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1 Introduction

A time scale T is an arbitrary nonempty closed subset of the real numbers. Thus the real
numbers R, the integers Z and the natural numbers N are examples of time scales. On a
time scale T, the forward jump operator, the backward jump operator and the graininess
function are defined

o(t)=inf{se T:s>t}, o) =sup{seT:s<t} and u(t)=0(t)-t,

respectively.
In this paper, we investigate the existence of the nonoscillatory solutions of the following
higher order neutral dynamic equation:

(@[ a (- (1O (O - a@x(x®))*)* ) ) T}
+f(6:x(3(2))) =0 fort € [to,00), (1.1

where y is the quotient of odd positive integers, ¢, € T, the time scale interval [¢y, 00)T =
{teT:t>ty), n € Cullty,o0)T, [L,0)) for some constant L > 0 and r; € C.q([£g, 00)T,
(0,00)) (2 <k <n),q € Cu([tg,00)T,R), 7,8 € C(T, T) with lim,_, o, 7(£) = lim;_, o, §(£) = 00
and f € C([to, 00)T x R, R) satisfying the following conditions:

(i) uf(t,u) >0 for any t € [ty, 00)r and u # 0;

(i) f(¢, u) is nondecreasing in u for any ¢ € £, 00)T.
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In the sequel, write

x(2) ifk=0,
Wi(t,x(0) = { i )W2, (6, x()  ifl<k<n-1,
ra@[WR (&x@)])  ifk=n

and

2(t) = x(t) — q(6)x(z (2)). (1.2)
Then Eq. (1.1) reduces to the equation

W (6,2(8)) +f(6:%(3(2))) = 0. (1.3)

We can suppose that sup T = 0o since we are interested in the oscillatory behavior of solu-
tions near infinity. We say a nontrivial real-valued function x € Cq([T, 00)1, R) (T > to)
to be a solution of Eq. (1.1) if W, (£, z(¢)) € C%d([Tx, o0)t, R) and satisfies Eq. (1.1) on [T, 00).
The solutions vanishing in some neighborhood of infinity will be excluded from our con-
sideration. A solution x of Eq. (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative, otherwise it is called nonoscillatory.

The theory of time scale was initiated by Hilger’s landmark paper [1] in order to cre-
ate a theory that can unify discrete and continuous analysis, which has received a lot of
attention. There exists a variety of interesting time scales, and they give rise to many ap-
plications (see [2]). We refer the reader to [3, 4] for further results on time scale calculus.
In the thousands of papers in the literature, finding sufficient conditions for all solutions
of an equation to be oscillatory has been a major focus of study. Necessary and sufficient
conditions for the existence of a nonoscillatory bounded solution are more rare because it
is much more difficult to find necessary and sufficient conditions for a solution of higher
order equations.

In a number of papers, there has been much research activity concerning the oscilla-
tion and nonoscillation of solutions of various equations on time scales even today, many
similar equations on time scales can be found in [5-29].

In [21] Zhu and Wang studied the existence of nonoscillatory solutions to the neutral

dynamic equation

[x(®) + p(Ox(2())]" +f(t.x(h(®))) = 0.

Karpuz et al. [22] studied the asymptotic behavior of delay dynamic equations having
the following form:

[x(t) + A(t)x(ot(t))]A + B(t)F(x(,B(t))) - C(t)G(x(y(t))) = o(2).

In [25] Wu et al. investigated the oscillation of the following higher order dynamic equa-
tion:

O[O (- (n@x?)* - )) ]V + F(,2(x (1)) = 0.
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2 Auxiliary results
We state the following conditions, which are needed in the sequel.

1

(Hy) ft:o ﬁAs = ft‘;‘)[ﬁ]y As=oc0(1<k=<n-1).

(Hy) There exist constants ag, 81 € [0,1) with o + B; <1 such that —oy < g(t) < B, for all
le [t0¢ OO)T~

(H3) There exist constants ay, 85 € (1,00) such that —ay < g(¢) < -, for all ¢ € [ty,00)T.

(H4) There exist constants a3, 83 € (1, 00) such that a3 < g(£) < B3 for all ¢ € [£y, 00)T.

