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Abstract

Background: Small number of clusters and large variation of cluster sizes commonly exist in cluster-randomized trials
(CRTs) and are often the critical factors affecting the validity and efficiency of statistical analyses. F tests are commonly
used in the generalized linear mixed model (GLMM) to test intervention effects in CRTs. The most challenging issue for
the approximate Wald F test is the estimation of the denominator degrees of freedom (DDF). Some DDF approximation
methods have been proposed, but their small sample performances in analysing binary outcomes in CRTs with few
heterogeneous clusters are not well studied.

Methods: The small sample performances of five DDF approximations for the F test are compared and contrasted under
CRT frameworks with simulations. Specifically, we illustrate how the intraclass correlation (ICC), sample size, and the
variation of cluster sizes affect the type I error and statistical power when different DDF approximation methods in GLMM
are used to test intervention effect in CRTs with binary outcomes. The results are also illustrated using a real CRT dataset.

Results: Our simulation results suggest that the Between-Within method maintains the nominal type I error
rates even when the total number of clusters is as low as 10 and is robust to the variation of the cluster sizes.
The Residual and Containment methods have inflated type I error rates when the cluster number is small (<30)
and the inflation becomes more severe with increased variation in cluster sizes. In contrast, the Satterthwaite
and Kenward-Roger methods can provide tests with very conservative type I error rates when the total cluster
number is small (<30) and the conservativeness becomes more severe as variation in cluster sizes increases.
Our simulations also suggest that the Between-Within method is statistically more powerful than the
Satterthwaite or Kenward-Roger method in analysing CRTs with heterogeneous cluster sizes, especially when
the cluster number is small.

Conclusion: We conclude that the Between-Within denominator degrees of freedom approximation method
for F tests should be recommended when the GLMM is used in analysing CRTs with binary outcomes and few
heterogeneous clusters, due to its type I error properties and relatively higher power.
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Background
Cluster-randomized trials (CRTs), also called group-
randomized trials, are widely used in the evaluation of
interventions in health services research [1]. CRTs are
distinct from other randomized controlled trials in that
the identifiable clusters of subjects/participants such as
medical practices, hospital wards, schools, or communi-
ties, rather than individuals, are randomly assigned to
different intervention conditions [2]. Because the clus-
ters are formed not at random but rather through some
connections among their members, a positive intraclass
correlation (ICC, denoted as ρ) [3] among observations
in the same cluster is expected. Although typically the
ICC is small (ρ < 0.05) [4] and not known when a trial is
planned, the adjustment for ICC is necessary for a valid
statistical analysis at the subject level. Any statistical test
ignoring the non-independence of participants within
clusters will underestimate the variances of the intervention
effects and consequently inflate the type I error rates [5].
CRTs can be analyzed at the cluster level, by deriving sum-
mary statistics for each cluster, or at the individual level
using the data for each participant in each cluster [1];
however, only the individual-level analyses enable the
adjustment of the participant characteristics to mini-
mize the selection bias. Two modeling approaches are
commonly used for the individual-level analyses of
CRTs with the consideration of clustering. One is the
random effects model or generalized linear mixed
model (GLMM), which incorporates random effects to
reflect the correlation among observations of same
cluster [6]; the other is the marginal or population
mean model using the generalized estimating equations
(GEE) approach [7]. These two modeling methods
should provide similar results if both models are cor-
rectly specified and their underlying assumptions hold
well, while the interpretation of the fixed effects esti-
mates is a little different [8]. The GLMM is more com-
plicated and informative than the GEE approach by
providing the estimation of the variance components,
which are otherwise treated as nuisance parameters in
GEE [7]. The choice of modeling method should de-
pend on the scientific questions and the validity of the
underlying assumptions. In cases where heterogeneity
is of significant interest, the GLMM could be the better
choice. In addition, the pattern of missing data, which is
common in most trials, is another important consideration
on the model selection. The GLMM is valid under both
missing completely at random (MCAR) and missing at ran-
dom (MAR), while the GEE approach is valid only under
MCAR even though some imputation strategies have been
proposed for valid GEE inference under MAR [8].
The GLMM combines the properties of two statistical

