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Abstract: Haemophilus influenzae type b (Hib) is one of the leading causes of invasive bacterial 

infection in young children. It is characterized by inflammation that is mainly mediated by 

cytokines and chemokines. One of the most abundant components of the Hib outer membrane 

is the P2 porin, which has been shown to induce the release of several inflammatory cytokines. 

A synthetic peptide corresponding to loop L7 of the porin activates JNK and p38 mitogen-

activated protein kinase (MAPK) pathways. We report a novel use of the complementary peptide 

approach to design a peptide that is able to bind selectively to the protein P2, thereby reducing 

its activity. This work provides insights into essential molecular details of P2 that may affect 

the pathogenesis of Hib infections where interruption of the signaling cascade could represent 

an attractive therapeutic strategy.
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Introduction
Peptide–peptide interactions play a fundamental role in cellular processes.1,2  

De novo designed peptide ligands aimed at particular binding sites on target proteins 

can lead to a better understanding of this kind of molecular interaction3 and allow the 

discovery of novel therapeutics. An effective way to design functional peptide ligands 

is the antisense peptide approach.

Antisense peptides, defined as peptides coded by antisense (negative) strands of 

DNA, are able to interact specifically with the sense peptide in a way that is com-

parable to the specific interaction between the sense and complementary strands of 

DNA. Several sense and antisense peptide pairs have been reported to bind to each 

other,4 which might be correlated to the fact that the antisense peptide is the hydro-

pathic complement of the native sequence.5 There have been numerous reports of the 

successful identification of peptide–peptide interactions based on these principles.6–14 

However, the mechanism of interactions is still debated under two main hypotheses. 

In the molecular recognition theory (MRT), the sense and complementary strands of 

DNA must always code for peptide sequences that are opposite in hydropathic profile 

to each other, and therefore have mutually complementary shapes, so they should be 

able to interact specifically.5,15 In the Mekler-Idlis (M-I) pair theory,12 each amino acid 

in a sense peptide interacts with its corresponding codon-directed amino acid residue 

in an antisense peptide in a specific and pair-wise way. Owing to the degeneracy of 

genetic codes, each given amino acid residue is coupled to more than one amino acid 

residue. Accordingly, there is more than one antisense peptide corresponding to a 

defined sense peptide, which is called the degeneracy of antisense peptide. Both theories 
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provide new insight into the design and selection of antisense 

peptides with a strong affinity for sense peptides.16

The treatment of bacterial infections with antibiotics is 

one of the key concepts of human medicine. However, the 

effectiveness of antibiotics has become limited owing to an 

increase in bacterial antibiotic resistance, which presents a 

global health problem with a strong social and economic 

impact. Thus, there is an urgent need for the development 

of antibiotics with a novel mechanism of action. Bacterial 

pathogenicity is largely dependent on its surface structures. 

Among the components of the bacterial outer membrane, 

outer membrane proteins (OMPs), such as the porins, play a 

fundamental role in pathogenicity and in protection.17

Haemophilus influenzae, a Gram-negative bacterium 

belonging to Pasteurellaceae, is responsible for a variety of 

infections in humans and animals, which range from local 

respiratory infections to serious invasive diseases. Thus, 

an understanding of the structure-function relationships 

of Haemophilus influenzae type b (Hib) components 

may provide opportunities to develop novel antibacterial 

agents.

Bacterial surfaces are important when considering the 

interaction with host cells and tissues in the context of 

pathogenesis and immunity. The identification of surface 

components may highlight domains that are likely to be 

involved directly in the interaction with the host18 and 

may be critical for reducing the number of targets for 

the design of potential vaccines. A key component of the 

Gram-negative bacterial outer membrane, porins play an 

important role in pathogenesis of bacterial infections, and 

stimulate immunological responses inducing the release of 

several cytokines.18,19 Structural analyses have revealed that 

bacterial porins exist as homotrimers of intimately associated 

subunits. The folding pattern of each monomer is constituted 

by 16 or 18 anti-parallel β-strands crossing the outer mem-

brane and loops that connect the β-strands on either side 

of the membrane. The whole structure is an anti-parallel 

β-barrel with eight large loops of variable length on the 

external surface of the bacterial membrane and eight short 

periplasmic turns.20 This tight conformation, inserted into 

the outer membrane, forms a compact molecule with cell-

surface-exposed domains involved in various activities.20 

The importance of surface-exposed loops of porins has been 

the focus of recent studies.21 Some of the surface-exposed 

loops are involved in the recognition of ligands, including 

small molecule nutrients, agents such as bacteriophages or 

colicins, and probably eukaryotic target cells for bacterial 

pathogens.

