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Abstract
Using the notion of the truncated variation we obtain a new theorem on the
existence and estimation of the Riemann-Stieltjes integral. As a special case of this
theorem we obtain an improved version of the Loéve-Young inequality for the
Riemann-Stieltjes integrals driven by irregular signals. Using this result we strengthen
some results of Lyons on the existence of solutions of integral equations driven by
moderately irregular signals.
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1 Introduction
The purpose of this paper is to investigate the top-down structure of the Riemann-Stieltjes
integral and to state some general condition guaranteeing the existence of this integral,
expressed in terms of the functional called truncated variation.

The simplest (and rather not surprising) case where the Riemann-Stieltjes integral
∫ b

a f dg (RSI in short) exists, is the situation when the integrand and the integrator have no
common points of discontinuity, the former is bounded and the latter has finite total vari-
ation. We will prove a general theorem (Theorem ) encompassing this situation as well as
the more interesting case when the RSI exists, namely when the integrand and the integra-
tor have a possibly unbounded variation, but they have finite p-variation and q-variation,
respectively, with p > , q >  and p– + q– > . The latter result is due to Young [], p.,
theorem on Stieltjes integrability. For f : [a; b] → R and p > , the p-variation, which we
will denote by V p(f ; [a; b]), is defined as

V p(f , [a; b]
)

= sup
n

sup
a≤t<t<···<tn≤b

n–∑

i=

∣
∣f (ti) – f (ti–)

∣
∣p.

The aforementioned Theorem  provides also an upper bound for the difference

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣.
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As a special case of this bound we will obtain the following, improved version of the clas-
sical Loéve-Young inequality:

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣

≤ Cp,q
(
V p(f , [a; b]

))–/q‖f ‖+p/q–p
osc,[a;b]

(
V q(g, [a; b]

))/q, ()

where Cp,q is some constant depending on p and q only and ‖f ‖osc,[a;b] := supa≤s<t≤b |f (t) –
f (s)|. The original Loéve-Young estimate, published in  in [], reads

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤ ζ

(
p– + q–)(V p(f , [a; b]

))/p(V q(g, [a; b]
))/q,

where ζ (r) =
∑+∞

k= k–r is the famous Riemann zeta function. We say that our bound is
improved version of the Loéve-Young inequality since the value of the constant Cp,q (al-
though possibly greater than ζ (p– +q–)) is irrelevant in applications while the fact that the
term (V p(f , [a; b]))/p in the original Loéve-Young estimate is replaced in our estimate by
(V p(f , [a; b]))–/q‖f ‖+p/q–p

osc,[a;b] (notice that /p >  – /q and always (V p(f , [a; b]))/p–(–/q) ≥
‖f ‖+p/q–p

osc,[a;b]) makes it possible to obtain stronger results. For example, Proposition  ob-
tained in Section  with the help of () is a genuine improvement upon earlier known
results of this type.

Let us comment shortly how the results on the existence of the RSI were obtained so far.
The original Young’s proof utlilised elementary but clever induction argument for finite
sequences. Another proof of the Young theorem may be found in [], Chapter , where in-
tegral estimates based on control function and the Loéve-Young inequality are used. This
approach is further applied in the rough-path theory setting. Further generalisations of
Young’s theorem are possible, with p-variation replaced by the more general ϕ-variation:

V ϕ
(
f , [a; b]

)
= sup

n
sup

a≤t<t<···<tn≤b

n–∑

i=

ϕ
(∣
∣f (ti) – f (ti–)

∣
∣
)
,

where ϕ : [; +∞) → [; +∞) is a Young function, i.e. a convex, strictly increasing function
starting from  (see for example [, ] and for a survey of other results of this type, see [],
Chapter , [], Section .).

However, as far as we know, Theorem  is a new result on the existence of the RSI. The
proof of Theorem  utilises simple properties of the truncated variation and multiple ap-
plication of the summation by parts. Similarly, no version of the Loéve-Young inequality
as estimate (), as far as we know, has appeared so far (see the detailed historical notes on
the Loéve-Young inequality in [], pp.-). We conjecture that using Theorem  one
may also obtain a variation of the Loéve-Young inequality for ϕ-variation (see [], Theo-
rem ., Corollary ., or [], Theorem .). We intend to deal with this conjecture in
the future.

After having obtained these results we were able, following Lyons [], and Lyons et al. [],
to solve few types of integral equations driven by moderately irregular signals. By moder-
ately irregular signals we mean continuous signals with finite p-variation, where p ∈ (; ).
It is well known that for higher degrees of irregularity, corresponding to p ≥ , one needs to



Łochowski Journal of Inequalities and Applications  (2015) 2015:378 Page 3 of 16

construct approximations of integral equations, to consider terms of new type (like Lévy’s
area). We believe that the truncated variation approach for such paths is also possible and
this will be a topic of our further research.

Let us comment shortly on the organisation of the paper. In the next section we prove a
general theorem on the existence of the Riemann-Stieltjes integral, expressed in terms of
the truncated variation functionals and derive from it the stronger version of the Loéve-
Young inequality. Next, in Section , we deal with the applications of this result to few
types of integral equations driven by moderately irregular signals.

