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ABSTRACT 

LPARX is a software development tool for implementing dynamic, irregular scientific 
applications, such as multilevel finite difference and particle methods, on high-perfor­
mance multiple instruction multiple data (MIMD) parallel architectures. It supports 
coarse-grain data parallelism and gives the application complete control over specifying 
arbitrary block decompositions. LPARX provides structural abstraction, representing 
data decompositions as first-class objects that can be manipulated and modified at run­
time. LPARX, implemented as a C++ class library, is currently running on diverse MIMD 
platforms, including the Intel Paragon, Cray C-90, IBM SP2, and networks of workstations 
running under PVM. Software may be developed and debugged on a single-processor 
workstation. © 1996 John Wiley & Sons, Inc. 

1 INTRODUCTION 

An outstanding problem in scientific computation 
is how to manage the complexity of converting 
mathematical descriptions of dynamic, irregular 
numerical algorithms into high-performance ap­
plications software. Nonuniform applications, 
such as multilevel adaptive grid methods and par­
ticle methods, are particularly challenging. Cur­
rent parallel computers are much more difficult 
to use than current vector machines because the 
programmer must manage computational re­
sources at a very low level. Parallel compiler tech-
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nology does not yet afford the convenience ex­
pected by the user community [13]. While this 
situation will improve with time, adequate run­
time support is essential in applications with dy­
namic, data-dependent computational structures. 

We have developed the LP ARX parallel pro­
gramming system [24, 25] to simplify the develop­
ment of dynamic, nonuniform scientific computa­
tions on high-performance parallel architectures. 
Such software support is essential to developing 
high-performance, portable, parallel applications 
software. LPARX is a domain-specific, coarse­
grain data parallel programming model that pro­
vides run-time support for dynamic, block-irregu­
lar data decompositions. General irregular block 
decompositions are not currently supported by 
compiled languages such as High Performance 
Fortran (HPF) [21], Fortran D [19], Vienna For­
tran [12], and Fortran 90D [31]. They arise in 
two important classes of applications: 
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1. Adaptive multilevel finite difference meth­
ods [8, 9, 27] that represent refinement re­
gions using block-irregular data structures 

2. Parallel computations that require an irregu­
lar data decomposition [7] to balance non­
uniform workloads across parallel proces­
sors, such as particle methods [23] 

LPARX hides many of the low-level details, such 
as interprocessor communication, involved in 
managing complicated dynamic data structures on 
parallel computers. It provides the programmer 
with high-level coordination facilities to manage 
data locality within the memory hierarchy to mini­
mize communication costs. 

LPARX should not be thought of as a "lan­
guage,'' but rather as a set of data distribution and 
parallel coordination abstractions which may be 
implemented in a library (as we have done) or 
added to a language. The design goals of LPARX 
are as follows: 

1. To express irregular data decompositions, 
layouts, and data dependencies at run-time 
using high-level, intuitive abstractions. 

2. To require only basic message-passing sup­
port and give portable performance across 
diverse parallel architectures. 

3. To separate parallel control and communi­
cation from numerical computation and to 
allow the reuse of highly optimized numeri­
cal kernels from existing serial codes with 
minimal change. 

4. To permit the user to develop and debug 
software on a single-processor workstation. 

LPARX has been implemented as a C++ class 
library and does not require special compiler sup­
port. Applications may invoke subroutines written 
in languages other than C++, such as Cor Fortran. 
The implementation assumes only basic message­
passing support and may run on any multiple in­
struction multiple data (MIMD) machine. LPARX 
is currently running on the Intel Paragon, IBM SP2, 
Cray C-90, single processor workstations, and net­
works of workstations under PVM [30]. 

This article is organized as follows. Section 2 
provides an overview of the LP ARX programming 
abstractions. Section 3 describes in detail the par­
allelization of a simple application, Jacobi relax­
ation. The parallelization of a particle calculation 
is discussed in Section 4. (Structured adaptive 
mesh methods are beyond the scope of this article 
and are described elsewhere [24, 26].) Section 5 
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FIGURE 1 The logical organization of an LPARX ap­
plication consists of three components: partitioning rou­
tines. LPARX code, and serial numerical kernels. 

presents computational results. Finally, Section 6 
discusses related work and Section 7 summarizes 
the contributions of LPARX. 

2 OVERVIEW 

LPARX provides high-level abstractions for repre­
senting and manipulating irregular block-struc­
tured data on .\11MD distributed memorv architec­
tures. In the following sections, we give an overview 
of LP ARX' s facilities. We begin with a description 
of the philosophy behind the LPARX model. We 
introduce LPARX's data types and its representa­
tion of irregular block decompositions and present 
LPARX's underlying coarse-grain data parallel 
programming model. Finally, we describe the re­
gion calculus, which expresses data decomposi­
tions and dependencies in geometric terms. 

2.1 Philosophy 

The LP ARX parallel programming model sepa­
rates the expression of data decomposition, com­
munication, and parallel execution from numeri­
cal computation. As shown in Figure 1, LPARX 
applications are logically organized into three sep­
arate pieces: partitioners, LPARX code, and serial 
numerical kernels. 

The LP ARX layer provides facilities for the 
coordination and control of parallel execution. 
LPARX is a coarse-grain data parallel program­
ming model; it gives the illusion of a single global 
address space and a single logical thread of con­
trol. On a YIIMD parallel computer, the LPARX 
run-time system executes in single program multi­
ple data (SPMD) mode. 

Computations are divided into a relatively small 
number of coarse-grain pieces; each work unit rep­
resents a substantial computation executing on a 
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single logical processing node. LPARX does not 
define what constitutes a single logical node: a 
node may correspond to a single processor, a pro­
cessing cluster. or a processor subset. Parallel exe­
cution is expressed using a coarse-grain loop: each 
iteration of the loop iterates as if on its own proces­
sor. The computation for each piece is performed 
by a numerical kemel, and the computations pro­
ceed independently of one another. The numerical 
kemels may be written in a language other than 
C++, such as C, Fortran, or HPF. The advantage 
of this approach is that heavily optimized numeri­
cal routines need not be reimplemented to parallel­
ize an application. Furthermore. numerical code 
can be optimized for a processing node without 
regard to the higher level parallelization. Kemels 
may be tuned to take advantage of low-level node 
characteristics, such as vector units, cache sizes. 
or multiple processors. 

An important part of the LP ARX philosophy 
is that data partitioning for dynamic, nonuniform 
scientific computations is extremely problem de­
pendent and therefore is best left to the applica­
tion. No specific data decomposition strategies 
have been built into the LPARX model. Rather, 
all data decomposition in LP ARX is performed at 
run-time under the direct control of the applica­
tion. LPARX gives the application a uniform 
framework for representing and manipulating 
block-irregular decompositions. Although it pro­
vides a standard library of decomposition routines. 
the programmer is free to write others. 