models that are widely used in different fields: generalized
linear models (GLMs) which handle non-normal data
from the exponential family by using link functions and
linear mixed models (LMMs) which incorporate random
effects [8]. In the GLMM, the Wald statistics are recom-
mended to test the null hypothesis of fixed effects because
the likelihood ratio tests are unreliable for small to moder-
ate sample sizes [8-10]. Wald statistics are calculated by
dividing parameter estimates or linear combinations of
parameter estimates by their estimated standard errors. In
the GLMM, the approximated Wald F test, rather than
Chi-squared test, is recommended to handle finite sample
sizes and overdispersion, which commonly occurs for
binary or Poisson regression models, since the variance of
both distributions is a function of the mean [8]. The most
challenging issue for the approximated Wald F test is the
estimation of the denominator degrees of freedom (DDF).
It is expected that overestimation of DDF will produce a
liberal test leading to inflated type I error and the under-
estimation of DDF will produce a conservative test leading
to the potential power loss. In practice, five DDF approxi-
mations are used, including Residual DDF, Containment
DDF, Between-Within (B-W) DDF, Satterthwaite DDF and
Kenward-Roger (K-R) DDF for the Wald F test; however,
none of them work well in all situations and some are only
valid in very strict conditions [8,9,11]. Simulation studies
[12-15] under unbalanced split-plot designs have shown
that the K-R DDF approximation has the best perform-
ance in preserving the nominal type I error; and that the
covariance structure, the sample size, and the degree of
imbalance are the major factors that affect the perform-
ance. Although K-R DDF approximation is recommended
to maintain the type I error rate, its small sample perform-
ance was evaluated mainly on normal-distributed out-
comes under repeated measures designs [14,15]. CRTs
typically have characteristics including small cluster num-
bers, moderate to large variable cluster sizes, and weakly
correlated outcomes within the same cluster (ρ < 0.05) [4].
These characteristics are quite different from those encoun-
tered in repeated measure designs. Therefore, the validity
of the K-R DDF approximation for non-normal outcomes
under CRT scenarios needs further evaluation.
The purpose of the present study is to compare and con-

trast the statistical properties of the five DDF approxima-
tion methods for GLMM when testing intervention effects
for binary outcomes in CRTs with a small number of clus-
ters. Specifically, the type I error rates to test the null hy-
pothesis of treatment effect are examined for each of five
DDF approximation methods (Containment, Residual, B-
W, Satterthwaite, and K-R) under situations with different
ICCs, sample sizes, and cluster size variation. For the
methods that can maintain the nominal type I error rate,
statistical power is compared. Because the compound sym-
metry is the reasonable and most widely accepted
variance-covariance structure for CRT data, it is the only
variance-covariance structure considered in this study.
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Methods
Generalized linear mixed models and Wald F test
GLMM is the extension of GLM by introducing random
effects into the linear predictor of the GLM [16,17]. Let
K, ni denote the number of clusters and the number of
observations in cluster i, respectively, the model with
p predictors can be expressed as:

Y i ¼ g−1 Xiβþ Zibið Þ þ �i i ¼ 1;…;K ð1Þ

where
Yi is the ni × 1 response vector for the ith cluster;
g− 1(·) is the inverse of a differentiable monotonic link

function;
Xi is a ni × p matrix of fixed covariates;
β is a p × 1 vector of fixed-effects regression

parameters;
Zi is a ni × v design matrix of random effects, where v

is a design parameter;
bi is a v × 1 vector of cluster-specific random effects;
ϵi is a ni × 1 error vector.
The parameters in GLMM can be estimated either by

the standard maximum likelihood (ML) estimation,
which estimates the standard deviations of the random
effects assuming that the fixed effect estimates are pre-
cisely correct, or by the restricted maximum likelihood
(REML) estimation, a variant that averages over some of
the uncertainty in the fixed-effect parameters [8,11].
The Wald test is commonly used for hypothesis testing

in GLMMs. To test the fixed effects Ho : Lβ = 0, the
Wald large sample Chi-squared test is given as

T2 β̂
� �

¼ β̂′L′ LŶ β̂
� �

L′
� �−1

Lβ̂ ð2Þ

where L is r × p matrix with rank r ≤ p for the general

linear hypothesis, β̂ is the estimate of β by some estima-

tion technique and Ŷ β̂
� �

is the estimated variance-

covariance matrix of β̂ . However, a more conservative
Wald F test is preferred in GLMMs to handle finite sam-
ples and overdispersion:

F β̂
� �

¼ T 2 β̂
� �

=r ð3Þ

with r numerator degrees of freedom and an approxi-
mated DDF, say d. Suppose we are going to test the null
hypothesis of no intervention effect, the Wald F statistic

F β̂T

� �
will have an approximated F distribution with 1

numerator degrees of freedom and d DDF which must
be specified or estimated. Five DDF approximations are
proposed to justify the correlated outcomes and briefly
discussed below.
Residual DDF
The simplest method for the DDF estimation is the Re-
sidual method which is calculated by N − rank[X], where

N=
XK

i¼1
ni, the total participants across all clusters.

Containment DDF
The Containment method chooses DDF as the smallest
rank contribution of the random effects that contain the
fixed effects to the design matrix in split-plot design
[15]. This choice of DDF matches the tests performed
for balanced designs and could be adequate for moder-
ately unbalanced designs [15]. Under the framework of
CRTs, if the treatment effect is fixed and not contained
in any random effects, the Containment DDF is calcu-
lated by N − K.

Between-Within DDF
Schluchter and Elashoff [18] divide the residual degrees
of freedom into between-cluster and within-cluster por-
tions and suggest that in a mixed model, if a fixed effect
changes within any cluster, within-cluster degrees of
freedom should be assigned to the effect; otherwise, the
between-cluster degrees of freedom should be assigned
to the effect. In a CRT to test the intervention effect
across the clusters, the between-cluster degrees of free-
dom will be applied and calculated as K − rank[X].

Satterthwaite DDF
Fai and Cornelius [13], follow Satterthwaite’ premise
[19] to propose a method for multi-degree-of-freedom
tests in unbalanced split-plot design. The degrees of
freedom are calculated as a function of the variance of

the parameter estimate. Briefly, LŶ β̂
� �

L′
� �−1

is decom-

posed to yield P′ LŶ β̂
� �

L′
� �−1

P ¼ diag λmð Þ where co-

lumns of P are normalized eigenvectors and the λm are the

corresponding eigenvalues of LŶ β̂
� �

L′
� �−1

. Let Q= rF,

using the decomposition, Q ¼
Xr

m¼1

p′mLβ̂ð Þ2
λm

¼
Xr

m¼1
t2Um

, the sum of r approximate t variables squared, where p′m
is the mth eigenvector and Um is the approximate de-
grees of freedom for the mth independent single degree
of freedom t statistic. Since Q

r eFr;d , d can be solved

using the relationship E Fð Þ ¼ d
d−2. For r > 1, d ¼ 2E Q½ �

E Q½ �−r ,

and for r = 1, d ¼ 2 LŶ β̂ð ÞL′ð Þ2
Var LŶ β̂ð ÞL′½ �, where Var LŶ β̂

� �
L′

h i
is

approximated using the multivariate delta method.

Kenward-Roger DDF
Kenward and Roger [14] propose a scaled Wald statistic

F� ¼ T 2 β̂
� �

=φr for mixed model for small samples. An



Table 1 The denominator degrees of freedom of GLMM
Wald F test by different approximation methods in the
simulations under the framework of CRTs

Methods Estimated denominator degrees of freedom

Residual XK
i¼1

ni−2

Containment
XK
i¼1

ni−K

Between-Within K − 2

Satterthwaite d, estimated from data

Kenward-Roger d, estimated from data
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appropriate Fr,d approximation to the sampling distribu-
tion of F* is derived with the Satterthwaite method by
matching the first two moments of F* with those from
the approximating F distribution and solving for the
values of φ and d:

E F�½ � ¼ E Fr;d
� � ¼ d

d−2
: ð4Þ

Var F�½ � ¼ Var Fr;d
� � ¼ 2

d
d−2

� �2 r þ d−2
r d−4ð Þ : ð5Þ

The value of d thus derived is the K-R DDF. For r =1,
K-R DDF is the same as Satterthwaite DDF, but the K-R
approximation generates a more conservative test by
inflating the variance-covariance matrix, by φ.

