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Abstract
In this article, we investigate the existence of a solution arising from the following
fractional q-difference boundary value problem by using the p-Laplacian operator:
Dγ
q (φp(Dδ

qy(t))) + f (t, y(t)) = 0 (0 < t < 1; 0 < γ < 1; 3 < δ < 4), y(0) = (Dqy)(0) = (D2
qy)(0)

= 0, a1(Dqy)(1) + a2(D2
qy)(1) = 0, a1 + |a2| �= 0, Dγ

0+y(t)|t=0 = 0. We make use of such a
fractional q-difference boundary value problem in order to show the existence and
uniqueness of positive and nondecreasing solutions by means of a familiar fixed point
theorem.
MSC: Primary 05A30; 26A33; 34K10; 39A13; secondary 34A08; 34B18

Keywords: positive solutions; fixed point theorem; fractional q-difference equation;
p-Laplacian operator

1 Introduction, definitions, and preliminaries
Recently, many mathematicians, physicists and engineers have extensively studied various
families of fractional differential equations and their applications. The development of the
theory of fractional calculus stems from the applications in many widespread disciplines
such as engineering, economics and other fields. Jackson [] introduced the q-difference
calculus (or the so-called quantum calculus), which is an old subject. New developments in
this theory were made. These include (for example) the q-analogs of the fractional integral
and the fractional derivative operators, the q-analogs of the Laplace, Fourier, and other
integral transforms, and so on (see, for details, [–], and []; see also a very recent
work [] dealing with q-calculus).

Throughout our present investigation, we make use of the following notations:

N := {, , , . . .} and N := N∪ {}.

Moreover, as usual, R denotes the set of real numbers, R+ denotes the set of positive real
numbers, Z– denotes the set of negative integers, and C denotes the set of complex num-
bers.

Al-Salam [] and Agarwal [] investigated several properties and results for some frac-
tional q-integrals and fractional q-derivatives which are based on the q-analog of the or-

© 2015 Araci et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly credited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205939638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13662-015-0375-0
mailto:mtsrkn@hotmail.com


Araci et al. Advances in Difference Equations  (2015) 2015:40 Page 2 of 12

dinary integral:
∫ x

a
f (t) dt.

Atici and Eloe [] constructed interesting links between the fractional q-calculus in the
existing literature and the fractional q-calculus on a time scale given by

Tt =
{

t : t = tqn (n ∈N; t ∈R;  < q < )
}

.

They also derived some properties of a q-Laplace transform, which are used to solve frac-
tional q-difference equations. Benchohra et al. [] investigated the existence of solutions
for fractional-order functional equations by means of the Banach fixed point theorem and
its nonlinear alternative of Leray-Schauder type. El-Sayed et al. [] studied the stability,
existence, uniqueness, and numerical solution of the fractional-order logistic equation.
The work of El-Shahed [] was concerned with the existence and non-existence of pos-
itive solutions for some nonlinear fractional boundary value problems. Ferreira (see []
and []) investigated the existence of nontrivial solutions to some nonlinear q-fractional
boundary value problems by applying a fixed point theorem in cones. For more infor-
mation on the positive solutions (or nontrivial solutions) for a class of boundary value
problems with the fractional differential equations (or q-fractional differential equations),
we refer the reader to such earlier works as (for example) [, , –], and [].

We now review briefly some concepts of the quantum calculus.
For q ∈ (, ), the q-integer [λ]q is defined by

[λ]q =
 – qλ

 – q
(λ ∈ R).

Clearly, we have

lim
q→–

[λ]q = λ,

so we say that [λ]q is a q-analog of the number λ. The q-analog of the binomial formula
(a – b)n is given by

(a – b) =  and (a – b)n =
n–∏
k=

(
a – bqk) (a, b ∈R; n ∈ N).

More generally, we have

(a – b)(δ) = aδ

∞∏
n=

(
a – bqn

a – bqδ+n

)
(δ ∈R). (.)

Clearly, if we set b =  in Eq. (.), it reduces immediately to

a(δ) = aδ (δ ∈R).

The q-gamma function is defined as follows:

�q(x) =
( – q)(x–)

( – q)x–

(
x ∈R \ {{} ∪Z–

})
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and satisfies the formula:

�q(x + ) = [x]�q(x).