Our approach to data decomposition differs 
from most parallel languages, such as HPF [21], 
which require the programmer to choose from a 
small number of predefined decomposition meth­
ods. Vienna Fortran [12] provides some facilities 
for irregular user-defined data decompositions but 
limits them to tensor products of irregular 1d de­
composltlons. Block-irregular decompositions 
may be constructed using the pointwise mapping 
arrays of Fortran D [19]; however, pointwise de­
compositions are inappropriate and unnatural for 
calculations which exhibit block structures. Be­
cause pointwise decompositions have no knowl­
edge of the block structure, mapping information 
must be maintained for each individual array ele­
ment (instead of for each block) at a substantial 
cost in memory and communication overheads. 

Once a decomposition has been specified, the 
details of the data partitioning are hidden from the 
application. The programmer can change parti­
tioning strategies without affecting the correctness 
of the underlying code. Thus, LPARX views parti-

tioners as interchangeable, and the application 
may change decomposition strategies by simply 
invoking a different partitioning routine. 

At the core of LP ARX is the concept of struc­
tural abstraction. Structural abstraction enables 
an application to express the logical structure of 
data and its decomposition across processors as 
first-class, language-level objects. The key idea is 
that the structure of the data-the "floorplan" 
describing how the data are decomposed and 
where the data are located-is represented and 
manipulated separately from the data. LPARX ex­
presses operations on data decompositions and 
communication using intuitive geometric opera­
tions, such as intersection, instead of explicit in­
dexing. lnterprocessor communication is hidden 
by the run-time system, and the application is 
completely unaware of low-level details. We note 
that although the LP ARX implementation is cur­
rently limited to representing irregular, block­
structured decompositions, the concept of struc­
tural abstraction is general and extends to other 
classes of applications, such as unstructured finite 
element meshes [ 4]. 

2.2 LPARX Data Types 

LPARX provides the following three abstract 
data types: 

1. Region: an object representing a subset of 
array index space 

2. Grid: a dynamic array instantiated over a 
Region 

3. XArray: a dynamic array of coarse-grain 
elements, Grids, distributed over pro­
cessors 

The Region provides the basis for structural 
abstraction. Ann -dimensional Region represents 
a subset of Z", the space of n -dimensional integer 
vectors. The Region does not contain data ele­
ments. as an array, but rather represents a portion 
of index space. In the current implementation of 
LPARX, we restrict Regions to be rectangular; 
however, the concepts described here apply to ar­
bitrary subsets of Z" [ 4]. Although there is no iden­
tical construct in Fortran or C, the Region is re­
lated to array section specifiers found in Fortran-
90. Unlike Fortran-90 array section specifiers, the 
Region is a first-class object and may be assigned 
and manipulated at run-time. The concept of first­
class array section objects was introduced in the 
FIDIL programming language [22]. 
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The Grid is a dynamic array defined over an 
arbitrary rectangular index set specified by aRe­
gion. The Grid is similar to an HPF allocatable 
array. Each Grid remembers its associated Re­
gion, which can be queried, a convenience that 
greatly reduces bookkeeping for dynamically de­
fined Grids. (Compare this to C, which requires 
the programmer to keep track of bounds for dy­
namically allocated array storage.) All Grid ele­
ments must have the same type: they may be inte­
gers, floating point numbers, or any user-defined 
type or class. For example, in addition to repre­
senting a finite difference mesh of floating point 
numbers, the Grid may also be used to implement 
the spatial data structures [23] common in particle 
calculations. Grids may be manipulated using 
high-level block-copy operations, described in 
Section 2. 4. 

LP ARX is targeted toward applications with ir­
regular, block structures. To support such struc­
tures, it provides a special array-the XArray­
for organizing a dynamic collection of Grids. Each 
Grid in an XArray is arbitrarily assigned to a 
single processor; individual Grids are not subdi­
vided across processors. The XArray can be 
viewed as a coarse-grain analogue of a Fortran D 
array decomposed via mapping arrays, except that 
XArray elements are themselves arrays (Grids). 

The Grids in an XArray may have different 
origins, sizes, and index sets: but all Grids must 
have the same spatial dimension. When creating 
anXArray, the user provides an array of Regions 
representing the structure of the Grids and a 
corresponding array of processor assignments: 
LPARX provides a default assignment of Grids 
to processors if none is given. An XArray is in­
tended to implement coarse-grain irregular de­
compositions; thus, each processor is typically a,;­
signed only a few Grids. 

LPARX defines a coarse-grain looping con­
struct-£ or _all-which iterates concurrently 
over the Grids of an XArray. The semantics of 
for _all are similar to HPF' s INDEPENDENT for­
all [21 J; each loop iteration is executed as if an 
atomic operation. In writing a for _all loop, the 
programmer is unaware of the assignment of 
Grids to processors-each XArray element is 
treated as if it were assigned to its own processor­
and the LPARX run-time system correctly man­
ages the parallelism. 

The XArray of Grid structure provides a com­
mon framework for implementing various block­
irregular decompositions of data. This framework 
is used by the load-balancing utilities found in 

LPARX's standard library and also in application­
specific routines, such as a grid generator for an 
adaptive mesh refinement calculation. Figure 2 
shows decompositions arising in two different ap­
plications. In each case, the data have been di­
vided into Grids, each representing a different 
portion of the computational domain, which have 
been assigned to an XArr ay. The following section 
provides more detail about how XArrays are used 
to organize a parallel computation. 

2.3 Coarse-Grain Parallel Computation 

Recall that an LPARX application consists of three 
components: partitioning routines, LP ARX code, 
and serial numerical kemels. Here we show how 
these pieces work together in an application. 
LPARX provides the programmer with a simple 
model of coarse-grain parallel computation by 

1. Decomposing the computational structure 
into an array of Regions. 

2. Specifying an assignment of each Region in 
( 1) to a processor. 

3. Creating an XArray of Grid representing 
the decomposition of space generated in ( 1) 
and (2). 

4. Satisfying data dependencies between 
Grids in the XArray using LPARX's com­
munication facilities (described in the fol­
lowing section). 

o. Perform calculations on the Grids in the 
XArray in parallel using the coarse-grain 
for_allloop. 

The decomposition in (1) may be managed ex­
plicitly by the application, such as in generating 
refinement regions. or by load balancing utilities 
that implement partitioning strategies. LPARX has 
a standard library of partitioners that implement 
recursive coordinate bisection [7] and uniform 
block partitioning. 

The assignment of Regions to processors in 
(2) provides applications the flexibility to delegate 
work to processors. In generaL this information 
will be returned bv the routine which renders the 
partitions. This step may be omitted. in which case 
LPARX generates a default assignment. 

