D. Gelernter, A. Nicolau,
and P. Padua, Eds., Proceedings of the Sixth In­
ternational Workshop on Languages and Compil­
ers for Parallel Computation. :'1/ew York: Springer­
Verla~ 1994,pp. 96-114.

[29] J. J. Monaghan, "Smoothed particle hydrodynam­
ics," Annu. Rev. Astronomy Astrophys., vol. 30,
pp. 543-574. 1992.

[30] V. S. Sunderam, "PV,\1: A framework for parallel
distributed computing." Concurrency Practice
Exp., vol. 2, pp. 315-339, 1990.

[31] M. Wu and G. Fox, "Fortran 90D compiler for
distributed memory MIMD parallel computers,"
Syracuse Cniversity, Tech. Rep. SCCS-88B,
1991.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