The q-derivative of a function f (x) is given by

(Dqf )(x) =
f (x) – f (qx)

( – q)x
and lim

q→–
(Dqf )(x) = f ′(x) =

d
dx

{
f (x)

}
.

For the q-derivatives of higher order, we have

(
D

qf
)
(x) = f (x) and

(
Dn

qf
)
(x) = Dq

(
Dn–

q f
)
(x) (n ∈N).

Suppose now that  < a < b. Then the definite q-integral is defined as follows:

(Iqf )(x) =
∫ x


f (t) dqt = x( – q)

∞∑
n=

f
(
xqn)qn (

x ∈ [, b]
)

and

∫ b

a
f (t) dqt =

∫ b


f (t) dqt –

∫ a


f (t) dqt.

The operator In
q can be defined by

(
I

q f
)
(x) = f (x) and

(
In

q f
)
(x) = Iq

(
In–

q f
)
(x) (n ∈N).

The Fundamental Theorem of Calculus does indeed apply mutatis mutandis to the op-
erators Iq and Dq. We thus have

(DqIqf )(x) = f (x),

and if f is continuous at x = , then

(IqDqf )(x) = f (x) – f ().

Denoting by xDq the q-derivative with respect to the variable x, we now recall the fol-
lowing three formulas which will be used in the remainder of this paper:

[
a(t – s)

](δ) = aδ(t – s)(δ), (.)

xDq(t – s)(δ) = [δ]q(x – s)(δ–), (.)
(

xDq

∫ x


f (x, t) dqt

)
(x) =

∫ x


xDqf (x, t) dqt + f (qx, x). (.)

Definition  (see []) Let δ �  and f be a function defined on [, ]. The fractional q-
integral of the Riemann-Liouville type is given by

(
I

q f
)
(x) = f (x)
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and

(
Iδ

qf
)
(x) =


�q(δ)

∫ x


(x – qt)(δ–)f (t) dqt

(
δ > ; x ∈ [, ]

)
.

Definition  (see [] and []) The fractional q-derivative of the Riemann-Liouville type
of order δ (δ � ) is defined by

(
D

qf
)
(x) = f (x)

and

(
Dδ

qf
)
(x) =

(
Dm

q Im–δ
q f

)
(x) (δ > ),

where m is the smallest integer greater than or equal to δ.

Lemma  (see []) Let δ � , β � , and f be a function defined on [, ]. Then the fol-
lowing two formulas hold true:

() (Iβ
q Iδ

qf )(x) = (Iδ+β
q f )(x);

() (Dδ
qIδ

qf )(x) = f (x).

Lemma  (see [] and []) Let δ >  and p be a positive integer. Then the following equal-
ity holds:

(
Iδ

qDp
qf

)
(x) =

(
Dp

qIδ
qf

)
(x) –

p–∑
k=

xδ–p+k

�q(δ + k – p + )
(
Dk

qf
)
().

Theorem  (see [, ], and []) (a) Let (E,�) be a partially ordered set and suppose
that there exists a metric d in E such that (E, d) is a complete metric space. Assume that E
satisfies the condition that, if {xn} is a nondecreasing sequence in E such that xn → x, then

xn � x (n ∈ N).

Let T : E → E be a nondecreasing mapping such that

d(Tx, Ty) � d(x, y) – ψ
(
d(x, y)

)
(x � y),

where

ψ : [, +∞) → [, +∞)

is a continuous and nondecreasing function such that ψ is positive in (,∞), ψ() = , and

lim
t→∞ψ(t) = ∞.

If there exists x ∈ E with x � T(x), then T has a fixed point.
(b) If we assume that (E,�) satisfies the condition that, for x ∈ E and y ∈ E, there exists

z ∈ E which is comparable to x and y and the hypothesis of (a), then it leads to the uniqueness
of the fixed point.
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Mena et al. [] investigated the existence and uniqueness of positive and nondecreasing
solutions for the following singular fractional boundary value problem:

Dα
+ u(t) + f

(
t, u(t)

)
=  ( < t < ;  < α < ),

u() = u′() = u′′() = .

Miao and Liang [], on the other hand, studied the existence and uniqueness of a posi-
tive and nondecreasing solution for the following fractional q-difference boundary value
problem:

Dγ
q
(
φp

(
Dα

q u(t)
))

+ f
(
t, u(t)

)
=  ( < t < ;  < α < ),

u() = (Dqu)() = , (Dqu)() = , and Dγ
+u(t)|t= = .