Let BC,q4([to, 00)T,R) be the Banach space of all bounded rd-continuous functions on
[to, 00)1 with sup norm ||| = sup,, |x(¢)]. Let X C BC.a([to, 00)T,R), we say that X is
equi-continuous on [4, b] if for any given ¢ > 0, there exists § > 0 such that for any x € X
and u, v € [a, b]r with |[u—v| <8, |x(u) —x(v)| < &. X is said to be uniformly Cauchy if for any
given ¢ > 0, there exists #; > £ such that for any x € X, |x(u1) —x(v)| < & for all u, v € [£1, 00)T.
U : X — BCy4([ty, o0)T,R) is called completely continuous if it is continuous and maps

bounded sets into relatively compact sets.
Lemma 2.1 [26] Let m € N. Then
(1) liminf;_, o W, (8, 2(2)) > 0 implies lim,_, oo W;(t,x(¢)) = 00 forall0 <i<m-1;

(2) limsup,_, o, Wi (t,x(t)) < 0 implies lim;_.oc Wi(t,x(¢)) = —00 forall0 <i<m-1.

Lemma 2.2 Let x(¢) € Cua([to, 00)t, (0,00)) be bounded for t € [ty, 00)r. If W (¢, x(£)) < 0
on [t1, +00)T for some by > ty, then

(1) Wi (t,x(8)) >0 fort>t,k=0,1,2,...,n (2.1)
and
tlim Wi(t,x(t) =0, k=0,1,2,...,n (2.2)

Proof Since W/ (t,x(t)) < 0, W,(¢,x(2)) is strictly decreasing on [t;,00)r. We claim that
W, (t,x(¢)) > 0 for all £ € [t;,00)T. If not, there exists £, € [£, 00)r such that, for all £ > £,

W, (,x(2)) < Wy (t2,%(82)) < 0.

Then by Lemma 2.1 we get lim;_, ., x(£) = —00, which contradicts the fact that x(¢) is
bounded. Then W,,(£,x(¢)) > 0 for all ¢ € [#1,00), and W (¢, x(¢)) < 0. Let

lim W, (t,%(t)) =L >0 and W, (t,x(t)) > L1, te€ [t1,00).
t—0o0

If L; > 0, then we get from Lemma 2.1 that lim,_, o, x(£) = 0o, which is a contradiction to
the boundedness of x(¢). Therefore L; = 0, i.e.,

tlir?o W, (5, x(2)) = 0. (2.3)

Because of W,,(t,x(¢)) > 0, we know W,,_1(t,x(¢)) is strictly increasing on [¢1,00)r, this
implies that exactly one of the following is true:
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(a1) Wia(t,x(2)) < 0 for £ > &y
(b1) there exists t3 > £ such that W,_1(t,x(¢)) > W,,_1(¢3,%(3)) > O for t > t3.

If (b;) holds, by Lemma 2.1, we obtain
lim W, (¢,2()) = lim W,_3(¢,%(¢)) = -+ = lim x(¢) = o0,
t—>00 t—o00 t—o00

which contradicts the fact that x(¢) is bounded. Then W,,_;(¢,x(¢)) < O for all £ € £, 00)T.

Thus, we conclude
lim W,_; (t,x(t)) =L, <0 and W, (t,x(t)) <L,, telt,o0).
t—00

If L, < 0, then by Lemma 2.1 we get lim;_,» x(t) = —00, which is a contradiction to the

boundedness of x(t). Therefore L, = 0, i.e.,
lim W, (¢,%(¢)) = 0. (2.4)
t—>00

Since W2 ,(£,x(2)) = W <0, we see W,,_o(t,x(t)) is strictly decreasing, which im-

plies that exactly one of the following is true:
(a2) Wa(t,x(t)) > 0 for £ > t;
(by) there exists t4 > #; such that W, _»(¢,x(¢)) < W,_a(ta,x(£4)) < 0 for ¢ > #4.

If (by) holds, by Lemma 2.1, we obtain

lim W,_3 (t,x(t)) = lim Wn - 4(t,x(t)) =...= lim x(f) = —o0,
t—00 t—00 t—o00
which contradicts the fact that x(¢) is bounded. Then W,,_,(£,x(¢)) > 0 for all ¢ € [, 00)T.
Therefore we can repeat the above argument and show that Lemma 2.2 holds. The proof

is completed. d

Lemma 2.3 [21] Suppose that X C BCq([to, 00)1, R) is bounded and uniformly Cauchy.
Further, suppose that X is equi-continuous on [ty, ti] for any t; € [ty, 00)1. Then X is rela-

tively compact.