Porin P2 of Hib,22 one of the best-characterized porins in 

terms of its functional characteristics, is the most abundant 

OMP in nontypeable H. influenzae (NTHi) and in Hib. Its 

molecular mass varies between 36 and 42 kDa, and it is 

present in all strains and functions as a porin.22 P2 contains 

16 anti-parallel β strands across the outer membrane, eight 

large loops of variable length on the external surface of the 

bacterial membrane, and eight short periplasmic turns21 

(Figure 1A). All transmembrane regions are relatively 

conserved among strains, while considerable heterogeneity 

exists in loop regions.21 The β-barrel spans the entire outer 

membrane, forming a trimer with the three-barrel axes almost 

mutually parallel and perpendicular to the membrane. With 

regard to other porins, one large loop (loop L3), folding 

back into the channel, determines effective pore cross sec-

tion and consequent molecular exclusion limit, as well as its 

physiological and conductivity properties.21

Recently, it has been demonstrated that porin P2 from 

Hib induces activation of signaling pathways in U937 cells 

through the MEK1-MEK2/MAPK cascade.21,23,24 Peptide 

sequences corresponding to variable loop regions facing 

the cell exterior are able to activate this cascade and pro-

vide mitogen-activated protein kinase (MAPK) pathway 

activation similar to that of the entire porin. In particular, 

we have reported that a synthetic peptide (L7) correspond-

ing to loop 7 of protein P2 is mainly responsible for the 

activation of MEK1/MEK2/MAPK signaling pathways. 

We also investigated the role of synthetic peptide L7 of 

porin P2 in an experimental model in the initial phase of 

systemic inflammation and coagulation responses in vivo. 

We found that L7 significantly induces pathophysiological 

changes on both hemodynamic and coagulation parameters, 

and observed a modification of the circulating markers 

of endothelial injury during Gram-negative bacterial 

sepsis.25

Agents that interfere with ligand binding and/or the 

formation of the higher order complexes would clearly have 

therapeutic potential and/or be useful biological tools. In this 

context, biological active peptides might be developed as 

specific antagonist of loop L7 and serve as useful tools in the 

drug discovery process. In this study, we designed peptides 

complementary to loop L7, which may be used to block the 

activity of the porin and may provide new opportunities to 

the design of novel agents that could be added to the existing 

therapeutic options in order to obtain complete coverage. 

This strategy may represent a novel approach for the design 

of antibacterial drugs that could be used against a wide range 

of Gram-negative bacteria (Figure 1B).
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Materials and methods
Cell lines
U937 monocytes (ATCC CRL-1593.2) were grown and dif-

ferentiated as previously described.26

Bacteria and growth conditions
H. influenzae type b (Hib), (ATCC 9795), and Salmonella 

enterica serovar Typhimurium (strain SH5014) were grown 

in CY medium and nutrient broth (Difco), respectively, for 

18–24 hours at 37°C. Cells were harvested at the end of the 

exponential growth phase.

Preparation of hib and Salmonella  
OmpC Porins
Hib and OmpC porins were isolated and purified from bacterial 

cells as previously reported.27,28 The protein content of the porin 

preparation was determined by the method of Lowry et al29 and 

checked by SDS-PAGE according to Laemmli.30 All possible 
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Figure 1 Three dimensional model of the P2 monomer from hib (panel A) showing the target of our study, loop L7; signal transduction pathways analyzed in this study and 
their inhibition with complementary peptides (panel B); Kyte-Doolittle hydropathy plots of L7 and complementary peptides (panel C).
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traces of LPS (lipopolysaccharides) were revealed on 