2 A theorem on the existence of the Riemann-Stieltjes integral
In this section we will prove a general theorem on the existence of the RSI

∫ b
a f dg formu-

lated in terms of the truncated variation. We will assume that both - integrand f : [a; b] →
R and integrator g : [a; b] → R are regulated functions. Let us state the definition of the
truncated variation and recall the definition of a regulated function.

For f : [a; b] → R its truncated variation with the truncation parameter δ ≥  will be
denoted by TVδ(f , [a; b]). It may be simply defined as the greatest lower bound for the total
variation of any function g : [a; b] →R, uniformly approximating f with the accuracy δ/,

TVδ
(
f , [a; b]

)
:= inf

{
TV

(
g, [a; b]

)
: ‖f – g‖∞,[a;b] ≤ δ/

}
.

‖f – g‖∞,[a;b] denotes here supa≤t≤b |f (t) – g(t)| and the total variation TV(g, [a; b]) is de-
fined as

TV
(
g, [a; b]

)
:= sup

n
sup

a≤t<t<···<tn≤b

n–∑

i=

∣
∣g(ti) – g(ti–)

∣
∣.

It appears that the truncated variation TVδ(f , [a; b]) is finite for any δ >  iff f is regulated
(cf. [], Fact .) and then for any δ >  the following equality holds:

TVδ
(
f , [a; b]

)
= sup

n
sup

a≤t<t<···<tn≤b

n–∑

i=

max
{∣∣f (ti) – f (ti–)

∣
∣ – δ, 

}
()

(cf. [], Theorem ).
Let us recall that a function h : [a; b] → R is regulated if there exist one-sided finite

limits limt→a+ h(t) and limt→b– h(t), and for any t ∈ (a; b) there exist one-sided finite limits
limt→x– h(t) and limt→x+ h(t).

We will also need the following result (cf. [], Theorem ): for any regulated function
f : [a; b] → R and δ >  there exists a regulated function f δ : [a; b] → R such that ‖f –
f δ‖∞,[a;b] ≤ δ/ and

TV(f δ , [a; b]
)

= TVδ
(
f , [a; b]

)
.

From equation (), it directly follows that the truncated variation is a superadditive func-
tional of the interval, i.e. for any d ∈ (a; b)

TVδ
(
f , [a; b]

) ≥ TVδ
(
f , [a; d]

)
+ TVδ

(
f , [d; b]

)
.
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Moreover, we also have the following easy estimate of the truncated variation of a function
f perturbed by some other function h:

TVδ
(
f + h, [a; b]

) ≤ TVδ
(
f , [a; b]

)
+ TV(h, [a; b]

)
, ()

which stems directly from the inequality, for a ≤ s < t ≤ b,

max
{∣∣f (t) + h(t) –

{
f (s) + h(s)

}∣∣ – δ, 
} ≤ max

{∣∣f (t) – f (s)
∣
∣ – δ, 

}
+

∣
∣h(t) – h(s)

∣
∣.

Theorem  Let f , g : [a; b] → R be two regulated functions which have no common points
of discontinuity. Let η ≥ η ≥ · · · and θ ≥ θ ≥ · · · be two sequences of non-negative num-
bers, such that ηk ↓ , θk ↓  as k → +∞. Define η– := supa≤t≤b |f (t) – f (a)| and

S :=
+∞∑

k=

kηk– · TVθk
(
g, [a; b]

)
+

∞∑

k=

kθk · TVηk
(
f , [a; b]

)
.

If S < +∞ then the Riemann-Stieltjes integral
∫ b

a f dg exists and one has the following esti-
mate :

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤ S. ()

Remark  The assumption that f and g have no common points of discontinuity is neces-
sary for the existence of the RSI

∫ b
a f dg . When more general integrals are considered (e.g.

the Moore-Pollard integral, cf. [], p.), we may weaken this assumption and assume
that f and g have no common one-sided discontinuities.

The proof of Theorem  will be based on the following lemma.

Lemma  Let f , g : [a; b] →R be two regulated functions. Let c = t < t < · · · < tn = d be any
partition of the interval [c; d] ⊂ [a; b] and let ξ = c and ξ, . . . , ξn be such that ti– ≤ ξi ≤ ti

for i = , , . . . , n. Then for δ– := supc≤t≤d |f (t) – f (c)|, δ ≥ δ ≥ · · · ≥ δr ≥  and ε ≥ ε ≥
· · · ≥ εr ≥  the following estimate holds:

∣
∣
∣
∣
∣

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]
∣
∣
∣
∣
∣

≤
r∑

k=

kδk– · TVεk
(
g, [c; d]

)
+

r∑

k=

kεk · TVδk
(
f , [c; d]

)
+ nδrεr .

