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Abstract
By Kranoselskii’s fixed point theorem, we state some sufficient conditions of the
existence of nonoscillatory solutions tending to zero as t → ∞ of a class of
third-order nonlinear dynamic equations on time scales. Two examples are presented
to show the significance of the results.
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1 Introduction
In , Hilger introduced the theory of time scales in his Ph.D. thesis []; see also []. We
refer the reader to [, ] for details on time scales. We remark that some researchers have
studied the existence of nonoscillatory solutions of several kinds of nonlinear dynamic
equations on time scales, which can be found in [–].

Zhu and Wang [] studied first-order nonlinear neutral dynamic equations

[
x(t) + p(t)x

(
g(t)

)]Δ + f
(
t, x

(
h(t)

))
= 

on a time scale T. Then Gao and Wang [], Deng and Wang [] discussed second-order
nonlinear neutral dynamic equations

[
r(t)

(
x(t) + p(t)x

(
g(t)

))Δ]Δ + f
(
t, x

(
h(t)

))
= 

under different conditions successively. Inspired by [, ], Qiu [] considered third-order
nonlinear neutral dynamic equations

(
r(t)

(
r(t)

(
x(t) + p(t)x

(
g(t)

))Δ)Δ)Δ + f
(
t, x

(
h(t)

))
=  ()

under the condition g(t) ≤ t, and established the existence of nonoscillatory solutions of
equation (). However, the conditions ensuring the existence of the nonoscillatory solu-
tions tending to zero as t → ∞ of equation () were exceptional, and as a result, the appli-
cations were within limits (see [], Theorems . and .).
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In , Mojsej and Tartal’ová [] studied the asymptotic behavior of nonoscillatory so-
lutions of third-order nonlinear differential equations with quasiderivatives of the form

(


p(t)

(


r(t)
x′(t)

)′)′
+ q(t)f

(
x(t)

)
= , t ≥ a, ()

and stated the necessary and sufficient conditions ensuring the existence of nonoscillatory
solutions tending to zero as t → ∞.

In this paper, we investigate the existence of nonoscillatory solutions tending to zero as
t → ∞ of equation () on a time scale T, which satisfies infT = t and supT = ∞. We state
the following conditions, which hold throughout this paper:

(C) r, r ∈ Crd(T, (,∞)).
(C) p ∈ Crd(T, [,∞)) and there exists a constant p with  ≤ p <  such that

limt→∞ p(t) = p.
(C) g, h ∈ Crd(T,T), g(t) ≥ t, and limt→∞ h(t) = ∞.
(C) f ∈ C(T×R,R) and xf (t, x) >  for t ∈ T and x �= .
In the sequel, there are two cases of the function f to be considered:
(CA) There exist q ∈ C(T, (,∞)) and f ∈ C(R,R) such that xf (t, x) ≤ xq(t)f(x).
(CB) f (t, x) is nondecreasing in x.
Motivated by [, ], we will establish the existence of nonoscillatory solutions tending

to a zero of equation () by employing Kranoselskii’s fixed point theorem and, finally, two
examples are given to show the versatility of the conclusions.

Definition . A solution x of equation () is said to be eventually positive (or eventually
negative) if there exists c ∈ T such that x(t) >  (or x(t) < ) for all t ≥ c in T. x is said to
be nonoscillatory if it is either eventually positive or eventually negative; otherwise, it is
oscillatory.

2 Auxiliary results
Let BC([T,∞)T,R) denote the Banach space of all bounded continuous functions on
[T,∞)T with the norm

‖x‖ = sup
t∈[T,∞)T

∣
∣x(t)

∣
∣.

Definition . Let X ⊆ BC[T,∞)T, we say that X is uniformly Cauchy, if for any given
ε > , there exists a T ∈ [T,∞)T such that |x(t) – x(t)| < ε for any x ∈ X and t, t ∈
[T,∞)T.

Definition . X is said to be equi-continuous on [a, b]T, if for any given ε > , there exists
δ >  such that |x(t) – x(t)| < ε for any x ∈ X and t, t ∈ [a, b]T with |t – t| < δ.

Lemma . ([], Lemma ) Suppose that X ⊆ BC[T,∞)T is bounded and uniformly
Cauchy. Further, suppose that X is equi-continuous on [T, T]T for any T ∈ [T,∞)T.
Then X is relatively compact.

