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It is well known that a graph G of order p 2: 3 is Hamilton-connected if d(u) +d(v) 2: p+ 1 
for each pair of nonadjacent vertices u and v. In this paper we consider connected graphs 
G of order at least 3 for which d(u) + d(v) 2: IN(u) u N(v) u N(w)I + 1 for any path 
uwv with uv (/. E(G), where N(x) denote the neighborhood of a vertex x. We prove 
that a graph G satisfying this condition has the following properties: (a) For each pair of 
nonadjacent vertices x, y of G and for each integer k, d(x, y) s k s IV(G)I - 1, there is 
an x - y path of length k. (b) For each edge xy of G and for each integer k (excepting 
maybe one k E {3, 4}) there is a cycle of length k containing xy.

Consequently G is panconnected (and also edge pancyclic) if and only if each edge of 



96 JOURNAL OF GRAPH THEORY 

G belongs to a triangle and a quadrangle. 

84 sons, lnc. 
Our results imply some results of Williamson, Faudree, and Schelp. 0 1996 John Wiley 

1. INTRODUCTION 

We use Bondy and Murty [6] for terminology and notation not defined here and consider 
finite simple graphs only. For each vertex u of a graph G we denote by N ( u )  the set of all 
vertices of G adjacent to u. The distance between vertices u and w is denoted by d ( u , w ) .  
A path with IC and y as end vertices is called an II: - y path. A path is called a Hamilton 
path if it contains all the vertices of G. A graph G is Hamilton-connected if every two 
vertices of G are connected by a Hamilton path. 

Let G be a graph of order p 2 3. G is called panconnected if for each pair of distinct 
vertices 5 and y of G and for each 1, d(z,  y) 5 1 5 p - 1, there is an IC - y path of length 
1 .  G is called pancyclic if it contains a cycle of length 1 for each 1 satisfying 3 5 1 5 p .  G 
is called a vertex pancyclic (edge pancyclic) if each vertex (edge) of G lies on a cycle of 
every length from 3 to p inclusive. 

The following results are known. 

Theorem 1. 
each pair u, w of nonadjacent vertices. Then G is Hamilton-connected. 

(Ore [12]). Let G be a graph of order p 2 3, where d(u) + d(v) 2 p + 1 for 

Theorem 2. 
of the following two conditions hold: 

(Williamson 1131). A connected graph of order p 2 3 is panconnected if any 

(a) d(u) 2 ( p  + 2)/2 for each vertex u of G, 
(b) d(u)  + d ( w )  2 (3p  - 2)/2 for each pair of nonadjacent vertices u, w of G. 

Theorem 3. (Faudree and Schelp [8]). If G is a graph of order p 2 5 with d(u)  + d(v )  2 
p + 1 for each pair of nonadjacent vertices u,v  then G contains a path of every length 
from 4 to n - 1 inclusive, between any pair of distinct vertices of G. 

A shorter proof of Theorem 3 was given by Cai [7]. From results of Bondy [5] and 
Haggkvist et al. [lo] it follows that every graph G satisfying the condition of Theorem 1 
is pancyclic. Some other properties of graphs satisfying the condition of Theorem 1 were 
obtained in [4, 9, 14, 151. 

The following generalization of Theorem 1 was found by Asratian et al. [l]. 

Theorem 4. [l]. Let G be a connected graph of order at least 3 where d(u) + d(v) 2 
IN(u)uN(w)ulV(w)l+l for any path uww with uw $! E(G) .  Then G is Hamilton-connected. 

Denote by L the set of all graphs satisfying the condition of Theorem 4. It was proved 
in [3] that every graph from L is pancyclic, and in [2] it was shown that a graph G E L is 
vertex pancyclic if and only if each vertex of G lies on a triangle. 

In this paper we show that a graph G E L has the following properties: 

(a) For each pair of nonadjacent vertices 2, y of G and for each integer n, d(s,  y) 5 n 5 
IV(G)l - 1, there is an II: - y path of length n. 
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(b) For each edge zy and for each integer k , 3  5 n 5 IV(G)(,  (excepting maybe one 
k E {3,4}) there is a cycle of length k containing zy. 

This implies that a graph G E L is panconnected (and also edge pancyclic) if and only 
if each edge of G lies on a triangle and on a quadrangle. 