Proof Denote ε = ε, by summation by parts, we have the following equality:

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]

=
n∑

i=

[
f (ξi) – f (c)

][
gε(ti) – gε(ti–)

]



Łochowski Journal of Inequalities and Applications  (2015) 2015:378 Page 5 of 16

+
n∑

i=

[
f (ξi) – f (c)

][
g(ti) – gε(ti) –

{
g(ti–) – gε(ti–)

}]

=
n∑

i=

[
f (ξi) – f (c)

][
gε(ti) – gε(ti–)

]

+
n∑

i=

[
g(d) – gε(d) –

{
g(ti–) – gε(ti–)

}][
f (ξi) – f (ξi–)

]
, ()

where gε : [c; d] → R is regulated and such that

∥
∥g – gε

∥
∥∞,[c;d] ≤ 


ε and TV(gε , [c; d]

)
= TVε

(
g, [c; d]

)
.

Similarly, for δ = δ we may write

n∑

i=

[
g(d) – gε(d) –

{
g(ti–) – gε(ti–)

}][
f (ξi) – f (ξi–)

]

=
n∑

i=

[
g(d) – gε(d) –

{
g(ti–) – gε(ti–)

}][
f δ(ξi) – f δ(ξi–)

]

+
n∑

i=

[
f (ξi) – f δ(ξi) –

{
f (c) – f δ(c)

}][{
g(ti) – gε(ti)

}
–

{
g(ti–) – gε(ti–)

}]
, ()

where f δ : [c; d] → R is regulated and such that

∥
∥f – f δ

∥
∥∞,[c;d] ≤ 


δ and TV(f δ , [c; d]

)
= TVδ

(
f , [c; d]

)
.

Since TV(gε , [c; d]) = TVε(g, [c; d]), TV(f δ , [c; b]) = TVδ(f , [c; d]), ‖g –gε‖∞,[c;d] ≤ ε/ and
‖f – f δ‖∞,[c;d] ≤ δ/, from () and () we have the following estimate:

∣
∣
∣
∣
∣

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]
∣
∣
∣
∣
∣

≤ sup
c≤t≤d

∣
∣f (t) – f (c)

∣
∣ · TVε

(
g, [c; d]

)
+ ε · TVδ

(
f , [c; d]

)
+ nδε. ()

Denote g := g – gε , f := f – f δ on [c; d]. By () and (), instead of the last summand nδε in
() we may write the estimate

∣
∣
∣
∣
∣

n∑

i=

[
f (ξi) – f δ(ξi) –

{
f (c) – f δ(c)

}][{
g(ti) – gε(ti)

}
–

{
g(ti–) – gε(ti–)

}]
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

n∑

i=

[
f(ξi) – f(c)

][
g(ti) – g(ti–)

]
∣
∣
∣
∣
∣

≤ sup
c≤t≤d

∣
∣f(t) – f(c)

∣
∣ · TVε

(
g, [c; d]

)
+ ε · TVδ

(
f, [c; d]

)
+ nδε

≤ δ · TVε
(
g, [c; d]

)
+ ε · TVδ

(
f, [c; d]

)
+ nδε, ()
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where the last but one inequality in () follows by the same reasoning for f and g as
inequality () for f and g . Repeating these arguments, by induction we get

∣
∣
∣
∣
∣

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]
∣
∣
∣
∣
∣

≤
r∑

k=

δk– · TVεk
(
gk , [c; d]

)
+

r∑

k=

εk · TVδk
(
fk , [c; d]

)
+ nδrεr , ()

where δ– := supc≤t≤c |f (t) – f (a)|, g ≡ g , f ≡ f and for k = , , . . . , r, gk := gk– – gεk–
k– ,

fk := fk– – f δk–
k– are defined similarly as g and f.

Since εk ≤ εk– for k = , , . . . , r, by () and the fact that the function δ �→ TVδ(h, [c; d])
is non-increasing, we estimate

TVεk
(
gk , [c; d]

)
= TVεk

(
gk– – gεk–

k– , [c; d]
)

≤ TVεk
(
gk–, [c; d]

)
+ TV(gεk–

k– , [c; d]
)

= TVεk
(
gk–, [c; d]

)
+ TVεk–

(
gk–, [c; d]

)

≤ TVεk
(
gk–, [c; d]

)
.

Hence, by recursion, for k = , , . . . , r,

TVεk
(
gk , [c; d]

) ≤ kTVεk
(
g, [c; d]

)
.

Similarly, for k = , , . . . , r, we have

TVδk
(
fk , [c; d]

) ≤ kTVδk
(
f , [c; d]

)
.