SDS-PAGE stained with silver nitrate as described by Tsai 

and Frasch31 and by the Limulus-amoebocyte-lysate assay 

(Limulus test) according to Yin et al.32 Using the Limulus test, 

LPS contamination in the porin preparation was estimated to 

be about 0.001% w/w. The pore-forming ability of our prepa-

ration was checked by a functional assay (liposome swelling 

assay) after the incorporation into proteoliposome according 

to Nikaido and Rosenberg.33

Peptide synthesis
Peptides (Table 1) were synthesized using the standard solid-

phase 9-fluorenylmethoxycarbonyl (FMOC) method and 

purified as reported previously.21,23 All purified peptides were 

obtained with good yields (70%–80%) and a purity . 95%. 

A scrambled peptide, with the same composition, but a dif-

ferent sequence from L7, was also synthetized as a control 

to state the sequence-dependency of the results.

Nitrobenzoxadiazolo (NBD) labelling was performed on 

resin-bound peptides as previously reported by Rapaport and 

Shai.34 The identity of the NBD-peptides was confirmed by 

LC/MS. All the peptides were detoxified before being tested 

on cells. Detoxification was performed by using Detoxi Gel™ 

Affinity Pak columns supplied by Pierce (Rockford, Il).35

Analysis of kinase phosphorylation
U937 cells (3 × 106 cells/mL) were stimulated by differ-

ent concentrations of stimuli for different periods. In some 

experiments, the complementary peptides C1, C2, C3, and 

C4 were preincubated for 60 minutes at 37°C with Hib porin 

or loop L7 and then used for U937-stimulation.

After incubation, the cells were prepared as previously 

reported21 and used for enhanced chemiluminescence (ECL) 

Western blot analysis. Immunoprecipitation was carried out 

with the appropriate antibodies: (1) anti-phospho-p44/42 

MAPK (Thr 202/Tyr 204) E10 monoclonal antibodies 

(isotype, mouse IgG1; anti-phospho-p44/42; New England 

Biolabs, Beverly, MA), which detects doubly phosphorylated 

threonine 202 and tyrosine 204 of p44 and p42 MAPKs 

(ERK1 and ERK2) and are produced by immunizing mice 

with a synthetic phospho-Thr202 and phospho-Tyr204 pep-

tide corresponding to residues around Thr202 and Tyr204 

of human p44 MAPK; (2) anti phospho-MEK1/2 antibody 

(anti-p-MEK1/2; New England Biolabs, Ipswich, MA), 

which detects MEK1/2 only when it is activated by phospho-

rylation at Ser217 and Ser221 and does not cross-react with 

other related family members; (3) anti-phospho-p38 antibody 

(Santa Cruz Biotechnology Inc, Santa Cruz, CA), which is a 

rabbit polyclonal antibody raised against a peptide mapping 

at the amino terminus of p38 of mouse origin identical to 

the corresponding human sequence and is directed against 

Thr180 and Tyr182-phosphorylated p38 (New England 

Biolabs); (4) anti-phospho-JNK antibody, which is a mouse 

monoclonal IgG1 antibody raised against a peptide cor-

responding to a short amino acid sequence phosphorylated 

on Thr183 and Tyr185 of JNK of human origin (Santa Cruz 

Biotechnology Inc). Blots were blocked for 1 hour at room 

temperature in Tris-buffered saline (TBS [150 mM NaCl, 

20 mM Tris–HCl, pH 7.5]) containing 1% BSA (Sigma-

Aldrich SRL, Milan, Italy) plus 1% blotting grade blocker 

non-fat milk (Bio-Rad Laboratories, Hercules, CA). Mem-

branes were subsequently washed twice with TBS containing 

0.05% Tween-20 (TTBS) before incubation for 1 hour at room 

temperature with anti-phosphokinase antibodies (as described 

earlier) diluted in TBS containing 1% bovine serum albumin 

(BSA). After six washings with TTBS for 3 minutes, poly-

vinylidene difluoride (PVDF) membranes were incubated at 

room temperature for 2 hours with anti-mouse or anti-rabbit 

immunoglobulin G (IgG) horseradish peroxidase-linked 

(HRP) secondary antibodies diluted 1:3.000.