Lemma . (Kranoselskii’s fixed point theorem, see []) Suppose that X is a Banach space
and Ω is a bounded, convex, and closed subset of X. Suppose further that there exist two
operators U , S : Ω → X such that
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() Ux + Sy ∈ Ω for all x, y ∈ Ω ;
() U is a contraction mapping;
() S is completely continuous.

Then U + S has a fixed point in Ω .

Without loss of generality, we shall consider the case that eventually positive solutions
of equation () in the following. It is because if x(t) is an eventually negative solution of
equation (), then y(t) = –x(t) will satisfy

(
r(t)

(
r(t)

(
y(t) + p(t)y

(
g(t)

))Δ)Δ)Δ – f
(
t, –y

(
h(t)

))
= .

Note that f (t, u) := –f (t, –u) satisfies (C), and (CA) or (CB) similarly as f (t, u).
Define

z(t) := x(t) + p(t)x
(
g(t)

)
, ()

then we will have the following lemma.

Lemma . Suppose that x(t) is an eventually positive solution of equation (), and there
exists a constant a ≥  such that limt→∞ z(t) = a. Then we have

lim
t→∞ x(t) =

a
 + p

.

Proof Suppose that x(t) is an eventually positive solution of equation (). In view of (C),
there exists t ∈ [t,∞)T such that x(t) > , x(g(t)) >  for t ∈ [t,∞)T. We claim that x(t)
is bounded on [t,∞)T. Assume not; then we have

z(t) = x(t) + p(t)x
(
g(t)

) ≥ x(t) → ∞

which contradicts the fact that limt→∞ z(t) = a. Therefore, x(t) is bounded. Then assume
that

lim sup
t→∞

x(t) = x and lim inf
t→∞ x(t) = x.

Since  ≤ p < , we have

a ≥ x + px and a ≤ x + px,

which implies that x ≤ x. So x = x, and we see that limt→∞ x(t) exists and limt→∞ x(t) =
a/( + p). The proof is complete. �

3 Main results
In this section, we state and prove our existence criteria for eventually positive solutions
tending to zero as t → ∞ of equation ().
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Theorem . Assume that the function f satisfies (CA) and there exists M >  such that

∫ ∞

t


r(t)

Δt = M < ∞ ()

and
∫ ∞

t

∫ s

t

q(u)
r(s)

ΔuΔs < ∞. ()

Define H(t) =
∫ ∞

t


r(v)Δv, which satisfies limt→∞ H(g(t))
H(t) = η ∈ (, ]. If there exists L > 

such that

∣∣f (t, x) – f (t, x)
∣∣ ≤ L · q(t)|x – x|, x, x ∈ [, M], ()

then equation () has an eventually positive solution x(t) with limt→∞ x(t) = , and there
exists T ∈ [t,∞)T such that

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ < , t ∈ [T,∞)T.

Proof From (C), for  ≤ p < , choose p such that p < p < ( + p)/ < . By () and
(), there exists T ∈ [t,∞)T such that

p – 


≤ p(t) ≤ p < , p(t)
H(g(t))

H(t)
≥ p – 


η, t ∈ [T,∞)T, ()

and

∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs ≤ min

{
 – pη

K
, 

}
, ()

where K = max{|f(x)| : x ∈ [, M]}. From (C), there always exists T ∈ (T,∞)T such
that

h(t) ≥ T, t ∈ [T,∞)T.

Define

Ω =
{

x(t) ∈ BC[T,∞)T : H(t) ≤ x(t) ≤ H(t)
}

. ()

It is clear that Ω is a bounded, convex, and closed subset of BC[T,∞)T. For any x ∈ Ω,
by (CA) we have

 < f
(
t, x

(
h(t)

)) ≤ q(t)f
(
x
(
h(t)

))
, t ∈ [T,∞)T.