Note that for each T >_ 2 and each p 2 3 there exists a panconnected graph G , ,  E L 
of order p r  with diameter T :  its vertex set is ~ ; = ~ v  where V,, Vl, . . . , V, are pairwise 
disjoint sets of cardinality p and two vertices are adjacent if and only if they both belong 
to V ,  u V,,, for some i E {0,1, .  . . , T - I}. 

2. NOTATION AND PRELIMINARY RESULTS 

Let P be a path of G. We denote by P' the path P with a given orientation and by the 
path P with the reverse orientation. If u,w E V ( P ) ,  then upv denotes the consecutive 
vertices of P from u to w in the direction specified by P. The same vertices, in reverse 
order, are given by w u. We use w+ to denote the successor of w on P' and w- to denote 
its predecessor. We denote by N ( P )  the set of vertices w outside P with N ( v ) n V ( P )  # 0. 
If W C V ( P )  then W+ = {w+/w E W }  and W -  = {w-/w E W } .  

We will say that a path P contains a triangle alu2a3a1 if u l ,  a2, a3 E V ( P ) ,  u1a3 E E(G)  
and uf = u2 = a;. A path P containing a triangle A is denoted by PA. The set of all 
triangles contained in PA we denote by T(pA). We assume that an z - y path P has an 
orientation from z to y. A path on n vertices will be denoted by PTL. 

Let A and B be two disjoint subsets of vertices of a graph G. We denote by E ( A , B )  
the number of edges in G with one end in A and the other in B. 

Proposition 1. ill]. G E L if and only if for any path uww with uu $ E(G)IN(u) n 
N(v)I 2 IN(w) \ ( N ( u )  U N(v) ) t  + 1 holds. 

Corollary 1. If G E L then G is 3-connected and IN(u) n N(v)J 2 3 for each pair of 
vertices u, w with d(u, w) = 2. 

Proof. Let d ( u , w )  = 2 .  If w E N ( u )  n N ( v )  then u, w E N ( w )  \ ( N ( u )  U N ( v ) )  and, by 
I Proposition 1, IN(.) n N(w)l 2 3. This implies that G is 3-connected. 

Proposition 2. Let G E L and z, y be two vertices of G with d(z,  y) = 1 2 2. Then there 
exists an z - y path P e 2 .  

Proof. Let P = uoul . . . ul be an z - y path of length 1 = d(s ,  y) where uo = 2 and 
u~ = y. If there is a vertex outside P which is adjacent to two consecutive vertices of P then 
there is an 2-y path Pe2.  Suppose that there is no such vertex outside P. Since d(u0 ,  u2)  = 
2 then, by Proposition 1, we have JN(a0) n N(u2)J 2 JN(u1) \ (N(uo)  U (u2))J + 1 2 3. 
Clearly, 

N ( u o )  n V ( P )  = N ( u o )  n N ( u 2 )  n v ( P )  = {ul j. (1) 

Let N(uo) n N(u2) = {wI , .  . . , wk) where k 2 3 and w1 = u1. Furthermore, let IN(wl) n 
N(wz)J = m. If wiwj $Z E(G) for each pair i , j ,  1 5 i < j 5 Ic, then using (1) and 
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Proposition 1 we obtain 

m = (N(w1) n N(w2)l 2 1 + lN(uo)  \ (N(wl)  u N(w2))l 2 k + 1. (2) 

Furthermore, since N(w1) n N(w2) C N(w1) = N(w1) \ (N(u0) U N(uz) )  then k = 
IN(u0) n N(u2)l L 1 + IN(w1) \ (N(u0) U N(u2))I 2 1 + m, which contradicts (2). Hence 
wiw3 E E(G) for some pair i , j .  Then there is an x - y path P k Z  = u0wiwp2 .. .ul with 
A = X W ~ W ~ X .  I 

Proposition 3. Let G E L and zy E E(G).  Then there exists an z - y path P," where 
4 5 n 5 6 .  

Proof. Two cases are possible. 