Enzyme-linked immunosorbent  
assay for cytokines
All assays were carried out using 3 × 106/mL U937 cells stim-

ulated with different concentrations of stimuli for 24 hours at 

37°C in 5% CO
2
 (time points and concentrations have been 

established in preliminary experiments and optimized for 

maximum release of cytokines). The complementary peptides 

C1, C2, C3, and C4 were preincubated for 60 minutes at 37°C 

with Hib or loop L7 and then used for U937 stimulation. 

The samples were centrifuged at 1800 rpm at 4°C for 

10 minutes, and the supernatants were collected and stored 

at −80°C. TNF-α and IL-6 release were measured by AviBion 

Human ELISA kits from Orgenium Laboratories (Vantaa, 

Finland), according to the manufacturer’s recommendations. 

The assays employ an antibody specific for human TNF-α 

Table 1 Peptide sequences

Loop 7 NH2– T – S – V – D – Q – G – E – K –COOH

Sense-RNA 5′–ACU–UCU–GUA–GAU–CAA–GGU–GAA–AAA– 3′

Antisense- 
RNA

3′–UGA–AGA–CAU–CUA–GUU–CCA–CUU–UUU– 5′

C1 COOH– S – R – Y – I – L – T – F—F    –NH2

C2 NH2
– G – R – H – L – V – P – L – F –COOH

C3 NH2
– W – R – Q – L – V – P – L – F –COOH

C4 NH2
– S – T – L – K – N – L – K – E –COOH

Scrambled NH2
– G – V – Q – K – S – D – T – E –COOH

Abbreviation: RNA, ribonucleic acid.
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or IL-6 coated on a 96-well plate. Standards, samples, and 

biotinylated anti-human TNF-α or IL-6 were pipetted into 

the wells, and TNF-α or IL-6 present in the samples were 

captured by the antibodies immobilized to the wells and by 

the biotinylated specific detection antibodies. All analyses 

were performed at least four times for each individual cell-

stimulation assay.

AP-1 and NF-κB activation analysis
To detect and quantify AP-1 and NF-κB activation in 

U937 cells, we used ELISA-based Trans-Am® transcription 

factor kits (Active Motif, Carlsbad, CA).36 The active forms 

of AP-1 c-Fos and c-Jun or NF-κB p50 and p65 subunits in 

whole-cell extracts can be detected using Abs specific for 

epitopes that are accessible only when the nuclear factors 

are activated and bound to their target DNA. U937 cells 

(10 × 106/mL) were stimulated with the optimal amount 

of Hib porin or loop L7 for 1 hours at 37°C in 5% CO
2
 as 

determined in the pilot assays. The complementary peptides 

C1, C2, C3, and C4 were preincubated for 60 minutes at 37°C 

with Hib porin or loop L7 and then used for U937 stimulation. 

Preparation of cell extract was done according to the manu-

facturer’s instructions. Ten micrograms of proteins, collected 

after cell stimulation, was added to the wells. After a 1 hour 

incubation period at room temperature, the wells were washed 

three times with the washing buffer included in the kit; 

100 µL of the provided anti c-Fos and anti c-Jun or anti-p65 

and anti-p50 antibodies was added at a 1:1000 dilution. The 

plate was incubated at room temperature for 1 hour and the 

wells were washed three times. HRP-conjugated anti-rabbit 

IgG was added at a 1:1000 dilution and incubated for 1 hour 

at room temperature. Samples were washed four times, and 

developing solution was added, followed by the stop solu-

tion. The amount of AP-1 or NF-κB activation was measured 

at 450 nm in an HTS 700 BioAssay reader (Perkin Elmer, 

Norwalk, CT). The specificity of the assays was checked by 

measuring the ability of soluble wildtype or mutated AP-1 

or NF-κB oligonucleotides to inhibit binding. In preliminary 

assays, the Trans-Am kits showed a good correlation with an 

electrophoretic mobility shift assay (EMSA) in detecting the 

DNA binding capacity of AP-1 and NF-κB.