Define the operators U and S: Ω → BC[T,∞)T as

(Ux)(t) =



pηH(t) – p(t)x
(
g(t)

)
, t ∈ [T,∞)T,
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and

(Sx)(t) =

{

 H(t) +

∫ ∞
t

∫ v
T

∫ s
T

f (u,x(h(u)))
r(s)r(v) ΔuΔsΔv, t ∈ [T,∞)T,

(Sx)(T), t ∈ [T, T]T.
()

Then we prove that U and S satisfy all the conditions in Lemma ..
() For any x, y ∈ Ω and t ∈ [T,∞)T, by ()-() we obtain

(Ux)(t) + (Sy)(t)

≤ ( + pη)


H(t) –
p – 


ηH(t) +

∫ ∞

t

∫ v

T

∫ s

T

q(u)f(y(h(u)))
r(s)r(v)

ΔuΔsΔv

≤ ( + pη)


H(t) –
p – 


ηH(t) + KH(t)

∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs

≤ ( + pη)


H(t) –
p – 


ηH(t) +

 – pη


H(t)

=
 + η


H(t) ≤ H(t)

and

(Ux)(t) + (Sy)(t)

=
( + pη)


H(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ v

T

∫ s

T

f (u, y(h(u)))
r(s)r(v)

ΔuΔsΔv

≥ ( + pη)


H(t) – pηH(t) =
 – pη


H(t) > H(t).

Similarly, H(t) ≤ (Ux)(t) + (Sy)(t) ≤ H(t) also holds for any x, y ∈ Ω and t ∈
[T, T]T. It follows that Ux + Sy ∈ Ω for any x, y ∈ Ω.

() For any x, y ∈ Ω and t ∈ [T,∞)T, we always have

∣
∣(Ux)(t) – (Uy)(t)

∣
∣ =

∣
∣p(t)

(
x
(
g(t)

)
– y

(
g(t)

))∣∣ ≤ p sup
t∈[T,∞)T

∣
∣x(t) – y(t)

∣
∣.

It follows that ‖Ux – Uy‖ ≤ p‖x – y‖ for any x, y ∈ Ω. That is, U is a contraction map-
ping.

() For t ∈ [T,∞)T, we have

(Sx)(t) ≤ 


H(t) +
 – pη


H(t) =

 – pη


H(t) < H(t)

and

(Sx)(t) >



H(t) > H(t).

It is easy to see that S maps Ω into Ω.
For any x ∈ Ω and t ∈ [T,∞)T, let xn ∈ Ω and ‖xn – x‖ →  as n → ∞. For t ∈

[T,∞)T, by (), (), and (), we have
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∣∣(Sxn)(t) – (Sx)(t)
∣∣

≤
∫ ∞

t

∫ v

T

∫ s

T

|f (u, xn(h(u))) – f (u, x(h(u)))|
r(s)r(v)

ΔuΔsΔv

≤ L
∫ ∞

T


r(v)

Δv ·
∫ ∞

T

∫ s

T

q(u)|xn(h(u)) – x(h(u))|
r(s)

ΔuΔs

≤ LM · sup
t∈[T,∞)T

∣∣xn(t) – x(t)
∣∣.

For t ∈ [T, T]T, we also have the result above. By Lebesgue’s dominated convergence
theorem (see Chapter  in []), it follows that

‖Sxn – Sx‖ → , n → ∞.

Therefore, S is continuous.
It is obvious that SΩ is bounded. On the other hand, by (), for any ε >  there exists

T ∈ [T,∞)T such that

H(T) =
∫ ∞

T


r(t)

Δt <
ε

K + 
.

For t, t ∈ [T, T]T, we always have |(Sx)(t) – (Sx)(t)| = . Then, for any x ∈ Ω and
t, t ∈ [T,∞)T, we have

∣∣(Sx)(t) – (Sx)(t)
∣∣

≤
∣∣
∣∣

∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv –
∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv
∣∣
∣∣

+


∣
∣H(t) – H(t)

∣
∣

≤ 
∫ ∞

T

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv + H(T)

≤ KH(T)
∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs + H(T)

≤ (K + )H(T) < ε.