Using the partitioning information and the pro­
cessor assignment information. the application in­
stantiates in (3) an XArray of Grid implementing 
the data decomposition. LPARX creates Grids 
based on the supplied Region information and 
assigns them to the appropriate processors. 
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proceaorl 

XArrays 

FIGURE 2 Two example,; of an XArray of Grid data structure. The recursive bisection decomposition on the left 
is usually employed in particle calculations. The structure in the middle is typical of a single-level mesh refinement 
in adaptive mesh methods. On the right, we show one possible mapping of XArray elements to processors. ~ote 
that the XArray is a container for the Grids and its elements arc Grids, not pointers. 

After the decomposition and allocation of data, 
applications typically alternate between steps 
(4) and (5). In (4), data dependencies between 
the Grids in the XArray are satisfied using 
LPARX's region calculus and copy operations, 
described in the following section. After commu­
nication completes, the application computes in 
parallel on the Grids in the XArr ay using a 
for_all loop. For each Grid, a numerical rou­
tine is called to perform the computation; the 
computation executes on a single logical node 
which may actually consist of many physical 
processors. The execution of for_all assumes 
the Grids are decoupled: they are processed 
independently and asynchronously. 

2.4 The Region Calculus 

LP ARX defines a region calculus which enables 
the programmer to manipulate index sets (Re-

lt*S 

g ions) in high -level geometric terms. In this sec­
tion, we provide a brief overview of the most im­
portant region calculus operations-intersection 
and grow-and describe a high-level block copy 
operation called copy-on-intersect. 

The intersection of two Regions is simply the 
set of points which the two have in common. The 
dark shaded area in Figure 3a represents the inter­
section of Regions RandS. Regions are closed 
under intersection-the intersection of two Re­
gions is always another Region. If two Regions 
do not overlap, the resulting intersection is said to 
be empty. 

Grow () surrounds a Region with a boundary 
layer of a specified width. It takes two argu­
ments-a Region and an integer-and returns 
a new Region which has been extended in each 
coordinate direction by the specified amount. 
Figure 3b shows the Region resulting from 
Grow(R, 1). 

21--1-+~* 
1~-L~~~-L~~~-L~ 

4 5 17 

(a) (b) (c) 

FIGURE 3 (a) The dark shaded area is intersection of Regions Rand S, denoted by R * S. (b) An example of 
using Grow () to add a boundary layer to a Region. (e) L sing Grow () and intersection to caleulate data dependencies 
for a ghost cell region. 
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Copy-on-intersect coordinates data motion be­
tween two Grids. Here we represent copy-on­
intersect with¢::. The statement G ¢:: H, where G 

and Hare Grids, copies data from H into G where 
the Regions of G and H intersect. Another form, 
G ¢:: H on R, where R is a Region, limits the copy 
to the index space in which G, H, and R intersect. 

We now show how these simple but powerful 
operations are used to calculate data dependen­
cies. One common communication operation in 
scientific codes is the transmission of data to fill 
ghost cells, boundary elements added to a proces­
sor's local data partition. The region calculus rep­
resents the processor's local partition as a Region. 
We Grow() the Region to define ghost cells and 
then use intersection to calculate the Region of 
data required from another processor. Finally, a 
block copy updates the ghost region's data values, 
as shown in Figure 3c. Recall that copy-on-inter­
sect copies values that lie in the intersection of the 
ghost region and interacting blocks. The calcula­
tion of data dependencies involving no explicit 
computations involving subscripts. The region cal­
culus is independent of the Grid dimension, and 
the same operations work for any problem dimen­
sion. All bookkeeping details and interprocessor 
communication are managed by the run-time sys­
tem and are completely hidden from the user. 

3 A SIMPLE PROGRAMMING EXAMPLE 

In this section, we illustrate how to use LP ARX to 
parallelize a simple application, Jacobi relaxation 
on a rectangular domain. For concreteness, we 
will use C++ notation. Although this particular 
computation is neither irregular not dynamic, it is 
easy to explain, and the techniques used to paral­
lelize it under LP ARX generalize to far more elabo­
rate irregular computations. We will discuss these 
in Section 3. 5. 

3.1 Problem Description 

Consider the Laplace equation in two dimensions: 

f:..u = 0 inn 

subject to Dirichlet boundary conditions on an, 
the boundary of n: 

u = f on an, 

where f and u are real-valued functions of two 
variables and the domain n is a rectangle. we 

(a) (b) 

FIGURE 4 (aj A finite difference mesh defined over 
the 2d Region [0: M+1, 0: N+1] with interior 
[ 1: M, 1: N] . (b) A blockwise decomposition of the com­
putational space into 24 subblocks. The lightly shaded 
area shows the ghost region for a typical partition. 

discretize the computation using the method of 
finite differences, solving a set of discrete equations 
defined on a regularly spaced mesh of (M + 2) X 

(N + 2) points in Z 2 . 

The boundary points of the mesh, which contain 
the Dirichlet boundary conditions for the problem, 
are located along x-coordinates between 0 and 
M + 1 and along y-coordinates between 0 and N 
+ 1, as shown in Figure 4a. We number the interior 
points of the mesh from 1 toM in the x-coordinate 
and from 1 toN in they-coordinate. This interior 
region is defined as follows: 

Region2 Interior(l,l,M,N) 

LPARX strongly types all Regions by the number 
of spatial dimensions; thus, Region2 represents 
a 2d Region, Region3 a 3d Region, and so on. 

To parallelize Jacobi relaxation, we decompose 
the computational domain into subdomains and 
assign each subdomain to a processor. A standard 
blockwise decomposition for 24 processors is 
shown in Figure 4b. Each subdomain is aug­
mented with a ghost cell region, which locally 
caches either interior data from adjoining subdo­
mains or Dirichlet boundary conditions. We re­
fresh the ghost cell regions before computing on 
each subdomain. Each processor then updates the 
solution for the subdomains it owns; this computa­
tion proceeds in parallel and each processor per­
forms its calculations independently of the others. 

3.2 Decomposing the Problem Domain 

LPARX does not predefine specific data-partition­
ing strategies; rather, data partitioning is under 
the control of the application. One possible parti-
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tioning which is defined in LP ARX' s partitioning 
library is the uniform BLOCK decomposition em­
ployed by HPF. By convention, LP ARX expects 
the partitioner to return an arrav ofRegi ons which 
describe the uniform partitioning: 

Region2 *Partition= Uniform(Interior, P) 

The partitionerUniform takes two arguments: the 
Region to he partitioned and the desired number 
of suhdomains. usually the number of processors. 
After determining the partitioning of space, we ex­
tend each subdomain with ghost cells. The exact 
thickness of the ghost cell region depends on the 
finite difference stencil employed in the finite dif­
ference scheme. We will use a five-point finite dif­
ference stencil to solve Laplace's equation: thus. 
the ghost cell region is one cell thick. We apply the 
grow () function to augment each sub domain of 
Partition [) with a ghost region*: 

Region2 *Ghosts = grow(Partition, P, 1) 

The computational domain is now logically di­
vided into an array of 2d Regions called Ghosts. 
We will allocate a 1d XArray of 2d Grids of 
double to implement this data decomposition: the 
kth Grid will be assigned to the kth processor. We 
declare the XArray of Grids structure using: 

XArrayl(Grid2(double)) U 

and instantiate the storage using XAll oc () : 

XAlloc(U, P, Ghosts) 

XAlloc () takes three arguments: the XArray to 
he allocated, the number of elements to be allo­
cated, and an array of Regions, one Region for 
each element in theXArray. Note that all Grids in 
anXArraymusthave the same type (e.g., double) 
and dimension; of course, the Grids in anXArray 
may he defined over different Regions. 