Lemma 2.4 [21] Suppose that X is a Banach space and 2 is a bounded, convex and closed
subset of X. Further, suppose that there exist two operators U and V : Q@ — X such that
(i) Ux+ VyeQforallx,y e Q;
(i) U is a contraction mapping;
(ili) V is completely continuous.
Then U + V has a fixed point in Q.

3 Main results
Now, we state and prove our main results.

Theorem 3.1 Assume that (Hy) and (Hy) hold. Then Eq. (1.1) has a nonoscillatory bounded
solution x(t) with liminf,_, o |x(¢)| > O if and only if there exists some constant M # 0 such
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that

oo 1 o0 1 oo 1 oo
/ / — / 7/ A(u,,)AunAu,,_1~~~Au2Au1
to rl(ul) u 7'2(142) Uy_2 rn—l(un—l) Uy

< 00, (3.1)

=

where A(u,) = [m f::f(s, |IM])As] 7.
Proof Necessity. Assume that Eq. (1.1) has a nonoscillatory bounded solution x(t) on
[to, 00)T with liminf,_. |%(£)| > 0. Without loss of generality, we assume that there is
a constant M > 0 and some #; > £, such that x(¢) > M and x(8(¢)) > M for t > ;. By
assumption that x(¢) is bounded and condition (H,), we see that z(¢) is bounded and
WAL, z(t)) = —f (¢,x(5(¢£))) < 0. Thus, by Lemma 2.2 we know that there exists #, > #; such
that

(1) * Wk(t, z(t)) >0 fort>tand0<k<n. (3.2)

Integrating Eq. (1.3) from ¢ (> £,) to 0o, we have
/t WA (s 2()) As = — / " f(sx(6(5))) .
That is,
rO[WA, (620)] = Walt2(0) = / " Fs,%(56)) As
- [ TfsMAs (62 b). (33)

From (3.2) and (3.3), we have that for ¢ > t,,

/ / f 4/ Aluty) Aty Athyy_ -+ - Aty Ay
¢ ri(m) Jy, ro(u) upy Tn-1(tn1) Ju, |

</°o 1 /oo 1 /w 1
“Je n(wm) Sy r(u) upy Tn-1(Un_1)

oo
X / Wﬁl(un,z(un))Au,,Aun,l NN
Up-1

B S D Y R St )
/c r(u1) /ul 1o (1) /unz Vn—l(un—l)( Y

x W, (un—hz(un—l))Aun—l < Aug Auy

= / / : / ()" DWE (s, 2(th1) ) Aths - - Aty Ay
t ul u

ri(u1) 1y (u3) B N

Y i S e Y B STy
‘/t () / (i) / i)

X Wio(tn2,2(thn—2)) Aty - - - Aty Ay
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= - 1 n-1
= /t 1 (1) (-1)"wW, (Ml’z(ul))Aul

= ‘/m(—l)leA(ul)Aul

= (=1)"2(uy)|° < 0.

By using the boundedness of z(£), we see that (3.1) holds.
Sufficiency. Suppose that there exists some constant M > 0 such that

/ f / 7/ Auy) Ay Aty -+ - Aty A < 00.
w M) Jy ra(u) g Tno1@n=1) Ju,

Then we may choose t; > ¢, such that

/ / - .. / _ / A(un)Aun s AuzAul
¢ () u 1o (1) Up_o Fne1(thn-1) U1

p (1- ,31)(12— BL— Oll)M

and min{§(¢), t(¢)} > ¢, for t > £1. Let
Q= {x € Bcrd([to,OO)T,R) 2,31(1 - ,31 - C(l)M < x(t) <Mfort> t()}.

It is easy to verify that € is a bounded, convex and closed subset of BC,4([£y, o0)T, R).
Now we define two operators U and V : Q — BCyq([£o, 00)T, R) as follows:

(Ux)(®) = q(*)x(x (7))

and

(1-B)A+0ay+ 1)
2

+ D7 /:) l"l(lul) /uloo Vz(lblz) /u:: ﬁ

o0
X / Aty ) At Atty_1 -+ - Aty Ay,
U,

n-1

(Vx)(2) = M

where t* = max{t, 1}, A(u,,x) = [rn(114n) fMO:f(s,x(S(s)))As]%. Now we show that U and V'
satisfy the conditions in Lemma 2.4.
(1) We will prove that Ux + Vy € Q for any x,y € Q. In fact, for any x,y € Q and ¢ > ¢,

x(2),y(t) € [f1(1 - B1 — a1)M, M] and

(1- ,31)(12+ o+ ,31)M + q()2(z (7))