By () and last two estimates we get the desired estimate. �

Remark  Notice that starting in () from the summation by parts, then splitting the
difference f (ξi) – f (ξi–):

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]

=
n∑

i=

[
g(d) – g(ti–)

][
f (ξi) – f (ξi–)

]
=

n∑

i=

[
g(d) – g(ti–)

][
f δ(ξi) – f δ(ξi–)

]

+
n∑

i=

[
g(d) – g(ti–)

][
f (ξi) – f δ(ξi) –

{
f (ξi–) – f δ(ξi–)

}]

and proceeding similarly to the proof of Lemma  we get the symmetric estimate
∣
∣
∣
∣
∣

n∑

i=

f (ξi)
[
g(ti) – g(ti–)

]
– f (c)

[
g(d) – g(c)

]
∣
∣
∣
∣
∣

≤
r∑

k=

kεk– · TVδk
(
f , [c; d]

)
+

r∑

k=

kδk · TVεk
(
g, [c; d]

)
+ nδrεr , ()

where ε– = supc≤t≤d |g(d) – g(t)|.
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Remark  Setting in Lemma , n =  for any ξ ∈ [c; d] we get the estimate

∣
∣(f (ξ ) – f (c)

)[
g(d) – g(c)

]∣∣

≤
r∑

k=

kδk– · TVεk
(
f , [c; d]

)
+

r∑

k=

kεk · TVδk
(
g, [c; d]

)
+ nδrεr , ()

and similarly, setting in Remark  n =  we get a similar estimate, where the right side of
() is replaced by the right side of ().

Now we proceed to the proof of Theorem .

Proof It is enough to prove that for any two partitions

π = {a = a < a < · · · < al = b},
ρ = {a = b < b < · · · < bm = b},

where νi ∈ [ai–; ai], ξj ∈ [bj–; bj], i = , , . . . , l, j = , , . . . , m, the difference

∣
∣
∣
∣
∣

l∑

i=

f (νi)
[
g(ai) – g(ai–)

]
–

m∑

j=

f (ξj)
[
g(bj) – g(bj–)

]
∣
∣
∣
∣
∣

is as small as we please, provided that the meshes of the partitions π and ρ , defined as

mesh(π ) := max
i=,,...,l

(ai – ai–), mesh(ρ) := max
j=,,...,m

(bj – bj–),

respectively, are sufficiently small.
Define

σ = π ∪ ρ = {a = s < s < · · · < sn = b}

and for i = , , . . . , l consider
∣
∣
∣
∣f (νi)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣.

We estimate
∣
∣
∣
∣f (νi)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣

≤ ∣
∣f (νi)

[
g(ai) – g(ai–)

]
– f (ai–)

[
g(ai) – g(ai–)

]∣
∣

+
∣
∣
∣
∣

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
– f (ai–)

[
g(ai) – g(ai–)

]
∣
∣
∣
∣.

Recall the definition of S. If there exists N = , , , . . . such that ηN =  or θN =  then
TV(f , [a; b]) or TV(g, [a; b]) is finite, moreover, both functions f and g are bounded (since
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they are regulated), hence the integral
∫ b

a f dg exists. Thus we may and will assume that
ηN >  and θN >  for all N = , , , . . . .

Choose N = , , . . . . By the assumption that f and g have no common points of discon-
tinuity, for sufficiently small mesh(π ), for i = , , . . . , l we have

sup
ai–≤s≤ai

∣
∣f (s) – f (ai–)

∣
∣ ≤ ηN– ()

or

sup
ai–≤s≤ai

∣
∣g(ai) – g(s)

∣
∣ ≤ θN–. ()

To see this, assume that for every h > , there exist [ah; bh] ⊂ [a; b] such that bh –ah ≤ h and
supx,y∈[ah ;bh] |f (y) – f (y)| > ηN– and supx,y∈[ah ;bh] |g(x) – g(y)| > θN–. We choose a convergent
subsequence of the sequence (a/n + b/n)/, n = , , . . . , and we see that the limit of this
sequence is a point of discontinuity for both f and g , which is a contradiction with the
assumption that f and g have no common points of discontinuity.

Let I be the set of all indices i = , , . . . , l for which () holds. Now, for i ∈ I , set δj– :=
ηN+j–, εj := θN+j, j = , , , . . . , and define

Si :=
+∞∑

j=

jηj– · TVθj
(
g, [ai–; ai]

)
+

+∞∑

j=

jθj · TVηj
(
f , [ai–; ai]

)
.

By Lemma  we estimate

∣
∣
∣
∣

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
– f (ai–)

[
g(ai) – g(ai–)

]
∣
∣
∣
∣

≤
+∞∑

j=

jδj– · TVεj
(
g, [ai–; ai]

)
+

+∞∑

j=

jεj · TVδj
(
f , [ai–; ai]

)

≤
+∞∑

j=

jηN+j– · TVθN+j
(
g, [ai–; ai]

)
+

+∞∑

j=

jθN+j · TVηN+j
(
f , [ai–; ai]

)

≤ –N Si.

Similarly,

∣
∣f (νi)

[
g(ai) – g(ai–)

]
– f (ai–)

[
g(ai) – g(ai–)

]∣
∣ ≤ –N Si.

Hence
∣
∣
∣
∣f (νi)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣ ≤ –N Si. ()

The truncated variation is a superadditive functional of the interval, from which we have

∑

i∈I

TVθj
(
g, [ai–; ai]

) ≤ TVθj
(
g, [a; b]

)
,

∑

i∈I

TVηj
(
f , [ai–; ai]

) ≤ TVηj
(
f , [a; b]

)
.
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By () and the last two inequalities, summing over i ∈ I we get the estimate
∣
∣
∣
∣
∑

i∈I

{

f (νi)
[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
}∣
∣
∣
∣

≤ –N
∑

i∈I

Si ≤ –N S. ()

Now, let J be the set of all indices, for which () holds. For i = , , . . . , l define

Ti :=
+∞∑

j=

jθj · TVηj
(
f , [ai–; a]

)
+

+∞∑

j=

jηj · TVθj+
(
g, [ai–; ai]

)
.