It is clear that SΩ is uniformly Cauchy.
For x ∈ Ω and t, t ∈ [min{T – , T}, T + ]T, we have

∣∣(Sx)(t) – (Sx)(t)
∣∣

≤
∣
∣∣
∣

∫ t

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv
∣
∣∣
∣ +




∣
∣∣
∣

∫ t

t


r(t)

Δt
∣
∣∣
∣

≤ K
∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs
∣
∣∣
∣

∫ t

t


r(t)

Δt
∣
∣∣
∣ +




∣
∣∣
∣

∫ t

t


r(t)

Δt
∣
∣∣
∣

≤
(

K +



)∣∣H(t) – H(t)
∣∣.
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Therefore, there exists  < δ <  such that |(Sx)(t) – (Sx)(t)| < ε for any t, t ∈ [T,
T + ]T with |t – t| < δ. We conclude that SΩ is equi-continuous.

According to Lemma ., it follows that SΩ is relatively compact and S is completely
continuous. Then by Lemma ., there exists x ∈ Ω such that (U + S)x = x. It means that
x(t) is an eventually positive solution of equation (), and for t ∈ [T,∞)T, we have

x(t) =
( + pη)


H(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv.

As
∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv ≤ KH(t)
∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs

for t ∈ [T,∞)T, and

lim
t→∞ KH(t)

∫ ∞

T

∫ s

T

q(u)
r(s)

ΔuΔs = ,

it follows that limt→∞ z(t) = . By Lemma ., we obtain limt→∞ x(t) = . Furthermore, for
t ∈ [T,∞)T, we have

r(t)zΔ(t) = –
( + pη)


–

∫ t

T

∫ s

T

f (u, x(h(u)))
r(s)

ΔuΔs < 

and

r(t)
(
r(t)zΔ(t)

)Δ = –
∫ t

T

f
(
u, x

(
h(u)

))
Δu < .

The proof is complete. �

Theorem . Assume that
∫ ∞

t


r(t)

Δt = ∞ or
∫ ∞

t

∫ v

t


r(s)r(v)

ΔsΔv = ∞.

Then equation () has no eventually positive solution x(t), for which r(t)zΔ(t) and
r(t)(r(t)zΔ(t))Δ are both eventually negative.

Proof Suppose that x(t) is an eventually positive solution of equation (), and there exists
T ∈ [t,∞)T such that

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ < , t ∈ [T,∞)T.

By (C), there exists T ∈ (T,∞)T such that h(t) ≥ T for t ∈ [T,∞)T. Integrating ()
from T to s ∈ [σ (T),∞)T, by (C) we obtain

r(s)
(
r(s)zΔ(s)

)Δ – r(T)
(
r(T)zΔ(T)

)Δ = –
∫ s

T

f
(
u, x

(
h(u)

))
Δu < ,
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which implies that

(
r(s)zΔ(s)

)Δ <
r(T)(r(T)zΔ(T))Δ

r(s)
. ()

Integrating () from T to v ∈ [σ (T),∞)T, we obtain

r(v)zΔ(v) – r(T)zΔ(T) < r(T)
(
r(T)zΔ(T)

)Δ

∫ v

T


r(s)

Δs

or

zΔ(v) <
r(T)zΔ(T)

r(v)
+

r(T)(r(T)zΔ(T))Δ

r(v)

∫ v

T


r(s)

Δs. ()

Integrating () from T to t ∈ [σ (T),∞)T, we obtain

z(t) < z(T) + r(T)zΔ(T)
∫ t

T


r(v)

Δv

+ r(T)
(
r(T)zΔ(T)

)Δ
∫ t

T

∫ v

T


r(s)r(v)

ΔsΔv.

Letting t → ∞, we have z(t) → –∞. It is a contradiction because z(t) = x(t) + p(t)x(g(t)) is
eventually positive. The proof is complete. �

By Theorems . and ., we have the following corollary.

Corollary . Assume that

∫ ∞

t

∫ s

t

q(u)
r(s)

ΔuΔs < ∞.

If the function f satisfies (CA) and there exists L >  such that

∣∣f (t, x) – f (t, x)
∣∣ ≤ L · q(t)|x – x|, x, x ∈

[
, 

∫ ∞

t


r(t)

Δt
]

,

then
∫ ∞

t


r(t)Δt < ∞ is a necessary and sufficient condition for equation () to have an even-
tually positive solution x(t) satisfying the requirement that limt→∞ x(t) =  and r(t)zΔ(t),
r(t)(r(t)zΔ(t))Δ are both eventually negative.