+ (D" _/: Vl(lul) /uloo @ - /‘:2 ﬁ

o0
x/ Atdy, %) Aty Aty -+ - Aty Augg

Up-1

(Ux)(@) + (V3)(2) =
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M

< (1- ,31)(12+ o+ ,31)M  BM + (1- ,31)(12— B1—a1)
=M

and

(1- /31)(12+ ap + 'BI)M +q(£)x(x ()

o0
X / Aty ) Aty Athyy_1 -+ - Aty Ay

Up-1

(Ux)(@) + (Vy)(2) =

. (1- /31)(12+ o + ﬁl)M_ M — (1- /31)(12— Bi— Otl)M
= il - B — )M,

which implies that Ux + Vy € Q for any «,y € Q.
(2) We will show that U is a contraction mapping. Indeed, for any x,y € Q and t > ¢;, we
have

|(W)(8) = (W) = |a(t)x( (%)) = a(t)y(z ()]

< max{ay, Bi}llx—yl.
Therefore, we conclude
|Ux - Uy|| < max{ay, Bi}llx - yll,

then U is a contraction mapping.

(3) We will show that V is a completely continuous mapping.

(i) By the proof of (1), we see that (1 — B — a1)M < (Vx)(t) < M for ¢ € [ty, 00)T. That
is, VQ C Q.

(ii) We consider the continuity of V.. Let %, € Q and ||x,, — x| — 0 as n — 00, thenx € Q

and |x,(¢) — x(¢)] = 0 as n — oo for any ¢ € [£y, 00)1. Consequently, for any s € [£;, 00)T,

we have
1 /OO 1 fw 1
ri(ur) Jy, 72(u2) g Tt (Un_1)

[o.¢]
x/ [A(un,xn)—A(un,x)]AunAun_l...Auz
U,

n-1

lim

n—00

=0.

Since

1 *© 1 o 1 o
/ : / — / [A(un,xn) _A(un,x)]AunAun—l < Auy
u u Up_1

nG) Jy @) i, rea()

1 R | o0 1 o
<2 / / —/ A(uy) AuyAttyq - Aty
ri(u) Ju, ra(u2) upy Tne1(n1) Ju, |
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and for any ¢ € [¢y, 00)r,
| (Vi) (2) — (V) (2) |

* 1 * 1 o 1
< = ... -
B ./q ri(u1) /1;1 ra(uz) /unz Tn-1(%n-1)

00
X / |A(Mnrxn) _A(un:x)|AunAun—l e AMZAMI;

Up-1

we have

IV, — Vx|

| *© 1 o 1
- V/tl rl(ul) /1;1 rz(uz) /M,,_z rﬂ*l(uﬂfl)

o0
X / |A(u,,,xn) - A(un,x)|Au,,Aun,1 o Aug Auy.
Un-1

By Chapter 5 in [4], we see that the Lebesgue dominated convergence theorem satisfies

the integral on time scales. Then
lim ||Vx, — Vx| =0,
n—00
which implies that V' is continuous on 2.

(iii) We show that V' Q is uniformly Cauchy. In fact, for any ¢ > 0, let us take £, > #; so
that

o0 1 [o¢] 1 o0 1 o0
/ / _ / 7/ A, Auy Aty 1+ Auy Ay < €.
t ri(u1) u ro(uz) Uy Fuo1(Un-1) Uy-1

Then, for any x € Q and u, v € [t,, 00)T, we have
|(Va)(u) — (V) (v)| < 2e,

which implies that V2 is uniformly Cauchy.