When defining an XArray with XAlloc (),we 
may optionally supply a processor assignment for 
each XArray component. If no such processor as­
signment is specified, as in the code above, then 
LPARX chooses a default mapping. To override 
the default, we provide an array of integer proces-

* Grow () is overloaded in the obvious wav to handle arravs 
of Regions. · · 

void main(const int argc, char ••argv) 
{ 

II Initialize M, N, and h (not shown) 

II Get the number of nodes (number of partitions) 
const int P = mpNodes(); 

II Partition the computational space 
Region2 Interior(l,l,M,N); 
Region2 •Partition = Uniform(Interior, P); 
Region2 •Ghosts = grow(Partition, P, 1); 

II Allocate and initialize the data (not shown) 
XArray1(Grid2(double)) U; 
XAlloc(U, P, Ghosts); 

II Relax until the solution has converged 
do { 

dU = relax(U, h); 
} while (dU >Epsilon); 

I I Exit program 
} 

FIGURE 5 LPARX code. which partitions the compu­
tational space. allocates tlw XArray of Grids struc­
ture and calls tht> Jacobi relaxation routine (describt>d 
in Section 3.3). 

sor identifiers, one for each XArray element, as 
an optional fourth argument to XAlloc () : 

XAlloc(U, P, Ghosts, Mapping) 

Such a mapping may be used to better balance 
workloads or to optimize interprocessor communi­
cation traffic for a particular hardware intercon­
nect topology. 

After instantiating the XArray, we are ready to 
compute. The main computational loop is as 
follows: 

do { 
dU relax(U, h); 

} while (dU > Epsilon) ; 

where relax() is a subroutine which performs 
communication and the relaxation computation, 
his the spacing.of the finite difference mesh, dU is 
the maximum change in magnitude of the solution 
over all points in the interior of the computational 
box, and Epsilon is a user-supplied convergence 
con~ition. The LPARX code is summarized in Fig­
ure 0. 

Note that we may change the data-partitioning 
scheme at any time without affecting the correct­
ness of the code. For example, the "box-like" par­
titioning may he replaced with a strip decomposi-



192 KOHN AND BADEN 

double relax(XArray1(Grid2(double))t U, const double h) 
{ 

II Refresh the ghost cell regions 
FillPatch(U); 

II Compute in parallel over all subgrids 
double dU z 0.0; 
for_all_l(i, U) 

Region2 inside= grow(U(i).region(), -1); 
const Point2 nl ~ inside.lower(); 
const Point2 nh = inside.upper(); 
const double dE= smooth5(U(i).data(), nl, nh, th); 
dU = MAX(dU, dE); 

end_for_all 

II Find the maximum change over all the processors 
mpReduceMax(tdU); 

return(rO); 
} 

FIGURE 6 The parallel Jacobi relaxation routine calls 
FillPatch () and smoothS(), a computational kernel 
written in Fortran. 

tion or even a recursive bisection decomposition 
simply by calling a different partitioner. No other 
changes would need to be made. Furthermore, the 
computational domain need not be restricted to a 
rectangle; it may be an "L" -shaped region or. in 
general, any irregular collection of blocks. 

3.3 Relaxation 

Function relax() performs the major tasks in 
solving the Laplace equation: It invokes Fill­
Patch () to refresh the ghost cell regions and calls 
the computational kernel, smooth5 () . The code 
for relax() is shown in Figure 6. 

The for _all loop in Figure 6 computes in par­
allel over the Grids of U. In LPARX C++ code, 
looping constructs are typed by the dimension of 
the arrays over which they iterate. Thus, the for_ 
all_l in re 1 ax () iterates using induction vari­
able i over the ld XArray U. (We typically drop 
the dimension qualifier when discussing a looping 
construct in general terms.) The for _all loop is 
a parallel loop which executes each iteration on 
the processor which ownst the corresponding ele­
ment of the XArr ay. Serial iterations are specified 
using the for loop, whose syntax is identical to 
the for _all. For executes every iteration of the 
loop on each processor. Both LPARX looping con-

t Ownership, however, is generally hidden from the pro­
grammer. 

structs implicitly extract from the XArray the in­
dex space over which to iterate. 

Because separately compiled modules may not 
understand class Grid or even the notion of C++ 
classes (e.g., Fortran), LPARX provides Grid 
member functions to extract data and the bound­
ing box of a Grid in a standard form understand­
able by other languages. LPARX is currently tar­
geted to Fortran users; thus, the implementation 
stores Grid data in column major order. Language 
interoperability is an important software engineer­
ing feature which enables LPARX applications to 
reuse existing serial numerical kernels with only 
modest reprogramming, significantly reducing 
software development time. 

The smoother in our example. smooth5 () , is 
written in Fortran. By Fortran parameter passing 
convention, all arguments must be passed by refer­
ence (i.e., through a pointer). Member function 
data() returns a pointer to the Grid's data ele­
ments, in our case double: upper() and 
lower () return the lower and upper bounds of 
the Region of U. The Point class is a low-level 
LP ARX class which represents an integer vector; 
in the call to smooth5 () , Point data values are 
type-cast by C++ into a ld integer array. 

Because LPARX runs in SP"1D mode, the val­
ues of the convergence check dU will he different 
on each processor. The reduction function 
mpReduceMax () takes the maximum over all the 
local values and returns the global maximum 
value. Various forms of reduction functions are 
provided by LP ARX' s standard library [ 6]. 