Motivated essentially by the aforementioned work by Miao and Liang [], we introduce
and investigate here the following q-difference boundary value problem by using the p-
Laplacian operator:

Dγ
q
(
φp

(
Dδ

qy(t)
))

+ f
(
t, y(t)

)
=  ( < t < ;  < δ < ), (.)

{
y() = (Dqy)() = (D

qy)() = ,
a(Dqy)() + a(D

qy)() = , and Dγ
+y(t)|t= = .

(.)

We prove the existence and uniqueness of a positive and nondecreasing solution for the
boundary value problem given by Eqs. (.) and (.) by means of a fixed point theorem
involving partially ordered sets.

2 Fractional boundary value problem
Throughout of this paper, we always make use of the usual space E = C[, ] which is
known as the space of continuous functions on [, ]. We note that E is a real Banach
space with the norm given by

‖u‖ = max
�t�

∣∣u(t)
∣∣.

Suppose that x ∈ C[, ] and y ∈ C[, ]. Then we have

x � y ⇔ x(t) � y(t)
(∀t ∈ [, ]

)
.

We know from the recent work [] that (C[, ],�) with the familiar metric:

d(x, y) = sup
�t�

{∣∣x(t) – y(t)
∣∣}

satisfies the hypothesis of Theorem (a). Moreover, for x ∈ C[, ] and y ∈ C[, ] such that
max{x, y} ∈ C[, ], (C[, ],�) satisfies the condition of Theorem (b).
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We first demonstrate Lemma .

Lemma  If h ∈ C[, ], the following boundary value problem:

(
Dδ

qy
)
(t) + h(t) =  ( < t < ;  < δ < ), (.)

{
u() = (Dqu)() = (D

qu)() = ,
a(Dqu)() + a(D

qu)() =  (|a| + |a| �= )
(.)

has a unique solution given by

u(t) =
∫ 


G(t, qs)h(s) dqs, (.)

where

G(t, s) =


(a + a[δ – ]q)�q(δ)

×

⎧⎪⎨
⎪⎩

(a( – s)(δ–) + a[δ – ]q( – s)(δ–))tδ–

– (a + a[δ – ]q)(t – s)(δ–) ( � s � t � ),
(a( – s)(δ–) + a[δ – ]q( – s)(δ–))tδ– ( � t � s � ).

(.)

Proof By applying Lemma , Lemma  (with p = ) and Eq. (.), we have

(
Iδ

qD
qI–δ

q u
)
(x) = –Iδ

qf
(
t, u(t)

)

and

u(t) = ctδ– + ctδ– + ctδ– + ctδ– –
∫ t



(t – qs)(δ–)

�q(δ)
h(s) dqs. (.)

From Eq. (.), we get c = . Thus, upon differentiating both sides of Eq. (.), if we make
use of Eqs. (.) and (.), we see that

(Dqu)(t) = [δ – ]qctδ– + [δ – ]qctδ– + ctδ– –
[δ – ]q

�q(δ)

∫ t


(t – qs)(δ–)h(s) dqs. (.)

Using the boundary condition (.), we have c = . Moreover, by differentiating both sides
of Eq. (.), and using Eqs. (.) and (.), we obtain

(
D

qu
)
(t) = [δ – ]q[δ – ]qctδ– + [δ – ]q[δ – ]qctδ–

–
[δ – ]q[δ – ]q

�q(δ)

∫ t


(t – qs)(δ–)h(s) dqs.

Similarly, by using the boundary condition (.), we have c =  and

c =
a

∫ 
 ( – qs)(δ–)h(s) dqs + a[δ – ]q

∫ 
 ( – qs)(δ–)h(s) dqs

(a + a[δ – ]q)�q(δ)
.
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Consequently, we have the following unique solution of the boundary value problem given
by Eqs. (.) and (.):

u(t) = –
∫ t



(t – qs)(δ–)

�q(δ)
h(s) dqs

+
(a

∫ 
 ( – qs)(δ–)h(s) dqs + a[δ – ]q

∫ 
 ( – qs)(δ–)h(s) dqs)tδ–

(a + a[δ – ]q)�q(δ)

=


�q(δ)

∫ t



(
(a( – qs)(δ–) + a[δ – ]q( – qs)(δ–))tδ–

(a + a[δ – ]q)
– (t – qs)(δ–)

)
h(s) dqs

+
∫ 

t

(a( – qs)(δ–) + a[δ – ]q( – qs)(δ–))tδ–

(a + a[δ – ]q)�q(δ)
h(s) dqs

=
∫ 


G(t, qs)h(s) dqs.