Theorem . Assume that the function f satisfies (CA) and there exists M >  such that

∫ ∞

t

∫ ∞

v


r(s)r(v)

ΔsΔv = M < ∞ ()

and
∫ ∞

t

q(t)Δt < ∞. ()
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Define H(t) =
∫ ∞

t
∫ ∞

v


r(s)r(v)ΔsΔv, which satisfies limt→∞ H(g(t))
H(t) = η ∈ (, ]. If there ex-

ists L >  such that

∣∣f (t, x) – f (t, x)
∣∣ ≤ L · q(t)|x – x|, x, x ∈ [, M], ()

then equation () has an eventually positive solution x(t) with limt→∞ x(t) = , and there
exists T ∈ [t,∞)T such that

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ > , t ∈ [T,∞)T.

Proof From (C), for  ≤ p < , choose p such that p < p < ( + p)/ < . By () and
(), there exists T ∈ [t,∞)T such that

p – 


≤ p(t) ≤ p < , p(t)
H(g(t))

H(t)
≥ p – 


η, t ∈ [T,∞)T, ()

and
∫ ∞

T

q(t)Δt ≤ min

{
 – pη

K
, 

}
,

where K = max{|f(x)| : x ∈ [, M]}. Similarly, there always exists T ∈ (T,∞)T such that
h(t) ≥ T for t ∈ [T,∞)T.

Define

Ω =
{

x(t) ∈ BC[T,∞)T : H(t) ≤ x(t) ≤ H(t)
}

.

Then Ω is also a bounded, convex, and closed subset of BC[T,∞)T. For any x ∈ Ω, by
(CA) we have

 < f
(
t, x

(
h(t)

)) ≤ q(t)f
(
x
(
h(t)

))
, t ∈ [T,∞)T.

Define the operators U and S : Ω → BC[T,∞)T as

(Ux)(t) =



pηH(t) – p(t)x
(
g(t)

)
, t ∈ [T,∞)T,

and

(Sx)(t) =

{

 H(t) +

∫ ∞
t

∫ ∞
v

∫ ∞
s

f (u,x(h(u)))
r(s)r(v) ΔuΔsΔv, t ∈ [T,∞)T,

(Sx)(T), t ∈ [T, T]T.

Similarly to the proof of Theorem ., we can conclude that U and S satisfy all the
conditions in Lemma .. Therefore, there exists x ∈ Ω such that (U + S)x = x, which
means that x(t) is an eventually positive solution of equation (). It follows that for t ∈
[T,∞)T, we have

x(t) =
( + pη)


H(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv.
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As
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv ≤ KH(t)
∫ ∞

T

q(u)Δu

for t ∈ [T,∞)T, and

lim
t→∞ KH(t)

∫ ∞

T

q(u)Δu = ,

we have limt→∞ z(t) = , which implies that limt→∞ x(t) =  by Lemma .. For t ∈
[T,∞)T, we obtain

r(t)zΔ(t) = –
( + pη)



∫ ∞

t


r(s)

Δs –
∫ ∞

t

∫ ∞

s

f (u, x(h(u)))
r(s)

ΔuΔs < 

and

r(t)
(
r(t)zΔ(t)

)Δ =
( + pη)


+

∫ ∞

t
f
(
u, x

(
h(u)

))
Δu > .

The proof is complete. �

Remark . Actually, () in Theorem . and () in Theorem . will hold especially
when f (t, x) = q(t)f(x) and f(x) satisfies the Lipschitz condition on [, M] and [, M],
respectively.

Remark . Letting T = [a,∞), r(t) = 
p(t) , r(t) = 

r(t) , p(t) = , and the function f satisfy-
ing (CA), equation () is simplified as (). Therefore, Theorems ., ., ., and Corol-
lary . complement and extend the results in Mojsej and Tartal’ová [].

In the sequel, we change the condition of the function f from (CA) to (CB), and get
some similar conclusions as follows.