Binding of complementary peptides  
to Porin P2 by gel filtration
Peptides C1, C2, C3, C4, and L7 were dissolved in the 

equilibration buffer (Phosphate 20 mM, pH 7.5). 100 µL of 

a solutions 1.0 10−3 M of peptide were mixed to 70 µL of a 

solution containing porin P2 or porin OMPC (3.5 10−4 M), 

with a molar ratio P2/peptide of 1/40. The peptide concentra-

tion of complementary peptides was chosen according to the 

minimal concentration of the NBD group that we were able to 

detect by UV in these experimental conditions. The binding 

mixture was held for 1 hour at 37°C and then was loaded on 

a PD-10 column containing Sephadex G-25 medium. The 

collected fractions were analyzed by UV spectrometry and 

the presence of the NBD moiety was determined.

Lactate Dehydrogenase (LDh) assay
The LDH assay was carried out according to the manu-

facturer’s instructions by using a cytotoxicity detection kit 

(Roche Diagnostic SpA, Milan, Italy).

Reproducibility
Gels were scanned for densitometry analysis by Sigma Gel 

software (GeoMem Limited, Dundee, UK) and the results 

shown are an average of three different experiments. The 

results were expressed as the mean ± standard deviation (SD) 

of three independent experiments.

Results
Peptide design
Double helical DNA is made of two antiparallel 2′-deoxy-

polynucleotide chains. It has been thought that the sense 

strand contains the coding information for proteins and 

peptides, whereas the antisense (complementary) strand 

propagates the information. Coding information may be 

obtained from the complementary strand as well; peptides 

coded for by sense and complementary strands of DNA 

are actually able to interact specifically similarly to the two 

strands of DNA.12 A complementary peptide is coded for by 

the nucleotide sequence 5′→3′ (Mekler-Idlis direction) of 

the complementary strand of DNA (or, more precisely, by 

codons in complementary mRNA whose sequence contains 

the same coding information as the complementary strand of 

DNA)5. The codons in complementary mRNA may also be 

read continuously in the 3′→5′ (Root–Bernstein direction) to 

give an alternative complementary peptide (Table 1).12,37 Our 

approach has been to exploit this concept of complementary 

peptides in order to design peptides able to block the activity 

of the porin P2 from Hib. Therefore, we designed peptides 

complementary to one of the surface exposed loops (loop L7), 

which was involved in the interaction with the host cell. We 

thought that complementary peptides could interact specifi-

cally with the porin and reduce its biological activity. Three 

antisense peptides (C1–C3) were designed based on the 

principle of complementary base pairs and the degeneracy of 
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genetic codes (Table 1), using L7 as target sense peptide. The 

sense mRNA sequence of L7 was obtained and the sequence 

of 5′→3′ complementary M-I peptide was deduced from the 

corresponding complementary mRNA sequence (Table 1, 

peptide C1). Using the Root–Bernstein theory, we also 

designed two 3′→5′ complementary peptides of L7: C2 and 

C3. The original complementary mRNA-derived sequences 

of C2 and C3 were complicated by the appearance of a stop 

codon at the N-terminus. We substituted the stop codons 

with the other two complementary amino acids of threonine 

(tryptophan and cysteine). In particular, in C3, a tryptophan 

was substituted for the appearance of the stop signal, while 

in C2 a glycine was used as a substitute for cysteine to avoid 

any added complication from the thiol group oxidation as 

well racemization during synthesis.

As a control for the application of the sense and comple-

mentary peptide theory, we designed peptide C4 simply 

considering the characteristics of single residues, substitut-

ing the charged residues with analog residues with opposite 

charge and hydrophilic or hydrophobic residues with residues 

bearing similar features.

In the past, much research has reported on the fact that 

sense and complementary peptides are mutually complemen-

tary with respect to their hydropathic profiles (according to 

the Kyte–Doolittle scale)38 and are, therefore, able to interact 

specifically on account of their mutually complementary 

shapes (secondary and tertiary structures). Figure 1C shows 

a hydropathic plot of L7 and each of the complementary 

peptides. In this plot, the complementary peptides C1, 

C2, and C3 showed evident complementarities with L7 in 

hydropathic scores; while the peptide C4 that was used as 

control showed a hydropathic profile similar to L7, which 

was as expected because the only differences concerned the 

charges of polar residues.