Case 1. xy does not lie on a triangle. 
Since G is 3-connected we have d(z)  2 3. Let ulz E E(G) and u1 # y. Since d(ul ,  y) = 

2 and IN(y) n N(ul)l 2 2 there exists a vertex u2 E N ( u l )  n N(y),  u 2  # x. Consider a 
path P = ~ 0 ~ 1 ~ 2 ~ 3  where uo = z and u3 = y. Clearly, uou2,u1u3 $ E(G),d(uo,uz) = 2 
and ~ 0 ~ 3  E E(G).  Now we can prove, by repeating the proof of Proposition 2 with (1) 
changed to N ( u o ) n v ( P )  = N ( ~ ~ ) n N ( u ~ ) n v ( P )  = {ulru3}, that thereexists an u 0 - u ~  
path P k .  Consequently there exists an z - y path P k  , because x = uo and y = u3. 

Case 2. zy lies on a triangle zyzx. 
Since G is 3-connected we have d(z )  L 3. If there is a vertex u E N ( z )  \ {z,y} such 

that uz E E(G)  or uy E E(G) then we have an x - y path P f -  
If no such vertex exists then uz, uy 6 E(G) for each vertex u E N ( z )  \ {z, y}. Consider 

a vertex w E N(z)\{z, y}. Then d(w, z) = 2 and there is a vertex u1 E (N(z)nN(w))\{z}. 
Consider a path P = 2 ~ 0 ~ 1 ~ 2 ~ 3  where uo = z , u 2  = w,u3 = z .  Clearly, y u 3  E E(G) and 
yu1, yu2, uouz, u1u3 @ E(G).  Using the same arguments as in Case 1 we will obtain that 
there is an uo - u3 path P e .  Since z = uo and yu3 E E(G)  then there is an z - y 
path P e .  I 

3. MAIN RESULTS 

Theorem 5. Let G E L and x, y be two distinct vertices of G. If there exists an z - y path 
P," such that 4 5 n 5 IV(G)l - 2 then there exists an x - y path Pf$t where 1 5 t 5 2. 

Since G is connected and n < IV(G)l then N ( P 2 )  # 0. For each v E N(P,") 
we denote by W, the set N ( v )  n V ( P k ) .  Let U1 = {v E N(Pt) / lWvl  = 1) and U2 = {v E 

Suppose there does not exist an z - y path P;it, where 1 5 t 5 2. Then the following 

Proof. 

N ( P k ) / l ~ v l  L 2 and W7J \ {x, Y} # 0). 

properties hold. 

Property 1. ww+ @ E(G) for each w E N ( P f )  and each w E W, \ {y}. 

Property 2. If v E Ul, W, = {w} and w $! {z, y} then the set T ( P k )  contains the unique 
triangle w - ww + w - . 

Proof. Let C Z ~ C Z ~ U ~ C Z ~  be a triangle from the set T ( P f ) .  Suppose u2 # w. Since d(v, w-) = 
2 = d(w, w+) then, by Corollary 1, there exist vertices u1 and 212 such that w1 E ( N ( v )  n 
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N ( w - ) )  \ V(P,") and v2 E ( N ( v )  n N(w+)) \ V(P,"). This gives an x - y path 
+ 

zPkw-vlvwF,"y if a2 E w+ZJty 
xZJ,"wvv2w+9,"y if a2 E xZJtw- 

I 

I P:$2 = 

with A1 = alaZa3al such that V ( P t )  c V(Pt$,), a contradiction. 

Property 3. Uz # 0. 

Proof. Since G is 3-connected then there exists a vertex v f N(P,") such that W, \ 
{x, y} # 0. Let w E W, \ {x, y}. If v # UZ then v E U1 and, by Property 2, W-WW+W- is 
the unique triangle in the set T(P;). Since d(v, ws) = 2, IW,l = 1 and IN(v)nN(w+)l 2 3 
then there is a vertex u E ( N ( v )  n N(w+)) \ V(P,"). By Property 2, u # Ul. Therefore 

Property 4. Let v E Uz and Q be a subset of the set W, = {wl,. . . , w,} such that y @ Q. 
Then 

u E u,. I 

and 

w:wf # E(G) for each pair of vertices w,, wJ E Q. ( 5 )  

Proof. Clearly, (3) follows from Proposition 1. If (4) does not hold for some w, E Q 

with A, = a1a2a3a1, a contradiction. So (4) holds. If (5) does not hold then w,fw; E 
E(G)  for some pair of vertices w,, wJ E Q where i < j. Then there is an x - y path 