3.4 Fi llPa tch () 

The FillPatch () code shown in Figure 7 up­
dates the ghost cell regions of each subgrid with 
data from the interior (nonghost cell) sections of 
adjacent subgrids. For every pair of Grids U (i) 
and U (j) . Fi llPatch () copies into the ghost 
cells of U (j ) the overlapping nonghost cell data 
from U ( i) . Aggregate data motion between Grids 
is handled through the copy() member function: 

U(j) .copy(U(i), inside) 

Recall that copy-on -intersect copies data from 
Grid U(i) intoGrid U(j) wheretheRegions 
of the two intersect with the third argument. in­
side, which is a Region. This operation enables 
efficient data copies between grids. ignoring points 
which are not shared. 
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void FillPatch(IArray1(Grid2(double))l: U) 
{ 

II Parallel loop over all aubgrida in U 
for_all_1(i, U) 

II Trim avay the ghost cell region 
Region2 inside • grow(U(i) .region(), -1); 

II Copy interior boundary data from overlapping grids 
for_1(j, U) 

} 

U(j) .copy(U(i), inside); 
end_for 

end_for_all 

Ghost Cells 
, I, 
' ' 

' ' ' - -r-----r ----r--
' ' ' ' ' ' ' 

- -r-----r -\---~--
' ' ' 
' ' ' 

---~-----~-- -~--· 
' ' ' ' ' ' 

Partition 

' 
' ' ' ' ·------

' 
' ' 

' : •------

FIGURE 7 Function FillPatch () updates ghost cell 
regions of Grid U (j) with nonghost cell data from ad­
jacent Grids U (i). 

The outer for _all loop iterates in parallel over 
all Grids of U. For each of these Grids, the for 
loop checks intersections against all of the other:j: 
Grids ofU. LPARX is careful about how it handles 
communication; in localized computations such 
as Jacobi, many of these block copies are likely to 
be empty. In such cases, LPARX avoids unneces­
sary communication and copying through optimi­
zations built into the run -time system [24]. 

Fi llPatch () may be converted from 2d to 3d 
simply by replacing Grid2 with Grid3 and Re­
gion2 with Region3; the structural abstractions 
of intersection and copy-on-intersect work inde­
pendently of the problem dimension. Likewise, we 
can replace double with any other C++ type or 
class. ~ote also that FillPatch () does not as­
sume a simple uniform partitioning; in fact, this 
same code will work for any style of data parti­
tioning. 

3.5 Dynamic and Irregular Computations 

We have used LPARX to develop a straightforward 
parallel implementation of Jacobi relaxation, a 
simple application requiring only a uniform static 

+For computations where the structure of the lV blocks is 
simple and static. as in our .Jacobi code. the OIN2) algorithm 
is naive. However. the communication structure for dynamic 
irregular computations is neithPr static nor regular and thus 
cannot be easilv predicted. 

data decomposition. In this section, we briefly 
show how the LP ARX parallelization mechanisms 
can be used to address dynamic, irregular compu­
tations such as structured adaptive mesh methods 
[9]. Details can be found elsewhere [24, 26, 27]. 

Structured adaptive mesh methods represent 
the solution to partial differential equations using 
a hierarchy of irregular but locally structured mes­
hes. We represent each level of this adaptive mesh 
hierarchy as an XArray of Grid. Unlike the Jacobi 
example·, each mesh level typically consists of an 
irregular collection of blocks. Instead of the uni­
form block partitioner, the application calls error 
estimation and regridding routines that perform 
data decomposition at run-time. Fi llPatch () 
works without change because LP ARX' s structural 
abstractions apply equally well to both uniform 
decompositions and irregular block structures. Of 
course, the adaptive application adds other rou­
tines to manage the transfer of numerical informa­
tion between levels of the hierarchy (e.g., interpola­
tion operators). The key observation, however, is 
that the LPARX abstractions used in the Jacobi 
code generalize immediately to dynamic, irregular 
computations. 

4 PARTICLE METHODS 

In Section 3, we described an application which 
applied work uniformly over the problem domain. 
We now address an application for which load bal­
ancing becomes an issue, particle dynamics. In 
particle dynamics, bodies called particles move 
under mutual interaction, congregating and dis­
persing unpredictably with time. The computation 
proceeds over a series of discrete timesteps. At 
each step, the algorithm evaluates the force on 
every particle and advances the particles in their 
mutually induced force field. The force evaluation 
is typically the most time-consuming portion of 
the calculation. 

A naive force evaluation scheme would, for a 
system of N particles, calculate all O(N2 ) particle­
particle interactions directly. Rapid approximation 
algorithms [2, 3] accelerate the force evaluation 
by calculating direct interactions only for those 
particles lying within a specified cut-off distance. 
The remaining nonlocal interactions, which we will 
not describe here, are calculated separately. Be­
cause the computational work required to calcu­
late the force on a particle depends on the local 
particle density, a simple uniform partitioning 
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FIGURE 8 A uniform block decomposition (left) of a particle calculation is unable to balance a nonuniform workload 
distribution: the workload is directly related to particle density. Recursive bisection (center and right) adjusts the 
assignment of work to processors according to the workload distribution. Partitionings must change dynamically in 
accordance with the redistribution of the particles. Several repartitioning phases have occurred between the times 
represented by the two snapshots at the center and the right. 

scheme such as that used in Section 3 cannot bal­
ance the nonuniform workloads. 

To accelerate the search for neighboring parti­
cles. we sort the particles into a mesh; each element 
(or bin) of the mesh contains the particles assigned 
to the corresponding region of space. A 2d applica­
tion represents this binning stmcture as a 2d Grid 
of particle lists [23]: 

Grid2(PList) bins(domain) 

where PLi st is the user-defined type implement­
ing the particle list and domain is a Region which 
describes the computational box. The computa­
tional work carried bv each bin is a function of the 
local density of particles. the cut-off distance. and 
the force law. 

Particle methods are difficult to implement on 
parallel computers because they require dynamic 
load balancing to maintain an equal distribution 
of work: the computational cost of the force evalu­
ation is not the same for all particles and varies with 
time. Furthermore, in partitioning the problem, we 
would like to take advantage of the spatial locality 
of the particle-particle interactions. By subdividing 
the computational space into large, contiguous 
blocks. we can minimize communication since 
nearby particles are likely to be assigned the 
same processor. 

We illustrate the need to handle load balancing 
in Figure 8, which depicts a uniform block decom­
position of the computational space. Each of the 
sixteen blocks has been assigned to a processor 

numbered from pO to p15. Such a uniform decom­
position does not efficiently distribute workloads; 
for example. no work has been assigned to proces­
sors p4, p5, p10. and p11. 

A better method for decomposing non-uniform 
workloads is shown in Figure 8 (center and right), 
which illustrates two irregular block assignments 
rendered using recursive bisection [7]. In these 
decompositions, each processor receives approxi­
matelv the same amount of work. Because the dis­
tribution of particles changes over time, we must 
periodically redistribute the workload across pro­
cessors to maintain load balance. 

As in the case of the Jacobi example of Section 
3. we represent the parallel partitioning of the 
space as an array of Regions and the computa­
tional structure as an XArr ay: 

XArrayl(Grid2(PList)) bins 

where each 2d Grid contains the PList data for 
its corresponding data partition. l'\ote that this rep­
resentation is independent of whether the parti­
tioning is regular or irregular. 