MAPK pathway signaling activation  
by loop L7 and complementary peptides
Having previously demonstrated21,23,24 that loop L7 was 

the most active among the peptides corresponding to 

external loops of porin P2 at inducing MEK1-MEK2/

MAPK pathways (in particular JNK and p38), we now 

compared activating phosphorylation capabilities of 

complementary peptides by individual tests on U937 cells  

(Figure 2).

U937 cells were treated with stimuli as described in the 

previous section. The optimal concentrations and time points 

of the stimulations were selected by experiments performed 

previously on porin P2 and peptide L7 and analogs.21,23 

Peptide concentrations of 0.01 nmol/mL, 0.05 nmol/mL, 

0.13 nmol/mL, 5.0 nmol/mL, 12 nmol/mL and 26 nmol/mL 

were assayed. Regarding the entire protein, signals from 

active peptides were visible 3 minutes after treatment, with 

a phosphorylation peak at 10 minutes persisting for at least 

20 minutes thereafter and going back to standard levels by 

60 minutes (data not shown). A standard concentration of 

0.13 nmol/mL and stimulation times of 10 minutes were 

chosen for subsequent experiments. The peptide concentra-

tions used were not toxic for cells, and treatments did not 

induce any significant release of LDH in cell supernatants 

(data not shown).

All complementary peptides were almost unable to acti-

vate efficiently phosphorylation of MEK1/2 and ERK1/2, p38 

and JNK (Figure 2A and B). When P2 porin or the peptide 

L7 were pre-incubated with complementary molecules, 
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Figure 2 MEK1-MEK-2/MAPK activation in U937 cells in response to hib porin 
(13 nmol/ml) or peptides (130 nmol/mL). In some assays, the complementary 
peptides C1, C2, C3 and C4 were preincubated for 60 minutes at 37°C with hib 
porin or loop L7 and then used for cell stimulation. U937 cells (3 × 106 cells/mL) 
were stimulated for 10 min, lysed and immunoprecipitated with anti-phospho-
specific form antibodies of each enzyme. The immunoprecipitates were subjected to 
SDS-PAGE, blotted onto PVDF membrane and reacted with specific HRP conjugated 
antibodies.
Notes: Gels were scanned for densitometry analysis with the Sigma Gel Software, 
and the ratio of the value for each stimulation to the value for protein P2, which was 
taken as 100%, is shown. The data are averages from three different experiments; 
the error bars indicate the standard errors of the means.
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we did not observe significant activation, which indicated 

that the interaction of complementary peptides with the porin 

significantly reduces its ability to induce the activation of 

signaling pathways (Figure 2). We observed a significant 

reduction when P2 porin was treated with complementary 

peptides.

Release of TNF-α and IL-6 in U937 cells
Peptide L7, at a concentration of 130 nmol/mL, induced 

significant TNF-α and IL-6 cytokine responses compared 

to the entire P2 protein, as previously reported.23 We 

showed only the treatment with peptide at a concentration of 

130 nmol/mL, which gave the highest increases in the release 

of both cytokines (Figure 3A and B). All four complementary 

peptides were unable to induce significantly the release of 

TNF-α (Figure 3A) and IL-6 (Figure 3B), but they were able 

to drastically reduce the cytokine release induced by porin 

P2 or loop L7. In fact, the preincubation of complementary 

peptides with P2 porin or loop L7 before cell stimulation 

strongly influenced the release of cytokines by porin P2 and 

loop L7. All complementary peptides induced a significant 

reduction of the cytokines release caused by porin as well 

as L7. The amount of released cytokines TNF-α and IL-6 

by P2 was reduced by approximately 80% in the presence of 

complementary peptides. The amount of cytokines released 

by peptide L7 was lower than that released by porin P2, and 

when the treatment was performed with L7 and complemen-

tary peptides, we observed a reduction in L7 cytokines release 

of approximately 60%. The concentrations of peptides used, 

as well as the duration of the treatment, were not toxic for 
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Figure 3 TNF-α (panel A) and IL-6 (panel B) release induced by loop L7 complementary peptides. U937 cells (3 × 106 cells/mL) were stimulated with hib porin (13 nmol/mL) 
or peptides (130 nmol/mL) for 24 hours at 37°C in 5% CO2; in some assays, the complementary peptides C1, C2, C3 and C4 were preincubated for 60 minutes at 37°C with 
hib porin or loop L7 and then used for U937-stimulation.
Notes: The results shown are the average of three independent experiments; the error bars indicate the standard errors of the means.
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the cells. In fact, the treatment did not induce any significant 

release of LDH in the cell supernatants (data not shown).