(iv) We show that VQ is equi-continuous on [fy,t]r for any ¢, € [fy,00)r. With-
out loss of generality, we assume £, > f;. Note L < ri(¢). For any ¢ > 0, choose § =
Le/(1 + f;;o rz(luz) "'fuoj,z m f::ﬁlA(u,,)AunAun,l .-~ Auy), then when u,v € [t, 3]
with |u —v| < §, for any x € Q, we have

| (Vi) (@) = (V) (v) |

00 1 00 1 00 1 0
/ / / 7/ Auy) AuyAuy_q - - - Auy Ay
we () Juy ra(u2) upg Tne1(tn1) Ju, |
00 1 00 1 o) 1 o
_/ f f —/ Alt) At Aty - -~ Aty Aty
v 11(u1) w ro(uz) Uy_o Tp-1(Upo1) Uy-1

v* 1 ] 1 o0 1 (o]
/ / / 7/ Aun) Au, Ay -+ Auy Ay
u* rl(ul) uy r2(u2) Up—2 rn—l(un—l) Upy-1
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=

1 V¥ [ 1 ) 1 [
! / / LI / L / Alttn) Aty Att 1 - Aty Aty
L J,» to I 2 (t2) U2 Ty (Uy-1) U1

* *
—|I/£ -V |/ —/ 7\/‘ A(u,,)AunAun,y--Auz
L to }"2(112) Up—2 rn—l(un—l) Up_1

<g,

=

which implies that V' is equi-continuous on [to, t;]1 for any ¢, € [y, 00)T.

We see from Lemma 2.3 that V is a completely continuous mapping. By Lemma 2.4
it follows that there exists x € Q such that (U + V)x = x, which is the desired bounded
solution of Eq. (1.1) with liminf,_, o, |x(¢)| > 0. The proof is completed. (]

Theorem 3.2 Assume that (H) and (Hs) hold, and that T has the inverse t* € C(T,T).
Then Eq. (1.1) has a nonoscillatory bounded solution x(t) with liminf,_, o |x(t)| > 0 if and
only if there exists some constant M # 0 such that (3.1) holds.

Proof The proof of necessity is similar to that of Theorem 3.1.

Sufficiency. Suppose that there exists some constant M > 0 such that

/ / _ / 7/ A(uy) Aty Aty -+ - Ay Ay < 00.
to rl(ul) u1 7'2(142) Up—2 rn—l(un—l) Up-1

Then we may choose t; > ¢, such that

/ / —/ 7/ A(u,) Ay, Aty -+ - Ay Ay
¢ 1n(m) u (1) Un_2 o1 (Uy-1) U1

Ba(B2 — l)M
2(B2 +1)

and min{8(z71(¢)), T71(¢)} > ¢, for t > ;. Let

Q= {x eBCrd([to,oo)T,R) : MM <x(t) <Mfort> to}.

ax(fr+1)

It is easy to verify that Q2 is a bounded, convex and closed subset of BC,4([£y, 00)T, R).
Now we define two operators U and V : Q — BCq([£o,00)1, R) as follows:

) x(t7H(tY)) (B2 +3)aM

(Ux)(2) q(r1(t)) * =2(By + g(z71(t*))

and

1 ' R N N Y e
(1)0e) = q(t=1(¢")) 1) /;—1@*) ri(uy) /1;1 ra(uy) /;4,,2 Fpo1(Un-1)

o0
X / Ay, X) Aty Aty -+ - Aty A,
u,

n-1

where t* = max{t, t;} for any ¢ € [y, 00)t. In order to prove the theorem, we will show that
U and V satisfy the conditions in Lemma 2.4.
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We first show that Ux + Vy € Q for any x,y € Q. In fact, for any x,y € Q and ¢ > &,
x(1),y(¢) € [l M, M] and

_x( () (B2 + 3)/32
LR+ W0 = 2y * —l(t*))[ 2(/32 SR
_1\n+l * OO -
+D ./rl( y (1) /ul ro(u ./un 5 Tn1(tn1)
X /00 A(u,,,x)AunAunl-~~Au2Au1:|
< (B2 + 3)/32M BB — I)M:|

1
ﬁ_[ 2+ 1) 2Byt 1)
=M

and

(Ux)() + (Vy)(@) = (T (") 1 |:(132 +3)8,

gt (e - (rl(t*)) 2(;32+1)

n+l . * —1
+1) / e n(ul) Mz) / )

o0
X f Atdy, x) Aty Agyy_q - - - AuzAu11|

Up-1

I:(ﬁz + 3)/32M Mo Ba(B2 — 1)M:|

2(B2 +1) 2(B2 +1)
_ Pl
ar(fr +1)
and |[(Vx)(8)| < ‘322:2“ M, which means that Ux + Vy € Q for any x,y € Q and VQ is uni-
formly bounded.