For i ∈ J , by the summation by parts and then by Lemma  we get
∣
∣
∣
∣f (ai)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣

=
∣
∣
∣
∣

∑

k:sk–,sk∈[ai–;ai]

g(sk)
[
f (sk) – f (sk–)

]
– g(ai–)

[
f (ai) – f (ai–)

]
∣
∣
∣
∣

≤
+∞∑

j=

jθN+j– · TVηN+j
(
f , [ai–; ai]

)
+

+∞∑

j=

jηN+j · TVθN+j
(
g, [ai–; ai]

)

≤ –N Ti ≤ –N Si.

Similarly, by Lemma ,
∣
∣f (ai)

[
g(ai) – g(ai–)

]
– f (νi)

[
g(ai) – g(ai–)

]∣
∣

=
∣
∣g(ai–)

[
f (νi) – f (ai–)

]
+ g(ai)

[
f (ai) – f (νi)

]
– g(ai–)

[
f (ai) – f (ai–)

]∣∣

≤ –N Si.

From the last two inequalities we get
∣
∣
∣
∣f (νi)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣

≤ ∣
∣f (ai)

[
g(ai) – g(ai–)

]
– f (νi)

[
g(ai) – g(ai–)

]∣∣

+
∣
∣
∣
∣f (ai)

[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣

≤ –N Si.

Summing over i ∈ J and using the superadditivity of the truncated variation as a function
of the interval, we get the estimate

∣
∣
∣
∣
∑

i∈J

{

f (νi)
[
g(ai) – g(ai–)

]
–

∑

k:sk–,sk∈[ai–;ai]

f (sk–)
[
g(sk) – g(sk–)

]
}∣
∣
∣
∣

≤ –N
∑

i∈J

Si ≤ –N S. ()
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Finally, from () and () we get

∣
∣
∣
∣
∣
f (νi)

[
g(b) – g(a)

]
–

n∑

k=

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣
∣
≤  · –N S.

A similar estimate holds for

∣
∣
∣
∣
∣

m∑

i=j

f (ξj)
[
g(bj) – g(bj–)

]
–

n∑

k=

f (sk–)
[
g(sk) – g(sk–)

]
∣
∣
∣
∣
∣
,

provided that the mesh(ρ) is sufficiently small. Hence

∣
∣
∣
∣
∣

l∑

i=

f (νi)
[
g(ai) – g(ai–)

]
–

m∑

i=j

f (ξj)
[
g(bj) – g(bj–)

]
∣
∣
∣
∣
∣
≤  · –N S,

provided that the meshes(π ) and (ρ) are sufficiently small. Since N may be arbitrarily large,
we get the convergence of the approximating sums to an universal limit, which is the
Riemann-Stieltjes integral. The estimate () follows directly from the proved convergence
of approximating sums to the Riemann-Stieltjes integral and Lemma . �

Using Remark  and reasoning similarly to the proof of Theorem , we get the symmetric
result.

Theorem  Let f , g : [a; b] →R be two regulated functions which have no common points
of discontinuity. Let η ≥ η ≥ · · · and θ ≥ θ ≥ · · · be two sequences of non-negative num-
bers, such that ηk ↓ , θk ↓  as k → +∞. Define θ– := supa≤t≤b |g(b) – g(t)| and

S̃ :=
+∞∑

k=

kθk– · TVηk
(
f , [a; b]

)
+

∞∑

k=

kηk · TVθk
(
g, [a; b]

)
.

If S̃ < +∞ then the Riemann-Stieltjes integral
∫ b

a f dg exists and one has the following esti-
mate:

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤ S̃. ()

From Theorem , Theorem  and Remark  we also have the following.

Corollary  Let f , g : [a; b] →R be two regulated functions which have no common points
of discontinuity, ξ ∈ [a; b] and S and S̃ be as in Theorem  and Theorem , respectively.
If S < +∞ or S̃ < +∞ then the Riemann-Stieltjes integral

∫ b
a f dg exists and one has the

following estimate:

∣
∣
∣
∣

∫ b

a
f dg – f (ξ )

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤  min{S, S̃}.
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2.1 Young’s theorem and the Loéve-Young inequality
Let, for p > ,Vp([a; b]) denote the family of functions f : [a; b] →Rwith finite p-variation.
Note that if f ∈ Vp([a; b]) then f is regulated. The additional relation we will use is the
following one: if f ∈ Vp([a; b]) for some p ≥ , then for every δ > ,

TVδ
(
f , [a; b]

) ≤ V p(f , [a; b]
)
δ–p. ()