Theorem . Assume that the function f satisfies (CB) and

∫ ∞

t


r(t)

Δt < ∞ ()

and
∫ ∞

t

∫ s

t

f (u, H(h(u)))
r(s)

ΔuΔs < ∞, ()

where H(t) =
∫ ∞

t


r(v)Δv, which satisfies limt→∞ H(g(t))
H(t) = η ∈ (, ]. Then equation () has

an eventually positive solution x(t) with limt→∞ x(t) = , and there exists T ∈ [t,∞)T such
that

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ < , t ∈ [T,∞)T.
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Proof From (C), for  ≤ p < , choose p such that p < p < ( + p)/ < . By () and
(), there exists T ∈ [t,∞)T such that () holds and

∫ ∞

T

∫ s

T

f (u, H(h(u)))
r(s)

ΔuΔs ≤ min

{
 – pη


, 

}
.

Similarly, there always exists T ∈ (T,∞)T such that h(t) ≥ T for t ∈ [T,∞)T.
Define Ω as in Theorem .. For any x ∈ Ω, by (CB) we have

 < f
(
t, x

(
h(t)

)) ≤ f
(
t, H

(
h(t)

))
, t ∈ [T,∞)T.

In addition, define U and S as in Theorem .. It is obvious that U and S also satisfy all
the conditions in Lemma .. Hence, there exists x ∈ Ω such that (U + S)x = x. That is,
x(t) is an eventually positive solution of equation (). For t ∈ [T,∞)T, it follows that

x(t) =
( + pη)


H(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv.

As
∫ ∞

t

∫ v

T

∫ s

T

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv ≤ H(t)
∫ ∞

T

∫ s

T

f (u, H(h(u)))
r(s)

ΔuΔs

for t ∈ [T,∞)T, and

lim
t→∞ H(t)

∫ ∞

T

∫ s

T

f (u, H(h(u)))
r(s)

ΔuΔs = ,

it follows that limt→∞ z(t) = . By Lemma ., we obtain limt→∞ x(t) = . Furthermore, for
t ∈ [T,∞)T, it satisfies

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ < , t ∈ [T,∞)T.

The proof is complete. �

Theorem . Assume that the function f satisfies (CB) and

∫ ∞

t

∫ ∞

v


r(s)r(v)

ΔsΔv < ∞ ()

and
∫ ∞

t

f
(
t, H

(
h(t)

))
Δt < ∞, ()

where H(t) =
∫ ∞

t
∫ ∞

v


r(s)r(v)ΔsΔv, which satisfies limt→∞ H(g(t))
H(t) = η ∈ (, ]. Then equa-

tion () has an eventually positive solution x(t) with limt→∞ x(t) = , and there exists
T ∈ [t,∞)T such that

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ > , t ∈ [T,∞)T.
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Proof From (C), for  ≤ p < , choose p such that p < p < ( + p)/ < . By () and
(), there exists T ∈ [t,∞)T such that () holds and

∫ ∞

T

f
(
t, H

(
h(t)

))
Δt ≤ min

{
 – pη


, 

}
.

From (C), there always exists T ∈ (T,∞)T such that h(t) ≥ T for t ∈ [T,∞)T.
Define Ω as in Theorem .. For any x ∈ Ω, by (CB) we have

 < f
(
t, x

(
h(t)

)) ≤ f
(
t, H

(
h(t)

))
, t ∈ [T,∞)T.

In addition, define the operators U and S as in Theorem .. It is obvious that U and S

also satisfy all the conditions in Lemma .. Then there exists x ∈ Ω such that (U +S)x =
x, which means that x(t) is an eventually positive solution of equation (). For t ∈ [T,∞)T,
it follows that

x(t) =
( + pη)


H(t) – p(t)x

(
g(t)

)
+

∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv.

As
∫ ∞

t

∫ ∞

v

∫ ∞

s

f (u, x(h(u)))
r(s)r(v)

ΔuΔsΔv ≤ H(t)
∫ ∞

T

f
(
u, H

(
h(u)

))
Δu

for t ∈ [T,∞)T, and

lim
t→∞ H(t)

∫ ∞

T

f
(
u, H

(
h(u)

))
Δu = ,

we have limt→∞ z(t) = , which implies that limt→∞ x(t) =  by Lemma .. We also obtain

r(t)zΔ(t) < , r(t)
(
r(t)zΔ(t)

)Δ > , t ∈ [T,∞)T.

The proof is complete. �

Remark . Indeed, if the function f satisfies both of (CA) and (CB), compared to
Theorems . and ., Theorems . and . are more convenient to employ, respectively.