' then there is avert ex^^ E (N(v)nN(w,f))\wv andanx-ypathp;', = xPn 'A w,vvlw, fPty  

Pn";l = xPn 'A w,vw3 P ~ w ~ w ~ @ y  with - 

ala2a3al if a1 # wz+F,"w3 & = {  a3a2a1a3 otherwise. 

a contradiction. So (5) holds. I 

Property 5. Let a1a2a3~1 be a triangle from the set T(Pt) .  Then {a1,a2} n W, # 0 # 
{ a,, a3}  n W, for each vertex v E U2. 

Proof. Suppose that { a l ,  a,} n W, = 0 and let w1,. . . , up denote the vertices of W, 
occurring on P," in the order of their indices. Set Q = ( ~ 1 , .  . . , w ~ - ~ } .  Then, by Property 
4, we have (3), (4), and (5). Since up can be adjacent to each vertex w: then 
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Furthermore, 

C IN(w,) \ ( N ( v )  U N(w,f))l 2 4Q, Q+) + P  - 1 (7) 
W ,  EQ 

since 'u # Q+ and v E N(w,) \ ( N ( v )  U N(w,f))  for each i = 1, .  . . , p  - 1. Clearly, (7) is 
equivalent to 

C (IN(w,) \ ( N ( v )  U N(.~,f))l+ 1) 2 E(Q, Q+) + 2 ( p  - 1). (8) 
WECZ 

But (6) and (8) contradict ( 3 ) .  So {al, u2} n W, # 0. 
We can prove {a3,  a 2 }  n W, # 0 by considering the path 5; and the triangle a:ja2a1a3 

I and using the above arguments. 

Property 6. /Wt,l 2 3 for each vertex v E UZ. 

Proof. Let A = u1u2a3u1 be a triangle from the set T(P,"). Suppose W, = (w1, w2} 
for some v E U2 where w1 and w2 occur on P," in the order of their indices. Since v E U2 

then W, \ {3:,y} # 0. W.1.o.g. we assume w2 # y. Then there is T E {1,2} such that 
w,t # {al, a2,  u 3 } .  Since d(v, w,f) = 2 then ( N ( v )  n N(w>)l 2 3 and there exists a vertex 

I 

4 v1 E ( N ( v )  n N(w;)) \ W, together with an 3: - y path P,"+2 = xPTL 'A wTvu~w$P,"y, a 
contradiction. So lW2,1 2 3 for each v E UZ. 

Property 7. Let v E U2.  Then a2 E W, for each triangle ala2agal from the set T ( P t ) .  

Proof. Let w1 , . . . , wp denote vertices of W, occurring on P," in the order of their 
indices. By Property 6, p 2 3. Suppose a2 6 W, for some triangle u1a2a3a1 from the 
set T(P,"). Then, by Property 5 ,  al = Wk,a3 = w l ~ + ~  and u2 = w t  = wk+l for some 
Wk E W,. W.1.o.g. we assume k < p - 1. (Otherwise we will consider the path 5 ,".) 
Clearly W;+~W:+~ 6 E(G). Set Q = W, \ (wk, wp}. Then, by Property 4, we have (3),  (4), 
and (5). Since the vertices Wk and wp can be adjacent to each vertex w: E Q+ we have 

- 

Furthermore, 

because w;+~ # Q+,w;+,+, E N ( w k + ~ )  \ ( N ( u )  U N ( w ~ + ~ ) )  and v @ Q + , v  E N(w,) \ 

( 1  1) 

(N(w;) U N ( v ) )  for each w, E Q. Clearly, (10) is equivalent to 

C (IN(w,) \ ( N ( v )  U N(w,f))l+ 1) 2 4Q, Q+) + 2 ( p  - 2) + 1. 
w,EQ 

But (9) and (11) together contradict (3 ) .  I 

Property 8. Let Y E U2 and w1,. . . , wwp denote vertices of W, occurring on P," in the 
order of their indices. Then w,-w,' E E(G)  for each i = 2 , .  . . , p  - 1. 
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Proof. Let A = u1u2u3a1 be a triangle from the set T(P,"). Then, by Property 7, 
u2 = w, for some T ,  1 5 T 5 p .  W.1.o.g. we assume T 5 p - 1. (Otherwise we will consider 
the path f ;  i.) Let us show that 

if k < p -  1 and wiw; E E(G)  then W;+~W~+~ E E(G). (12) 