As far as we know, the first result of this kind, namely, TVδ(f , [a; b]) ≤ Cf δ
–p for a contin-

uous function f ∈ Vp([a; b]) and some constant Cf < +∞ depending on f , was proven in
[], Section . In [], TVε(f , [a; b]) is called ε-variation and is denoted by Vf (ε). However,
being equipped with equation () we see that equation () follows immediately from the
inequality: for any a ≤ s < t ≤ b,

max
{∣∣f (t) – f (s)

∣
∣ – δ, 

} ≤ |f (t) – f (s)|p
δp– ,

which is an obvious consequence of the estimate:

δp– max
{|x| – δ, 

} ≤
⎧
⎨

⎩

 if δ ≥ |x|,
|x|p– max{|x| – δ, } if  < δ < |x|

≤ |x|p

for any δ >  and any real x.
Let us denote

‖f ‖p–var,[a;b] :=
(
V p(f , [a; b]

))/p ()

and recall that ‖f ‖osc,[a;b] = supa≤s<t≤b |f (t) – f (s)|. Now we are ready to state a corollary
stemming from Theorem , which was one of the main results of []. The second part of
this corollary is an improved version of the Loéve-Young inequality.

Corollary  Let f , g : [a; b] →R be two functions with no common points of discontinuity.
If f ∈ Vp([a; b]) and g ∈ Vq([a; b]), where p > , q > , p– + q– > , then the Riemann-
Stieltjes

∫ b
a f dg exists. Moreover, there exists a constant Cp,q, depending on p and q only,

such that

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤ Cp,q‖f ‖p–p/q

p–var,[a;b]‖f ‖+p/q–p
osc,[a;b]‖g‖q–var,[a;b].

Proof By Theorem  it is enough to prove that for some positive sequences η ≥ η ≥ · · ·
and θ ≥ θ ≥ · · · , such that ηk ↓ , θk ↓  as k → +∞ and η– = supa≤t≤b |f (t) – f (a)| one
has

S :=
+∞∑

k=

kηk– · TVθk
(
g, [a; b]

)
+

+∞∑

k=

kθk · TVηk
(
f , [a; b]

)

≤ Cp,q‖f ‖p–p/q
p–var,[a;b]‖f ‖+p/q–p

osc,[a;b]‖g‖q–var,[a;b].
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The proof will follow from the proper choice of (ηk) and (θk). Since p– + q– > , we have
(q – )(p – ) < . We choose

α ∈ (√
(q – )(p – ); 

)
, β = sup

a≤t≤b

∣
∣f (t) – f (a)

∣
∣, γ > ,

and, for k = , , . . . , define

ηk– = β · –(α/[(q–)(p–)])k+,

θk = γ · –(α/[(q–)(p–)])kα/(q–).

By () we estimate

ηk– · TVθk
(
g, [a; b]

) ≤ β · –(α/[(q–)(p–)])k+

× V q(g, [a; b]
)(

γ · –(α/[(q–)(p–)])kα/(q–))–q

= –(–α)(α/[(q–)(p–)])k+V q(g, [a; b]
)
βγ –q,

and similarly

θk · TVηk
(
f , [a; b]

) ≤ γ · –(α/[(q–)(p–)])kα/(q–)

× V p(f , [a; b]
)(

β · –(α/[(q–)(p–)])k++)–p

= –(–α)(α/[(q–)(p–)])kα/(q–)+–pV p(f , [a; b]
)
β–pγ .

Hence

S =
+∞∑

k=

kηk– · TVθk
(
g, [a; b]

)
+

+∞∑

k=

kθk · TVηk
(
f , [a; b]

)

≤
( +∞∑

k=

k–(–α)(α/[(q–)(p–)])k+

)

V q(g, [a; b]
)
βγ –q

+

( +∞∑

k=

k–(–α)(α/[(q–)(p–)])kα/(q–)+–p

)

V p(f , [a; b]
)
β–pγ .

Since α <  and α/[(q – )(p – )] > , we easily infer that S < +∞, from which we see that
the integral

∫ b
a f dg exists.

Moreover, denoting

Cp,q = max

{ +∞∑

k=

k+–(–α)(α/[(q–)(p–)])k
,

+∞∑

k=

k+–(–α)(α/[(q–)(p–)])kα/(q–)–p

}

we get

S ≤ 


Cp,q
(
V q(g, [a; b]

)
βγ –q + V p(f , [a; b]

)
β–pγ

)
.
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Setting in this expression γ = (V q(g, [a; b])/V p(f , [a; b]))/qβp/q we obtain

S ≤ Cp,q
(
V q(g, [a; b]

))/q(V p(f , [a; b]
))–/q

β+p/q–p

≤ Cp,q‖g‖q–var,[a;b]‖f ‖p–p/q
p–var,[a;b]‖f ‖+p/q–p

osc,[a;b]. �

Remark  Let f , g , p, q and Cp,q be the same as in Corollary . Using Theorem  instead
of Theorem , we get the following, similar estimate:

∣
∣
∣
∣

∫ b

a
f dg – f (a)

[
g(b) – g(a)

]
∣
∣
∣
∣ ≤ Cp,q‖f ‖p–var,[a;b]‖g‖q–q/p

q–var,[a;b]‖g‖+q/p–q
osc,[a;b].