The domains of the subproblems are deter­
mined by a partitioning utility which endeavors to 
evenly divide the work among the processors. The 
partitioner requires that the application furnish an 
estimate of the cost of updating the particles in 
each bin. The binning array must be periodically 
repartitioned in response to the changing spatial 
workload distribution. 

The partitioning introduces data dependencies 
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void Rebalance (XArray1 (Grid2 (PList)) t Bins, 
XArray1 (Grid2 (PList) )t NewBins, 
Region2 •Part) 

(1) Grid2(double) Work a EstimateWork(Bins); 
(2) Region2 •NewPart • RCB(Work, P); 
(3) Region2 •Ghosts • grow (New Part, P, NGHOST); 
(4) XAlloc(NewBins, P, Ghosts); 

(5) for...al.L1 (I, NewBins) 
for-1 (J, Bins) 

NewBins(l) .copy(Bins(J), Part[J]); 
end....for 

encLtor..all 
} 

Bins(J) NewBins(I) 

FIGURE 9 LP ARX code for partitioning the particle 
caleulation. The programmer supplies the application­
specific function EstimateWork(). The LPARX li­
brary provides a default partitioning function RCB () . P 
gives the number of processors and NGHOST the width 
of the ghost cell region. 

between the subproblems: particles near the 
boundary of a partition interact with particles be­
longing to other processors. One solution is to have 
each processor locally cache copies of off-proces­
sor particles. As in the Jacobi example, each local 
partition is extended with a ghost cell region. Prior 
to each force evaluation, these ghost regions are 
filled in with the most recent off-processor particle 
data. Cnlike Jacobi, the communication stn1cture 
for ghost cells is no longer regular and varies with 
time. However, because the region calculus hides 
details about data decomposition, we can use the 
same LPARX algorithm as in Section :3.4. In fact, 
we only need to change double to PList in the 
LPARX code of Figure 7. 

In summary, there are five steps to dynamic load 
balancing in LPARX: (1) estimate how much work 
is required to compute the forces for the particles 
in each bin, (2) partition the bins according to (1) 
and assign the partitions to processors, (3) pad 
each partition with a ghost cell region. ( 4) allocate a 
new binning array using the partition information. 
and (5) copy the particles from the old binning 
arrav into the new one. 

These activities are handled by Rebalance () , 
shown in Figure 9. The workload estimation (line 

1) procedure is application specific and is written 
by the programmer: typically. timing information 
from the last timestep may be used. The partitioner 
(2) takes the workload estimate and returns a de­
scription of the balanced subproblems. LPARX 
provides a standard library to handle the common 
eases, such as recursive bisection, but because 
LPARX supports user-level data decompositions, 
programmers are free to write their own. LPARX 
provides a default assignment of partitions to pro­
cessors. but the programmer may override the de­
fault if necessary. Finally. LPARX allocates the 
new binning array ( 4) using the partitioning. The 
new binning structure NewBins is initially empty; 
the two nested loops ( 5) copy the values from the 
old structure Bins. For each I and J, New­
Bins (I) is assigned the portion of Grid 
Bins (J) that overlaps with J's associated par­
tition. 

5 COMPUTATIONAL RESULTS 
AND PERFORMANCE 

LPARX has been implemented as a C++ run-time 
library with classes for Point, Region, Grid, and 
XArray. A Point is an integer vector and is used 
to construct Regions. Grid elements may be 
standard C++ types (double, int, float), struc­
tures, or other C++ classes. Further implementa­
tion details can be found in the LPARX User's 
Guide [6 J. 

LPARX requires only a standard C++ compiler 
such as GNC g+ +, and LP ARX code rna y be freely 
mixed with calls to other C++. C. or Fortran func­
tions. In facL many LPARX applications use a 
programming style which mixes both Fortran and 
C++ code: LPARX uses C++ data structures to 
manage dynamic memory allocation, and Fortran 
provides highly optimized and vectorized numeri­
cal kernels. Furthermore, programmers may not 
be required to rewrite highly optimized Fortran 
kernels when parallelizing an application. 

Some current LPARX applications include a 2d 
geographically structured genetic algorithm appli­
cation [20], a 3d smoothed particle hydrodynam­
ics method [24;, an adaptive eigenvalue solver for 
the first principles simulation of real materials [ 11, 
24], and a dimension-independent code for 2d, 
3d. and 4d connected component labeling for spin 
models in statistical mechanics [ 18]. ln the follow­
ing sections, we provide a brief analysis of LPARX 
overheads and computational results for the 
smoothed particle hydrodynamics application. 
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Table 1. Software Version Numbers and Compiler Optimization Flags for the LPARX Computations* 

C++ Fortran 

Machine Compiler Optimization Compiler Optimization Operating System 

Alphas 
C-90 
Paragon 
SP2 

g++ v2.6.2 
CCv1.0.1.1 
g++ v2.6.2 
x1C v2.1 

-02 
-02 
-02 -mnoieee 
-0 -Q 

f?? v3.3 
eft?? v6.0 
if?? v4.5.2 
xlf v:3.1 

-04 
-01 
-04 -Knoieee 
-03 

OSF/1 1.2 (PV,\1 v3.1.5) 
L:\"ICOS 8.02.2 
OSF I 1 1.0.4 R1.2.4 
AIX v3.2 

* All fwnchmarks used LPARX release v2.0. 

Software versions and compiler options for all 
computations are reported in Table 1. 

5.1 LPARX Overheads 

To provide an estimate of LP ARX overhead. we 
implemented a 3d Jacobi iterative solver with a 19-
point stencil in LPARX and by hand using message 
passing. \Ve chose the Jacobi application because 
it was simple enough to parallelize by hand. Paral­
lelizing a real application (e.g., the smoothed parti­
cle hydrodynamics code described in the following 
section) without software support such as that pro­
vided by LPARX would require a significant in­
vestment of programming pffort. 

Table 2 compares the performance of the two 
codes for a 100 X 100 X 100 mesh on 32 Paragon 
nodes. The hand-coded application made anum­
ber of simplifying assumption:,;, namely that each 
processor was assigned only one subgrid and that 
the problem was static so that it could precompute 
communication schedules. w-ithout these simpli-

Table 2. LPARX Overheads for a 3d Jacobi 
(19-point stencil) Relaxation Calculation on a 
100 X 100 X 100 Mesh on 32 Paragon Nodes* 

Bv LPARX :'lio 
I land v2.0 Barrier 

Total time (ms) 118.8 126.8 120.3 
Computation (ms) 99.9 99.9 99.9 
Communication (ms) 18.9 26.9 20.4 
.'\1essages (kilobytes) :36.5 38.1 37.4 
Message starts 11.5 21.5 11 .. 5 

* The ·'Bv Hand .. application was parallelized usinf! onlv 
messagP passinf!. The numbers for LPARX v2.0 reflect the 
current LPARX implementation. and the ·''Jo Barrier" num­
bers estimate the performance of LPARX without the global 
barrier svnchronization. All numbers measure the wall-dock 
time for one iteration of the alf!orithm and were averaged over 
100 iterations. ,\Iessage statistics represent single-processor 
averages for one itPration. 

fying assumptions, the hand implementation 
would have been considerably more difficult. 
While such assumptions may apply to this simple 
example. they are not valid for the dynamic irregu­
lar applications which are the intended target of 
LPARX. For example, adaptive mesh calculations 
may assign several subgrids to each processor, and 
particle methods change communication depend­
encies as particles move. 