We thus arrive at the desired result asserted by Lemma . �

By using the method in [] mutatis mutandis, it can easily be proven that, if f ∈
C([, ] × [, +∞), [, +∞)), then the boundary value problem given by Eqs. (.) and (.)
is equivalent to the following integral equation:

u(t) =
∫ 


G(t, qs)φ–

p

(∫ s



(s – τ )(γ –)f (τ , u(τ ))
(a + a[δ – ]q)�q(γ )

dqτ

)
dqs, (.)

where G(t, s) is defined, as before, by Eq. (.).

Lemma  The function G(t, s) given by Eq. (.) has the following properties:
() G(t, s) is a continuous function and G(t, qs) � ;
() G(t, s) is strictly increasing in the first variable t.

Proof The continuity of G(t, s) can easily be checked. We, therefore, omit the details in-
volved. Next, for  � s � t � , we let

g(t, s) =
(
a( – s)δ– + a[δ – ]q( – s)δ–)tδ–

–
(
a + a[δ – ]q

)
(t – s)δ–

and, for  � t � s � , we suppose that

g(t, s) =
(
a( – s)δ– + a[δ – ]q( – s)δ–)tδ–.

Then it is not difficult to see that

g(t, qs) � .

Now, for g(, qs) = , δ > , and a � b � t, we have

(t – a)(δ) � (t – b)(δ) (t �= ).
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We thus find that

g(t, qs) =
(
a( – qs)δ– + a[δ – ]q( – qs)δ–)tδ–

–
(
a + a[δ – ]q

)(
 – q

s
t

)
tδ–

�
[(

a( – qs)δ– + a[δ – ]q( – qs)δ–)

–
(
a + a[δ – ]q

)
( – qs)δ–]tδ–

�
[(

a( – qs)δ– + a[δ – ]q( – qs)δ–)

–
(
a + a[δ – ]q

)
( – qs)δ–]tδ– = .

So, clearly, G(t, qs) �  for all (t, s) ∈ [, ]× [, ]. This completes the proof of Lemma ().
Next, for a fixed s ∈ [, ], we see that

tDqg(t, qs) = [δ – ]q
(
a( – qs)(δ–) + a[δ – ]q( – qs)(δ–))tδ–

– [δ – ]q
(
a + a[δ – ]q

)
(t – qs)δ–

= [δ – ]q
(
a( – qs)(δ–) + a[δ – ]q( – qs)(δ–))tδ–

– [δ – ]q
(
a + a[δ – ]q

)(
 – q

s
t

)δ–

tδ–

� [δ – ]q( – qs)(δ–)(a + a[δ – ]q
)
tδ–

– [δ – ]q( – qs)(δ–)(a + a[δ – ]q
)
tδ–

= .

This implies that g(t, qs) is an increasing function of the first argument t. Furthermore,
obviously, g(t, qs) is an increasing function of the first argument t. Therefore, G(t, qs) is
an increasing function of t for a fixed s ∈ [, ]. This completes the proof of Lemma .

�

3 Uniqueness of positive solutions
For notational convenience, we write

M := φ–
p

(


�q(γ )(a + a[δ – ]q)

)
sup

�t�

∫ 


G(t, qs) dqs > . (.)

The main result of this paper is the assertion in Theorem .

Theorem  The boundary value problem given by Eqs. (.) and (.) has a unique positive
and increasing solution u(t) if each of the following two conditions is satisfied:

(i) the function f : [, ] × [,∞) → [,∞) is continuous and nondecreasing with
respect to the second variable;

(ii) there exist λ and M given by Eq. (.) ( < λ +  < M) such that, for u ∈ [,∞) and
v ∈ [,∞) with u � v and t ∈ [, ],

φp
(
ln(v + )

)
� f (t, v) � f (t, u) � φp

(
ln(u + )(u – v + )λ

)
.
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Furthermore, if f (t, ) >  for t ∈ [, ], then the solution u(t) of the boundary value prob-
lem given by Eqs. (.) and (.) is strictly increasing on [,∞).