From Corollary  and the obtained estimates, we also have for any ξ ∈ [a; b]

∣
∣
∣
∣

∫ b

a
f dg – f (ξ )

[
g(b) – g(a)

]
∣
∣
∣
∣

≤ Cp,q‖f ‖p–var,[a;b]‖g‖q–var,[a;b] min

{ ‖f ‖+p/q–p
osc,[a;b]

‖f ‖+p/q–p
p–var,[a;b]

,
‖g‖+q/p–q

osc,[a;b]

‖g‖+q/p–q
q–var,[a;b]

}

.

Remark  From Corollary , reasoning in a similar way to [], p., we get the following
important estimate of the q-variation of the function t �→ ∫ t

a f dg :

∥
∥
∥
∥

∫ ·

a
f dg

∥
∥
∥
∥

q–var,[a;b]
≤ (

Cp,q‖f ‖p–p/q
p–var,[a;b]‖f ‖+p/q–p

osc,[a;b] + ‖f ‖∞,[a;b]
)‖g‖q–var,[a;b]

≤ (
Cp,q‖f ‖p–var,[a;b] + ‖f ‖∞,[a;b]

)‖g‖q–var,[a;b],

where f , g , p, q and Cp,q are the same as in Corollary .

3 Integral equations driven by moderately irregular signals
Let p ∈ (; ). The preceding section provides us with tools to solve integral equations of
the following form:

y(t) = y +
∫ t

a
F
(
y(s)

)
dx(s), ()

where x is a continuous function from the space Vp([a; b]) and F : R → R is α-Lipschitz.
The functional ‖·‖var,p,[a;b] : Vp([a; b]) → [; +∞) defined as

‖f ‖var,p,[a;b] :=
∣
∣f (a)

∣
∣ + ‖f ‖p–var,[a;b]

is a norm and the space Vp([a; b]) equipped with this norm is a Banach space. For our
purposes it will be enough to work with the following definition of a locally or globally α-
Lipschitz function when α ∈ (; ]. For x = (x, . . . , xn) ∈R

n we denote ‖x‖ = maxi=,...,n |xi|.

Definition  Let F : Rn → R and α ∈ (; ]. For any R >  we define its local α-Lipschitz
parameter Kα

F (R) as

K (α)
F (R) := sup

{ |F(y) – F(x)|
‖y – x‖α

: x, y ∈R
n, x = y,‖x‖ ≤ R,‖y‖ ≤ R

}
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and its global α-Lipschitz parameter K (α)
F as K (α)

F := limR→+∞ KF (R) < +∞. The function
F will be called locally α-Lipschitz if for every R > , K (α)

F (R) < +∞ and it will be called
globally α-Lipschitz if K (α)

F < +∞.

In the case when there is no ambiguity on what is the value of the parameter α and what
is the function F , we will write KF (R), KF , K(R) or even K .

First we will consider the case p –  < α < . In this case we have the existence but no
uniqueness result. We will obtain a stronger result than similar results [], Lemma, p.,
or [], Theorem .. Namely, we will prove that there exists a solution to () which is
an element of the space Vp([a; b]), not only an element of the space Vq([a; b]) for arbitrary
chosen q > p. This will be possible with the use of Remark .

Proposition  Let p ∈ (; ), y ∈ R, x be a continuous function from the space Vp([a; b])
and F : R → R be globally α-Lipschitz where p –  < α < . Equation () admits a solu-
tion y, which is an element of Vp([a; b]). Moreover, ‖y‖var,p,[a;b] ≤ R, where R >  satisfies the
equality

R = (Cp/α,p + )K (α)
F ‖x‖p–var,[a;b]Rα + |y| +

∣
∣F()

∣
∣‖x‖p–var,[a;b],

with Cp/α,p being the same as in Corollary  and Remark .

Now we proceed to the proof of Proposition . We will proceed in a standard way, but
with the more accurate estimate of Remark  we will be able to obtain the finiteness of
‖·‖var,p,[a;b] norm of the solution.

Proof Let f ∈ Vp([a; b]). By [], Lemma ., F(f (·)) ∈ Vp/α([a; b]) and since α/p + /p > ,
we may apply Remark  and define the operator T : Vp([a; b]) → Vp([a; b]),

Tf := y +
∫ ·

a
F
(
f (t)

)
dx(t).