Now we show that VQ is equi-continuous on [to, t]1 for any £, € [y, 00)r. Without
loss of generality, we assume £, > ¢,. Since 1/q(t71(¢)), t~}(¢) are continuous on [to, £]r,
so they are uniformly continuous on [ty, t;]1. For any ¢ > 0, choose § > 0 such that when

u,v € [to, to]T with |u — v| < 8, we have

1 1 c
gt W)  q(z7(v) 1+ A

and

4 1 Le
77 w) - < (V)|<1+B,

where

A:/ —/ 7/ Ay, X) Aty Athyy_1 -+ - Aty Auq,
to rl(ul) uy 7'2(Lt2) Up—2 rn—l(un—l) Up-1

B:/ f 7/ Atdy, ) Aty Athyy_q -+ - A,
to r2(”2) Up_2 rn—l(un—l) Up_1
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Then, we obtain that for any x € 2,

| (Vi) () = (V) (v) |

o]

‘ 1 /00 L /00 1 / A( A Auy A
= PR Uy, X Uy U U
q(T 7Y w*) Jerry () Sy 1raua) iy 2o
1 o0 1 R | o0
- Athy, X) Aty -+ - Ay At
a(t () /zl(m r1() / ) f S
|7 -]
S —_
gzt (w) q1(v)
x/ / / Aty x) Ay, - - - Aty Ay
=1 (y*) r1 (1) u ro(u2) Up_1

r71(v*) %) 00
‘ 1 / 1 / 1 f Ay, %) A Auy A
+ | — - Uy, X) AUy, - - - Auy Au
q@ ) S n) Sy ) ), T !

< | s - )
= a6 g6

x/ / / Aty %) Aty - - - Aty Ay
w 1) Sy ra(u2) U

1 _
%) oo 1 oo

/ / / A(tty, X) Aty -+ - Aty Aty
Lw*) Jig VZ(MZ) Up-1

<oe 7o) ) [ [ At DA
_8+Z‘L' u)-—t (v ; rz(uz).“ ; Up, X) Athy, - - - Aty

R ’#1
gt (") L

n—-1

< 2¢,

which implies that VQ is equi-continuous on [ty, £;]1 for any £, € [£y,00)1. The rest of the
proof is similar to that of Theorem 3.1. The proof is completed. d

Theorem 3.3 Assume that (H,) and (H,) hold, and that © has the inverse t' € C(T,T).
Then Eq. (1.1) has a nonoscillatory bounded solution x(t) with liminf,_, o |x(t)| > 0 if and
only if there exists some constant M # 0 such that (3.1) holds.

Proof The proof of necessity is similar to that of Theorem 3.1.
Sufficiency. Suppose that there exists some constant M > 0 such that

f f / 4/ Auy) Ay Attyy_1 -+ - Aty Ay < 00.
w M) Jy ra(u) g Tno1@n=1) Ju,

Then we may choose t; > ¢, such that

S © o0 -1
.. - Auy)Auy, -+ AuyAug < M,
1 () Sy rau) g Tne1@n=1) Ju, 3

and min{8(z71(¢)), T71(£)} > ¢, for t > . Let

-1
Q= {xeBCrd([to,oo)T,R) : %Mﬁx(ﬂ <Mfort> to}.

It is easy to verify that € is a bounded, convex and closed subset of BC,4([£y, o0)T, R).
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Now we define two operators U and V : Q — BCyq([£9, 00)T, R) as follows:

27N ) 23— 1M

(U0 = 2o * gt i)

and

1 M D S D S N S
(V(0) =~y Y /,-1<m () / () / )

o0
X / Ay, X) Aty Aty -+ - Aty Aig,
U,

n-1

where t* = max{¢, £;} for any ¢ € [y, 00)1. Now we show that {J and V satisfy the conditions
in Lemma 2.4.

We will show that Ux + Vy € Q for any x,y € Q. In fact, for any x,y € Q and ¢ > &,
x(£), y(¢) € [(a3 —1)M/3(B3 — 1), M] and