Activation of AP-1 and NF-κB  
in U937 cells
The MAPK cascade activates transcription factors, such as 

activating protein 1 (AP-1) and nuclear factor κB (NF-κB). 

It is well documented that LPS induces NF-κB activation in 

monocytes and regulates cytokine expression.39 It has been 

recently demonstrated that porins also induce the activation 

of AP-1 and NF-κB in U937 cells.40

In order to selectively analyze the regulation of loop L7 

complementary peptides-induced AP-1 and NF-κB activa-

tion, an ELISA based Trans-Am technology from nuclear 

lysates of U937 cells stimulated by P2 porin, loop L7, or 

complementary peptides was performed. These transcrip-

tion factors are presumed to be involved in the expression 

of proinflammatory cytokine genes. Therefore, in order to 

demonstrate AP-1 and NF-κB activation, we investigated 

the induction of AP-1 c-Fos/c-Jun subunits and NF-κB 

p50/p65 subunits in whole-cell extracts using Abs specific 

for epitopes that are accessible only when the nuclear factors 

are phosphorylated and bound to their target DNA. Following 

the treatment of U937 cells with our stimuli, AP-1 and 

NF-κB binding significantly increased by 30 minutes, was 

maintained at the same level for 60 minutes, and returned 

to background levels by 120 minutes (data not shown). In 

particular, we found that P2 porin and loop L7 were able 

to activate significantly both AP-1 (Figure 4) and NF-κB 

(Figure 5).

When we tested the complementary peptides with porin 

P2 or with peptide loop L7, we observed a significant 

decrease in the production of AP-1 and NF-κB (Figures 4 

and 5).

Gel filtration
Complex formation between P2 and complementary pep-

tides was measured following the shift of the NBD moiety 

covalently linked to the N-terminal side of complementary 

peptides (Figure 6, panels B–E). The UV chromatographic 

profile at 210 nm detects the presence of both the peptide and 

the porin, whereas the profile at 465 nm is determined only 

by the presence of the NBD group linked to complementary 

peptides. In particular, we observed a specific binding for 

all the complementary peptides demonstrated by the elution 

of the peptides together with the porin P2 at lower retention 

times. The peptide C4 showed the lowest ability to bind 

to porin P2; while C1 and C2 showed the highest ability 

as demonstrated by the higher elution peak of the peptide 

together with porin P2 at lower retention times (Figure 6, 

panels A–E). As a control of specificity, we used the porin 

OMP-C from Salmonella typhymurium (Figure 6, panels 

G–M), and we could not detect the formation of any signifi-

cant complex. In order to determine whether the interaction 
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or loop L7 and then used for U937-stimulation.
Notes: Cell lysates (10 µg/mL) were tested for binding of the activated c-Fos 
or c-Jun subunits to an AP-1 consensus sequence using the Trans-Am AP-1 
ELISA kit. The experiment was performed in the presence of soluble wild-type or 
mutated consensus oligonucleotides. The results are expressed as specific binding 
(absorbance measured in the presence of the mutated oligonucleotide minus that 
measured in the presence of the wild-type oligonucleotide). The results are shown 
as means ± standard errors of triplicate determinations.
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was performed in the presence of soluble wild-type or mutated consensus 
oligonucleotides. The results are expressed as specific binding (absorbance measured 
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of triplicate determinations.
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was specific, we also used the peptide L7 as a control. We 

did not detect the formation of any complex in that case as 

shown by the absence of absorbance at 465 nm in the fraction 

at low retention times where the porin is eluted (Figure 6, 

panels F and N).