Denote K = K (α)
F . Using Remark  and [], Lemma ., we estimate

‖Tf ‖var,p,[a;b] =
∥
∥
∥
∥y +

∫ ·

a
F
(
f (t)

)
dx(t)

∥
∥
∥
∥

var,p,[a;b]

≤
∥
∥
∥
∥

∫ ·

a

[
F
(
f (t)

)
– F

(
f (a)

)]
dx(t)

∥
∥
∥
∥

p–var,[a;b]
+

∣
∣F

(
f (a)

)∣∣‖x‖p–var,[a;b] + |y|

≤ (
Cp/α,p

∥
∥F

(
f (·))∥∥p/α–var,[a;b] +

∥
∥F

(
f (·)) – F

(
f (a)

)∥∥∞,[a;b] +
∣
∣F

(
f (a)

)∣∣)

× ‖x‖p–var,[a;b] + |y|
≤ (

(Cp/α,p + )
∥
∥F

(
f (·))∥∥p/α–var,[a;b] +

∣
∣F

(
f (a)

)∣
∣
)‖x‖p–var,[a;b] + |y|

≤ (
(Cp/α,p + )K‖f ‖α

p–var,[a;b] +
∣
∣F

(
f (a)

)∣∣)‖x‖p–var,[a;b] + |y|. ()

By the Lipschitz property,

∣
∣F

(
f (a)

)∣∣ ≤ K
∣
∣f (a)

∣
∣α +

∣
∣F()

∣
∣ ≤ K‖f ‖α

var,p,[a;b] +
∣
∣F()

∣
∣.
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Denoting

A = (Cp/α,p + )K‖x‖p–var,[a;b] and B = |y| +
∣
∣F()

∣
∣‖x‖p–var,[a;b], ()

from () we get

‖Tf ‖var,p,[a;b] ≤ A‖f ‖α
var,p,[a;b] + B. ()

For α <  let R be the least positive solution of the inequality R ≥ A · Rα + B (i.e. R =
A ·Rα +B). From () we see that the operator T maps the closed ballB(R) = {f ∈ Vp([a; b]) :
‖f ‖var,p,[a;b] ≤ R} to itself.

Now, for f , g ∈ Vp([a; b]) we are going to investigate the difference Tf – Tg . Again, using
Remark  and the Lipschitz property we estimate

‖Tf – Tg‖var,p,[a;b]

=
∥
∥
∥
∥

∫ ·

a

[
F
(
f (t)

)
– F

(
g(t)

)]
dx(t)

∥
∥
∥
∥

p–var,[a;b]

≤
∥
∥
∥
∥

∫ ·

a

[
F
(
f (t)

)
– F

(
g(t)

)
–

{
F
(
f (a)

)
– F

(
g(a)

)}]
dx(t)

∥
∥
∥
∥

p–var,[a;b]

+
∣
∣F

(
f (a)

)
– F

(
g(a)

)∣∣‖x‖p–var,[a;b]

≤ (Cp/α,p + )
∥
∥F

(
f (·)) – F

(
g(·))∥∥(p–)/α

p/α–var,[a;b]

∥
∥F

(
f (·)) – F

(
g(·))∥∥(α+–p)/α

osc,[a;b]

× ‖x‖p–var,[a;b] +
∣
∣F

(
f (a)

)
– F

(
g(a)

)∣
∣‖x‖p–var,[a;b]

≤ (Cp/α,p + )K
(‖f ‖α

p–var,[a;b] + ‖g‖α
p–var,[a;b]

)(p–)/α‖f – g‖α+–p
osc,[a;b]

× ‖x‖p–var,[a;b] + K
∣
∣f (a) – g(a)

∣
∣α‖x‖p–var,[a;b]. ()

From () we see that T is continuous. Moreover, from the first inequality in Remark 
and the continuity of x we see that functions belonging to the image T(B(R)) are equicon-
tinuous. Let U be the closure of the convex hull of T(B(R)) (in the topology induced by
the norm ‖·‖var,p,[a;b]). It is easy to see that functions belonging to U are also equicontinu-
ous. Moreover, U ⊂ B(R) (since T(B(R)) ⊂ B(R) and B(R) is convex) and T(U ) ⊂ U (since
T(U ) ⊂ T(B(R))). Now, let V = T(U ). From the equicontinuity of U , the Arzela-Ascoli
theorem and () we see that the set V is compact in the topology induced by the norm
‖·‖var,p,[a;b]. Thus, by the fixed-point theorem of Schauder, we see that there exists a point
y ∈ U such that Ty = y. �

Now we will consider the case α = .

Fact  Let p ∈ (; ), y ∈ R, x be a continuous function from the space Vp([a; b]) and
F : R → R be globally -Lipschitz. Equation () admits a solution y, which is an element
of Vp([a; b]).

Proof To prove the assertion we may proceed in a similar way to the proof of Proposition .
The only thing we need is to ensure that the inequality R ≥ A · R + B, where A and B are
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defined in display (), holds for sufficiently large R. This may be achieved by splitting
the interval [a; b] into small intervals, such that A <  on each of these intervals, and then
solving equation () on each of these intervals with the initial condition being equal the
terminal value of the solution on the preceding interval. This is possible since for any
ε >  there exists δ >  such that for any [c; c + δ] ⊂ [a; b], ‖x‖p–var,[c;c+δ] ≤ ε, which is a
consequence of the fact that the function [a; b] � t �→ ‖x‖p–var,[a;t] is continuous and we
have ‖x‖p–var,[a;c+δ] ≥ ‖x‖p–var,[a;c] + ‖x‖p–var,[c;c+δ]. �
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