Table 2 reports five performance numbers: 
total time, computation (i.e., relaxation) time, 
communication (i.e .. FillPatch ()) time, total 
number of bytes cmnmunicated, and total nurn­
her of message sends. All numbers are reported 
per iteration and were averaged over 100 it era­
tions. The performance numbers in the ·'By 
Hand" column reflect the message-passing im­
plementation: the "LPARX v2.0" column repre­
sents the performance of the current LPARX 
software release. 

The LPARX computation time is identical to 
that of the message-passing code: LPARX over­
heads appear only in the communication rou­
tines. The LPARX communication time is 42% 
slower than the message-passing version. This 
translates into an overall execution time which 
is 7% longer than the equivalent message-pass­
ing code. 

The LPARX code communicated approxi­
mately 5% more bytes than the message-passing 
implementation. Part of this overhead is duf' to the 
additional information which must be communi­
cated with each LPARX message. Because LPARX 
cannot assume that only one subgrid is assigned 
to each processor (as was assumed in the hand­
coded version), it must incorporate descriptive in­
formation into each message identifying the sub­
grid where data are to be stored. This overhead 
depends on the problem dimension and adds 
between 48 (1d) and 108 (4d) bytes to each 
LPARX message. 

Most of LPARX's communication overhead 
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can be attributed to the extra messages sent as 
part of its synchronization protocol. At the end 
of a communications loop, LPARX detects the 
termination of communication via a global reduc­
tion and barrier synchronization, which account 
for the additional message sends. However, it is 
possible to eliminate this costly synchronization 
through some simple run-time schedule analysis 
techniques [17]. The results of these optimiza­
tions are reported in the "1\"o Barrier'' column 
of Table 2. LPARX overheads now drop to ap­
proximately 1% to the total execution time of 
the program. 

5.2 Smoothed Particle Hydrodynamics 

~We present performance figures for a 3d smoothed 
particle hydrodynamics (SPH3D) applicationll 
[29]. The computational structure of SPH3D is 
similar to molecular dynamics and other particle 
calculations which exhibit short-range interac­
tions. Each particle interaction is expensive, re­
quiring approximately 100 floating point opera­
tions. Table 3 and Figure 10 present performance 
results for the SPH3D code on the Crav C-90, 
Intel Paragon. IBYl SP2,11 and a network ~f Alpha 
workstations connected by a CIGAswitch running 
PVM. Time is reported in seconds per timestep. 
Simulations were run with 12k, 24k, 48k. and 96k 
particles. All floating point arithmetic was per­
formed using 64-bit numbers. The applications 
code was identical on all machines except that the 
C-90 version gathered and scattered particles to 
obtain longer vector lengths. 

Although the numerical kernels of SPH3D vec­
torized on the C-90. the kerneb are rather compli­
cated and contain a number of conditionals which 
hinder efficient utilization of the vector units. Fur­
thermore, even though the C-90 code gathers and 
scatters particles to increase vector lengths, vectors 
are still quite short. These vectorization limitations 
are intrinsic to the algorithm and are not artifacts 
of parallelization. For 48k particles, hardware per­
formance monitors on the C-90 reported an aver­
age performance of 200 megaflops and an average 

§ The ori!-(inal scqu<>ntial SPH:~D code was prmided bv .John 
\Vallin (Institute for Computational Sciences and lnfonnatics 
at Geor!!e Mason Univcrsitv) and Curtis Struck-Marcell !De­
partment of Physics and Astronornv, Iowa State Cniversity). 

II The SP2 results were obtaint>d on a preproduction machine 
at the Cornell Theorv Center: these times should improve as 
the svstem is tuned and enters full production use. 

vector length of sixty. For this problem size, one 
processor of the C-90 is roughly equivalent to 8 
Alpha processors. 16 Paragon processors, or 4 
SP2 processors. 

The C-90 and the Alpha cluster exhibited rela­
tively poor performance on the smallest problem 
size (12k particles). The Alphas suffered because 
of the high overheads of message passing through 
PVl\L in larger problems. this overhead was hidden 
by the increased computational costs of particle 
interactions. Poor performance on the C-90 was 
due to short vector lengths. The Cray C-90 times 
improved relative to the other machines for the 
largest problem size because of increased vector 
lengths. Because LPARX applications are portable 
across a diversity of high-performance machines. 
the computational scientist may choose the most 
cost-effective architecture (e.g.. Cray C-90 or 
Alpha cluster) for a particular problem size. 

6 RELATED WORK 

LPARX's Region abstraction and its region calcu­
lus are based in part on the domain abstractions 
explored in the scientific prognunming language 
FlDlL [22j. FlDIL's domain calculus provides op­
erations such as union and intersection over arbi­
trary index sets: LPARX extends FIDlL"s calculus 
operations to provide structural abstractions for 
data decomposition and interprocessor communi­
cation. Whereas FlDlL supports the notion of arbi­
trary nonrectangular index sets, LPARX restricts 
index sets to be rectangular. A prototype of 
LPARX. called LPAR [ S J, supported FIDlL-style 
regions, but these incurred a high-performance 
penalty in applications that did not require the 
added generality. We believe that the programmer 
should pay the price of such generality only when 
necessary and advocate the inclusion of more gen­
eral FIDlL regions as a separate type. Crutchfield 
and Welcome [15] independently developed simi­
lar abstractions based on FlDIL for single-proces­
sor architectures. Based on this framework. thev 
have developed domain-specific libraries for 
adaptive mesh refinement applications in gas dy­
namics. The LPARX software is currently being 
employed to support these libraries on parallel 
computer architectures. A form of region abstrac­
tion is used in the programming language ZPL 
[28]. although ZPL 's regions are not first class 
objects: they are used as an execution mask for 
data parallel computation whereas LPARX ab-
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Table 3. This Table Presents SPH3D Performance Results on a Cray C-90, Intel Paragon, IBM SP2, and 
an Alpha Workstation Farm Running PVM* 