Proof First of all, we set

u := u(t) and v := v(t).

We then consider the set K (called a cone) given by

K =
{

u : u ∈ C[, ] and u(t) � 
}

.

Since K is a closed set, K is a complete metric space in accordance with the usual metric

d(u, v) = sup
t∈[,]

∣∣u(t) – v(t)
∣∣.

Let us now consider the operator T as follows:

Tu(t) =
∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

∫ s


(s – τ )(γ –)f

(
τ , u(τ )

)
dqτ

)
dqs.

Then, by applying Lemma  and the condition (i) of Theorem , we see that T(K) ⊂ K .
We now show that all conditions of Theorem  are satisfied. Firstly, by the condition (i)

of Theorem , for u, v ∈ K and u � v, we have

Tu(t) =
∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

∫ s


(s – τ )(γ –)f

(
τ , u(τ )

)
dqτ

)
dqs

�
∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

∫ s


(s – τ )(γ –)f

(
τ , v(τ )

)
dqτ

)
dqs

= Tv(t).

This shows that T is a nondecreasing operator. On the other hand, for u � v and by the
condition (ii) of Theorem , we have

d(Tu, Tv) = sup
�t�

∣∣(Tu)(t) – (Tv)(t)
∣∣

= sup
�t�

(
(Tu)(t) – (Tv)(t)

)

� sup
�t�

[∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

×
∫ s


(s – τ )(γ –)f

(
τ , u(τ )

)
dqτ

)
dqs

–
∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

×
∫ s


(s – τ )(γ –)f

(
τ , v(τ )

)
dqτ

)
dqs

]
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�
(
ln(u + )(u – v + )λ – ln(v + )

)

× sup
�t�

∫ 


G(t, qs)φ–

p

(


(a + a[δ – ]q)�q(γ )

∫ s


(s – τ )(γ –) dqτ

)
dqs

� ln
(u + )(u – v + )λ

v + 
φ–

p

(


(a + a[δ – ]q)�q(γ )

)
sup

�t�

∫ 


G(t, qs) dqs

� (λ + ) ln(u – v + )φ–
p

(


(a + a[δ – ]q)�q(γ )

)
sup

�t�

∫ 


G(t, qs) dqs.

Since the function h(x) = ln(x + ) is nondecreasing, from the condition (ii) of Theorem ,
we have

d(Tu, Tv) � (λ + ) ln
(‖u – v‖ + 

)
φ–

p

(


(a + a[δ – ]q)�q(γ )

)
sup

�t�

∫ 


G(t, qs) dqs

= (λ + ) ln
(‖u – v‖ + 

)
M

� ‖u – v‖ –
(‖u – v‖ – ln

(‖u – v‖ + 
))

.

We now let ψ(x) = x – ln(x + ). Then, obviously, the function ψ given by

ψ : [, +∞) → [, +∞)

is continuous, nondecreasing, and positive in (,∞). It is also clearly seen that ψ(x) satis-
fies the following conditions:

ψ() =  and lim
x→+∞ψ(x) = ∞.

Thus, for u � v, we have

d(Tu, Tv) � d(u, v) – ψ
(
d(u, v)

)
.

As G(t, qs) �  and f � , we have

(T)(t) =
∫ 


G(t, qs)f (s, ) dqs � .

Consequently, in view of Theorem , the boundary value problem given by Eqs. (.) and
(.) has at least one nonnegative solution. Since (K ,�) satisfies the condition (ii) of The-
orem , Theorem  implies the uniqueness of the solution. Thus, clearly, the proof of the
last assertion of Theorem  follows immediately from the proof of a well-known result in
[, Theorem .]. Our proof Theorem  is thus completed. �

4 Concluding remarks and observations
Our present study was motivated by several aforementioned recent works. Here, we have
successfully addressed the problem involving the existence and uniqueness of positive and
nondecreasing solutions of a family of fractional q-difference boundary value problems
given by Eqs. (.) and (.). The proof of our main result asserted by Theorem  of the
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preceding section has made use of some familiar fixed point theorems. We have also in-
dicated the relevant connections of the results derived in this investigation with those in
earlier works on the subject.
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