Set Q = W, \ {wh,wp}. If W;+~W~++~ @ E(G)  then, by repeating the arguments in the 
proof of Property 7, we obtain (3), (4), (3, (9), and (1 1). But (9) and (1 1) contradict (3). 
So, wzw,' E E(G) for each i ,  T 5 i 5 p - 1. If T > 2 then we will consider the path pe. 
Using the above arguments we obtain w,w,' E E(G) for each i ,  2 5 i 5 T - 1. 

Now using the above properties we will obtain a contradiction. Let u E U2 and 
w1,. . . , wp be vertices of W, occurring on P," in the order of their indices. By Prop- 
erty 8, w,-w,' E E(G)  for each i = 2, . . . , p - 1. Clearly, 

d(w:, u) = 2, N ( v )  n N(wT) C W, and IN(v) n N(w:) 2 3. (13) 

Hence there is a vertex w, E W, which is adjacent to w;. If p 2 4 then there is an x - y 
path $til = xP,"wlvw,w~P,"w~w~P~y with 

+ + + 

w;w,w,+w; if m > 2 
if m = 2 A 1 = {  w,w,w;w, 

a contradiction. So, p = 3. From (13) we obtain 

IN(v) n N(w:)l = 3 and wfw, E E(G) for i = 1,2,3. (14) 

Since G is connected and n 5 IV(G)I - 2 there is a vertex u E N(P,") \ {u). Using 
Properties 2 and 7 with the vertex u and the triangle w;w2wzfw; we obtain w2u E E(G).  
Clearly, uu q! E(G).  (Otherwise there is an x - y path 

with A, = vuw2v, a contradiction.) Furthermore, w:u @ E(G).  (Otherwise there is an 

So, w2 E N(w:) n N ( v )  and u,v,  w; E N(w2) \ ( N ( v )  U N(w:)). Hence, by Proposition 
1, we obtain IN(v) n N(w:)l 2 4, which contradicts (14). The proof of Theorem 5 is 

+ 
x - y path P,;2 A = x ~ ~ w ~ v w ~ u w ~ P , " w ~ w ~ ~ ~ y  with A1 = w~uwTw:!, a contradiction.) 

complete. I 

Theorem 6. Let G E L. Then, for each edge xy E E(G) and for each integer, n, 3 5 n 5 
IV(G)I, (except maybe one n E {3,4}) there is a cycle of length n containing xy. 

Proof; Let xy E E(G). Since zy lies on a triangle or on a quadrangle (see proof 
of Proposition 3) it is sufficient to prove that there exists an x - y path P, for each 
n,5 5 n 5 IV(G)I. By Proposition 3 there exists an x - y path P," where 4 5 s 5 6. 
Hence there also exists an x - y path Ps-l. Suppose there exist an x - y path Pi for each 
2 ,s -  15 i 5 n -  1, and an a-y path P,", where s 5 n 5 IV(G)l- 1. 

If n 5 IV(G)l- 2 then, by Theorem 5, there exists an x - y path Pf\;t where 1 5 t 5 2. 
If t = 2 and Al = w-ww+w- then we can obtain an x - y path Pn+l by deleting the 
vertex w from ~n";~. 
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Suppose now that n = IV(G)I - 1 and let w be the unique vertex outside P,". Let 
w l ,  . . . , wp be the vertices of W, occurring on P," in the order of their indices. Since G 
is 3-connected we have p 2 3. If w,' = w,+1 for some i, 1 5 i I p - 1, then there is a 
Hamilton z - y path. Let w,' # w,+~ for each i = 1 , .  . . , p  - 1. Set Q = W, \ {y}. Clearly 
(3) holds. Let us show wz'w,' E E(G) for some w,, wj E Q. Clearly N ( v )  n N(w,') C W, 
for each w, E Q. If w,'w,' @ E(G) for each pair of vertices w,, wI E Q then (6),  (7), and 
(8) hold. But (6) and (8) contradict (3). So w,'w; E E(G) for some w,, wj E E(G) where 

Repetition of our argument shows that there is an z - y path P, for each n, s 5 n 5 
I 

Using Proposition 2 instead of Proposition 3 and the same arguments as in the proof 

i < j .  Then there is a Hamilton z - y path P,+I = xP, 'A w,uw., P ,  " A  w, f wI +@A , y. 