Discussion
Porins possess a variety of proinflammatory and immuno-

logical activities, as shown for Salmonella typhimurium,40–43 

Pasteurella multocida, Mannheimia haemolytica,41,44 and 

Haemophilus influenza.21,23,28,41 Previous reports have dem-

onstrated that porin-stimulated monocytic cell lines are 

activated with an evident phosphorylation of many cellular 

proteins. Some proteins were identified as MAPK and as 

nuclear transcription factors NF-κB, AP-1 and STAT-1/

STAT-3. Among the different surface bacterial compo-

nents, Hib porin is involved in the pathogenesis of bacterial 

meningitis.28

The damage due to Gram-negative bacteria is a disor-

der thought to be caused by the excessive stimulation of 
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Figure 6 Binding of complementary peptides to porin P2 and OMPC by gel filtration. Peptides C1, C2, C3, C4 and L7 (panels O–S) were mixed to porin P2 (panels A–F) 
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mononuclear cells by active surface components of bacterial 

cells. Among those components, LPS has been studied most 

frequently, and several molecules have been analyzed for their 

antagonist activity against LPS. No research has attempted 

to find antagonists to porins. Loop 7 of porin P2 of Hib has 

been shown to stimulate the MAPKs pathway, similarly to 

porin P2, and thus play a key role in inflammation. We report 

a novel use of the complementary peptide approach to devise 

a peptide molecule able to bind selectively to the porin P2 of 

Hib, thereby inhibiting the activation of the MAPKs pathway. 

We aimed to show that the hydropathic complementarity in 

itself might be sufficient to develop an antagonist peptide to 

surface exposed loops, which could inhibit sequences that are 

involved in the host-pathogen interaction. Complementary 

peptides could be useful for drug discovery and therefore 

represent a conceptually attractive approach. There are some 

examples reported in the literature,14,45 which suggest that 

interactions between sense and antisense peptides could play 

an important role in the molecular interactions involved in 

the recognition between proteins. In addition to H-bonds, 

peptides provide various non-covalent interactions, which are 

strongly dependent on the peptide sequence; thus, the recog-

nition is specific and selective. The successful applications 

of this principle for designing sequence-directed recognition 

peptides indicate that hydropathical complementarity plays 

an important role in peptide interactions.14,45

We employed the degeneracy of the antisense peptide 

approach to design complementary peptides to one of the sur-

face exposed loops of porin P2 from Haemophilus influenzae. 

We showed that a biologically active peptide can be obtained 

from a small loop structure. In summary, the complementary 

peptides described were shown to bind specifically to porin P2 

and to inhibit the MEK1/2 pathway and cytokine production. 

Complementary peptides could form the basis of a novel thera-

peutic approach against Gram-negative bacteria. The specific-

ity of the mechanism was demonstrated by the failure of any 

other peptide tested to yield similar results. The approach of 

complementary peptides has been successfully used only for 

a few targets and is complicated by the possibility of peptides 

to interact non-specifically with the target protein. Our experi-

ments support the use of this strategy for our target because in 

vivo porins are embedded in the outer membrane of the bacteria 

and only surface loops are available for the interaction. We thus 

proved that amphiphilic sequences complementary to surface 

exposed loops may represent a valuable strategy for reducing 

the inflammation caused by Gram-negative porins. Their non-

covalent mode of interaction with the active loops of the porin 

P2 involve both hydrophobic and polar interactions.

Conclusion
The results of this study demonstrate the utility of an algorithm-

based approach for the identification of independent biologically 

active peptides for a target that has clear therapeutic potential 

for bacterial infections.46 Agents that interfere with ligand bind-

ing and/or the formation of the higher order complexes might 

have therapeutic potential and/or be useful biological tools. In 

this context, biologically active peptides might be developed 

as specific antagonist of loop L7. In this study, we designed 

amphiphilic peptides complementary to loop L7, which may be 

used to block porin activity and may provide new opportunities 

for the design of novel agents that could be added to existing 

therapeutic strategies. Moreover, this study may represent a 

novel approach for the design of antibacterial molecules against 

other Gram-negative bacteria. Finally, this approach may be of 

interest in understanding the specific intermolecular interactions 

between pathogenic bacteria and their eukaryotic hosts, which 

underlie life-threatening diseases, such as septic shock.
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