Cray C-90 Time Alpha Time 
Particles p = 1 P=8 

12K 2.90 2.2 
24k 5.98 4.98 
48k 14.8 15.6 
96k 38.4 56.4 

Intel Paragon Performance 

p = 8 p = 16 p = 32 p = 64 

Particles Time Speedup Time Speedup Time Speedup Time Speedup 

12k 2.2:~ 1.0 1.40 1.6 0.998 2.2 0.722 3.1 
24k 7.61 1.0 4.73 1.6 2.50 3.0 1.68 4.5 
48k 28.5 1.0 17.8 1.6 7.72 3.7 4.73 6.0 
96k 114 1.0 70.7 1.6 27.8 4.1 17.6 6.5 

IBM SP2 Performance 

p = 4 p = 8 p = 16 

Particles Time Speedup Time Speedup Time Speedup 

12k 1.28 1.0 0.803 1.6 0.563 2.3 
24k 4.12 1.0 2.44 1.7 1.57 2.6 
48k 16.1 1.0 8.85 1.8 5.50 2.9 
96k 59.9 1.0 .34.6 1.7 21.5 2.8 

* All timPs are in seconds per tirnestep. Crav times were avera!(ed overS timesteps. Alpha timPs over SO timesteps. and all other 
times over 100 tinH~steps. The C-90 measurements are CPU times on a production svstem; measurements on the Alpha famL 
Parawm. and SP2 are wall-clock times since processor nodes are not time shared. For the Paragon and SP2, speedups are reported 
relative to the smallest number of processors usPd to /(ather data. Some of thPse numbers are presented in Figure 10. 

stractions specify data decompoi-iition and express 
communication dependencies. 

In contrai-it to LPARX. HPF [21] represents 
data decompositions using an abstract index space 
called a template. Arrays are mapped to templates 
and templates are decomposed across processors 
through compile-time directives. Because tem­
plates are not language-level objects, the program­
mer has limited control over data decomposition; 
templates cannot be defined at run-time nor 
passed across procedure boundaries. To avoid 
these limitations. Vienna Fortran [12] omits tem­
plates but includes more general data decomposi­
tion directives. However, data decompositions are 
restricted to tensor products of 1 d irregular decom­
positions. and it is unclear how Vienna Fortran 
will support dynamic irregular blocking structures 
such as those required by adaptive mesh refine­
ment and recursive coordinate bisection decompo­
sitions. 

The pC++ programming language [10] imple-

ments a collection abstraction which includes a 
coarse-grain data parallel loop over objects within 
the collection: pC+ + employs a data decomposi­
tion scheme similar to that of HPF. The Multiblock 
PARTI [1] and CHAOS [16]libraries provide run­
time support for data parallel compilers such as 
HPF. CHAOS is targeted towards unstructured 
calculations such as sweeps over finite-element 
meshes or sparse matrix calculations. ~uhiblock 
PARTI hai-i been targeted to applications with a 
small number of large. static blocks (e.g .. irregu­
larly coupled regular meshes [14]). 

7 CONCLUSIONS 

LP ARX is a portable programming model and run­
time system which supports coarse-grain data par­
allelism efficiently over a wide range of ~11Y1D par­
allel platformi-i. Its structural abstraction enablei-i 
the user to manipulate data decompositions as 
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FIGURE 10 This f!raph compares SPH3D perfor­
mance results for a Cray C-90. Intel Paragon. IB~ SP2, 
and an Alpha workstation farm runninf! PVM. ~leasure­
ments were f!athered as described in Table 3. The num­
ber of processors for a particular machine was chosen 
to provide performance rouf!hly comparable to a sinf!le 
processor of a Cray C-90: processor numbers are given 
in part>ntheses. 

first-cia~~ objects. Its philo~ophy is that data parti­
tioning for irregular algorithms are heavily problem 
dependent and therefore must be under the control 
of the application. LPARX is intended for applica­
tions with changing nonuniform workloads. such 
as particle methods. and for calculations with dy­
namic, block-irregular data structures. such as 
adaptive mesh refinement. LPARX does not apply 
to unstructured methods, e.g., sweeps over finite 
element meshes or sparse matrix problems. which 
are supported by CHAOS. 

LP ARX provides three new data types: an index 
set-valued object called a Region, a dynamic 
array called a Grid. and an array of distributed 
coarse-grain elements called an XArray. Efficient 
block copies over Grids hide interprocessor com­
munication and low-level bookkeeping details. 
Coarse-grain data parallelism over XArrays is 
provided via the for_all loop. Region calculus 
operations express data dependencies in geometric 
terms independently of the spatial dimension and 
data decomposition. Such abstractions enable the 
programmer to reason about an algorithm at a high 
level. While we have emphasized the utility of 
structural abstraction for multiprocessors, such 

methods also apply to single-processor systems. 
Many scientific applications. such as adaptive 
mesh refinement. exhibit irregular data structures 
and communication patterns independent of the 
parallelism. The region calculus provides a power­
ful methodolo~ory for describing and managing 
such irregularity. 

LPARX reduces software development costs by 
promoting reusability and portability. Applications 
can be developed and debugged on workstations 
and then moved to parallel platforms for produc­
tion runs. Existing optimized serial numerical ker­
nels may be used. often with few changes, in paral­
lelized applications. Region calculus operations 
are dimension independent: thus. the same data 
decomposition and data communication code can 
be used for 2d and 3d versions of an application. 
The programmer can develop a simpler 2d version 
of the problem. and. when confident that the code 
has been debugged. apply the computational re­
sources of a parallel machine to the full 3d appli­
cation. 

LPARX separates parallel execution and data 
communication from computation. Numerical 
kernels may be optimized and tuned for a process­
ing node without regard to the higher-level paral­
lelism. Parallel performance is intimately tied to 
single-node performance: therefore. it is vital that 
computational scientists can optimize numerical 
code to reflect specific node characteristics. 

The true test of a software development tool 
is whether it is accepted by the user community. 
LPARX is currently employed in diverse scientific 
collaborations. ineluding adaptive mesh refine­
ment for gas dynamics. smoothed particle hydro­
dynamics. genetics algorithms .. and adaptive ei­
genvalue solvers for the first principles simulations 
of real materials. The LPARX software is being 
used bv researchers at the Cniversitv of California. . . 
San Diego. George .\1ason Lniversity. Lawrence 
Livermore 1\"ational Labs. and the Cornell Theory 
Center. LPARX has enabled scientists to reduce 
the development time of challenging applications 
on high-performance parallel computers. 

SOFTWARE AVAILABILITY 

The LPARX software libraries, the smoothed par­
ticle hydrodynamics application, and an adaptive 
mesh refinement method for eigenvalue problems 
in materials design are available via the ·world 
Wide Web at address http: I /www-cse. 
ucsd. edu/users/skohn/lparx. html. The 
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software is also available through the San Diego 
Supercomputer Center. 
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