~ x(r71(tY)) 1 203

L0+ (W0 =5 i) [T
p— n+1 * 1 * 1 .o * 41
+() -/1:1(t*) r() Jyy 7ro(u2) upg Tn-1(Un_1)

oo
X / Aty x) Aty Aty -+ - AuzAu1:|
u

n-1

1203 -1 -1
5—[—(“33 )M+M+a33 M]

as
=M
and
_x(H () 1 2(as —1)
U(E)+ (V) = s + q(f_l(t*))[ 3

+(_1)"+1/°O 1 /WL/N;
71(%) r1 (1) u 1o (1) Up_2 Tt (thp-1)

o0
X / Aty x) Ay Aty -+ - AuzAu1:|

Zi|:2(0[3—1) + (13—1 _(X3—1Mi|
B3 3 3(85-1) 3

_ 0[3—1 M

S 3(Bs-1)

and |[(Vx)(¢)| < (w3 — 1)M/3, which implies that Ux + Vy € Q for any x,y € Q and VQ is
uniformly bounded. The rest of the proof is similar to that of Theorem 3.2. The proof is
completed. d

4 Example

In this section, we give an example to illustrate our main results.
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Lemma 4.1 [23, 24] Assume that s,t € T and g € Cq(T x T,R), then

/St[/ntg(n,C)Ac}An = /St[fsamg(n,;)An}A;,

Example 4.1 Let T = {¢" : n € Z} U {0} with g > 1. Consider the following higher order

dynamic equation:

{2 [(e (- (0 - qux(g0) )™ ) ) T}
qny+1 -1

2r+l( .3 _
* (61— l)qny+1tny+2x " (61 +rt) =0, (4'1)

where t € [q,00)T, y is the quotient of odd positive integers and r is a positive integer,
qi(£) = —2[(-1*K* + (-1)"°%"]/5 (k € {1,2,3)), ru(£) =¥, () =t (L <k <m—1), T(t) = g,

ny+1_1
8(t) = qs”t and f(¢,u) = (q_l’)lqwmubﬂ.

It is easy to verify that g, (¢) satisfies the condition (Hg,1). On the other hand, we have

/ At = / — | At=o00,
¢ L) q LY
*° 1 *1
/ —At:/ -At=00, 1<k<n-1
q 7 (f) qg t
If s > t > g and s = ¢"t, then we have the following inequality:
o(s) 1
/ —At
;T
qt 1 q2t 1 qn+1t 1
= —At + AT+ + —At
;T P gt T

_at-t q*t—qt e q"t - q't

t qt q"t
=(m+1)(g-1)
<q™
<q't
=s.

Combining Lemma 4.1 with the above inequality, we see that for any M > 0,

[ Y R Y TS
g WiJu U2 U Un-1 Ju, 1 LUn Ju,
A A
=M — — .
q U Jy, U2 Up—2 Up-1
or1 oo 1\ T
X/MH[Z /L:n (5—”V+1) Asi| Auy, Aty g+ AusAuy
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2r+l o 1 o 1 ° 1 e 1
=M 7 — [ _— — Au,,Aun_1~~~Au2Au1
q u uj us Uy Up-1 Up-1 un+1+7
2r+l /‘OO 1 /OO 1 /'OC 1
= M Y —_ —_— . N
g "W Ju U2 up_3 Un-2
X |:/ / ——lAunAu,,_l]Aun_z---AuzAul
o J iy Un-1 u’”’“?
2r+1 /w 1 /OO 1 /OO 1
= M Y —_ [ N
q Ui Jyy Uz Up-3 Un—2
o0 1 O'(My,) 1
X — — Au, 1 Auy, | Aty o - - - Ay Ay
u un+1+7 "y Uy
n

2r+l © 1 o0 1 & 1 o0 1
SM y / _/ _/ _ / 1AMVI Aun_2~~~AM2AM1
qg W Juy U2 uy3 Un-2 LJu ty

n2u

2r+l o 1 o 1 o e 1 1
=M 7 — [ —_— 1 AunAun—Z ~~~AM2AM1
q uy uj U Up-3 Y Up-2 Un-2 MVH-?
n

2r+l 0 1 o0 1 e 1 U(un) 1
=M / —/ —|:f T / —AM,,_QAM,{|---AM2AM1
g W Ju U2 u "y Ju,3  Un-2

n-3 Uy,

2r+l g 1 o0 1 o0 1
' [TLL ] s
qg W Juy U2 Up_3 I,tn_h-?
n

A A R
:MZT/ i[/ /< ;AMZAMH]MI
J

/ — — Au,Auy
w U1 u3+7

n

Thus conditions (H;) and (3.1) hold. By Theorem 3.1, Theorem 3.2 and Theorem 3.3, we
see that Eq. (4.1) has a nonoscillatory bounded solution x(¢) with liminf,_, o [x(£)| > 0.
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