IV(G)l. This proves the theorem because 4 5 s 5 6. 

of Theorem 6 we can prove the following. 

Theorem 7. 
each n, d(z ,  y) + 1 5 n 5 IV(G)I, there exists an z - y path P,. 

7 we can obtain the following. 

Let G E L and z, y be two distinct vertices of G with d(z,  y) 2 2. Then for 

Clearly, Theorems 6 and 7 imply Theorem 3. Moreover, from Theorem 6 and Theorem 

Theorem 8. 
every edge of G lies in a triangle and a quadrangle. 

Corollary 2. A graph G satisfying the condition of Theorem 1 is panconnected if and 
only if each edge of G lies in a triangle and a quadrangle. 

It is not difficult to check that in every graph satisfying the condition of Theorem 2 
each edge lies on a triangle and a quadrangle. So, Theorem 2 follows from Corollary 2. 

Corollary 3. Let G be a connected r-regular graph of order at least 4 where IN(u) u 
N(w) U N(w)l 5 2r - - 1 for any path uwv with uu @ E(G).  Then G is panconnected unless 
r = 2n and G = K2n-1 V nK2 where nK2 denote the union of n disjoint copies of K 2 .  

A graph G E L is panconnected (and also edge pancyclic) if and only if 

Proof. If each edge of G lies in a triangle and a quadrangle then, by Theorem 8, G is 
panconnected. Now suppose that an edge e = zy does not lie in a triangle or a quadrangle. 
Let N ( z )  = { y , v l , .  . . , u , -~} .  If N ( z )  n N(y)  = 0 then IN(y) u N(wl) u N(z)I 2 2r 
because G is r-regular, a contradiction. 

So N ( z )  n N(y) # 0. Without loss of generality we assume that yvl E E(G) .  Since 
zy lies in the triangle zyvlz  then, by our assumption, zy does not lie in a quadrangle. 
Hence u1u, g! E(G) for each i = 2 , .  . . , r  - 1. Let N ( q )  = {z, y, u l , .  . . , u , -~} .  Since 
IN(z)  u N(w,) u N(v1)l 5 2r - 1 and {z, y, u1,. . . , U , - Z , V I , .  . . , v,-~} C N ( z )  U N(v,)  U 
N(v1) then IN(z)  U N(v,)  U N(v1)l = 2r - 1 for each i = 2 , .  . . , r - 1. This implies that 
N(v,)  = { z , y , u ~ ,  . . . ,u,-2} for each i = 2 , .  . . , r  - 1 and N(y) = {z, ~ 1 , .  . . ,vr- l} .  If 
N ( u J )  \ {ul ,  . . . , u,-2, q ,  . . . , vr - l }  # 0 for some j ,  1 5 j 5 r - 2, then IN(uI)  u N(v1) U 
N(z)l  2 2r, a contradiction. So, N(u,) C_ {ul, . .  . ,~,-~,w1,.. .,w,-I} for each j = 
1, . . . , r - 2 .  Since G is r-regular we deduce that r - 2 is an even number and the subgraph 

I 
Let, for each vertex w of a graph G, M2(w) denote the set of vertices w with d(w, v) 5 2. 

Corollary 4. Let G be a connected r-regular graph of order at least 4 where (M2(w)l 5 
2r - 1 for each w E V(G) .  Then G is panconnected unless r = 2n and G = K2,-1 VnK2. 

induced by the set { u l , .  . . , ~ ~ - 2 )  is a 1-factor. So, r = 2n and G = K2n-l v nK2. 
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Proof. Let uww be a path of G with uw 6 E(G). Clearly, N(u)UN(w)UN(w) C M2(w). 
Hence, 1M2(w)[ 5 2r - 1 implies IN(u) u N ( v )  u N(zo)I 5 2r - 1. Therefore, by Corollary 
3, G is panconnected. I 
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