4 Examples
In this section, we give two examples to show the application of our results. The first ex-
ample is presented to illustrate Theorems . and ..

Example . Let T =
⋃∞

n=[n – , n]. Consider

(
t

(
t

(
x(t) +

t – 
t

x(t + )
)Δ)Δ)Δ

+ tx(t) +
x(t)

t
= , ()

where r(t) = t, r(t) = t, p(t) = t–
t , g(t) = t + , h(t) = t, f (t, x) = tx + x

t , t = .
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Take q(t) = t and f(x) = x + x. It is obvious that the coefficients of equation () satisfy
(C)-(C), (CA), and (CB). Since

∫ ∞

t


r(t)

Δt =
∫ ∞




t Δt = M < ,

H(t) =
∫ ∞

t


r(v)

Δv =
∫ ∞

t


v Δv < ,

lim
t→∞

H(g(t))
H(t)

= lim
t→∞

∫ ∞
t+


v Δv

∫ ∞
t


v Δv

= lim
t→∞

t

(t + ) = ,

∫ ∞

t

∫ s

t

q(u)
r(s)

ΔuΔs =
∫ ∞



∫ s



u

s ΔuΔs <
∫ ∞



∫ s




s ΔuΔs <

∫ ∞




s Δs < ∞,

and, for any x, x ∈ [, ],

∣∣f (t, x) – f (t, x)
∣∣ =

∣∣∣
∣t

(x – x) +

t
(
x

 – x

)
∣∣∣
∣

≤ t(|x – x| +
∣∣x

 – x

∣∣) ≤ (

 + x
 + xx + x


) · t|x – x|

≤  · q(t)|x – x|,

by Theorem . we see that equation () has an eventually positive solution x(t) with
limt→∞ x(t) = , and r(t)zΔ(t), r(t)(r(t)zΔ(t))Δ are both eventually negative.

On the other hand, since H(t) < , we obtain

f
(
u, H

(
h(u)

))
= u · H(u) +

H
 (u)
u

≤ u(H(u) + H
 (u)

)
< u

and

∫ ∞

t

∫ s

t

f (u, H(h(u)))
r(s)

ΔuΔs < 
∫ ∞



∫ s



u

s ΔuΔs

< 
∫ ∞



∫ s




s ΔuΔs < 

∫ ∞




s Δs < ∞.

By Theorem . we have the same conclusion.

Then the second example demonstrates Theorems . and ..

Example . Let T =
⋃∞

n=[n – , n]. Consider

(
t

(
t
((

 +

t

)
x(t)

)Δ)Δ)Δ

+
x( t

 )
t = , ()

where r(t) = t, r(t) = t, p(t) = 
t , g(t) = t, h(t) = t

 , f (t, x) = x
t , t = .
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Take q(t) = 
t and f(x) = x. It is obvious that the coefficients of equation () satisfy

(C)-(C), (CA), and (CB). Since

∫ ∞

t

∫ ∞

v


r(s)r(v)

ΔsΔv =
∫ ∞



∫ ∞

v


sv

ΔsΔv

=
∫ ∞



∫ s




sv

ΔvΔs = M < ∞,

H(t) =
∫ ∞

t

∫ ∞

v


r(s)r(v)

ΔsΔv =
∫ ∞

t

∫ ∞

v


sv

ΔsΔv ≤ M,

lim
t→∞

H(g(t))
H(t)

= lim
t→∞

H(t)
H(t)

= ,
∫ ∞

t

q(t)Δt =
∫ ∞




t Δt < ∞,

and for any x, x ∈ [, M],

∣
∣f (t, x) – f (t, x)

∣
∣ =

|x – x|
t =  · q(t)|x – x|,

by Theorem . we see that equation () has an eventually positive solution x(t) with
limt→∞ x(t) = , r(t)zΔ(t) is eventually negative and r(t)(r(t)zΔ(t))Δ is eventually posi-
tive.

On the other hand, since H(t) ≤ M, we obtain

f
(
t, H

(
h(t)

))
=

H( t
 )

t ≤ M

t

and
∫ ∞

t

f
(
t, H

(
h(t)

))
Δt ≤ M

∫ ∞




t Δt < ∞.

By Theorem . we have the same conclusion.
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