Data simulation
We conducted simulation studies based on a two-armed
CRT design with binary outcomes. For simplicity but
without the loss of generalizability, we assume the con-
trol and the intervention arms contain equal number of
clusters and no covariates. Correlated binary responses
are generated using a Beta-binomial method [20], by
which the proportion of events in a cluster is a random
draw from Beta(a,b). It can be shown that the marginal
proportion of events in a cluster is defined as μ ¼ a

aþb ,

and the ICC is ρ ¼ 1
1þaþb. A logistic regression model is

used for the marginal mean of yij

logit μijjxi
� �

¼ αþ β � xi
þ bi ; bieN 0; τ2

� 	
; ð6Þ

where xi is a cluster-level binary predictor indicating the
treatment arms (xi = 0 for control and xi = 1 for active
intervention), i = 1,…, K and j = 1,…, ni and the bi are
assumed to be normally distributed. The marginal mean
was set as {μi|xi = 0} = 0.25. The τ is determined by the
Beta-binomial method with defined marginal mean and
selected intraclass correlation (ρ). Under our simulation
settings, the approximated τ2 are 0.12, 0.17, 0.44 and
0.81 for ICCs equal to 0.001, 0.01, 0.05 and 0.1, respect-
ively. These ICC values reflect levels often seen in prac-
tice [4,5,21]. To examine whether the Beta-binomial
method was generating normally distributed bi on the
logit scale, Q-Q plots were generated for the data simu-
lations. The Q-Q plots of the bi suggest that the normal
distribution assumption holds. The sample sizes in our
simulations are set as 10, 20, and 30 total clusters (K)
with 20, 50, and 100 observations on average per cluster
�nð Þ. The exact number of observations, ni, for each clus-
ter i = 1,…, K, is randomly drawn and rounded from
normal distributions with the mean equal to �n and vari-
ance equal to σ2. The variation of cluster sizes can be
measured by the coefficient of variation (cv), which is
the ratio of standard deviation of the cluster sizes over
the mean of the cluster sizes. So, we set σ2 ¼ �n2cv2 . In
our simulations, cv is at the range of 0 to 1. To avoid the
impossible situation that the number of observations in
a cluster is negative or zero, we bound the smallest clus-
ter size to 1. Under these settings, the DDF by different
approximation methods are listed in Table 1. For each
scenario, 5000 independent replicates are generated for
the type I error calculation, and 1000 independent repli-
cates for power calculation. All simulations and analyses
are conducted using SAS 9.3 (Cary, NC).
The type I error rate of each DDF approximation is

calculated by computing the observed fraction of Wald
F tests rejecting the null hypothesis (Ho : β = 0) when the
null hypothesis is true. At the nominal 0.05 level and
5000 simulations, we expect the simulated type I error
rate to be between 0.044 and 0.056 (95% confidence
interval), and any procedure with type I error rate below
this range will be considered conservative, above this
range will be considered liberal, and within this range
will be considered as having the nominal type I error
rate. The power is calculated by computing the observed
fraction of Wald F tests rejecting the null hypothesis
(Ho : β = 0) when the true value of β is log1.5 (i.e., odds
ratio is 1.5).
Real data illustration
All the five DDF approximation methods are illustrated
using a real CRT, investigating whether intervention in
general practices improved subsequent attendance at
breast screening among women who did not respond to
their initial invitation in the Newham borough of East
London [22,23]. Among the participating practices, 12
were randomized to the intervention group and 14 to
the control group. The reception staff of the general
practices allocated in the intervention group entailed
training of to contact non-attenders for breast screening.
Control practices were given no training or advice. A
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total of 995 women in the intervention practices and
1069 in the control practices were included in the trial.
The outcome of interest was the attendance at breast
screening among women who did not respond to their
initial invitation for routine breast screening. The inter-
vention practices generally had higher rates of attend-
ance in comparison to those in the control practices,
although the attendance rate varied considerably be-
tween practices. It should be noted that a key feature of
this trial is the small number of clusters (K = 26) with
highly variable cluster sizes (cv ≈ 0.71).
Results
Type I error rates of Wald F tests with different DDF
approximations
In this study, we compare the small sample performance
of five DDF approximation methods in GLMM to test
the null hypothesis of intervention effect under the
framework of CRTs with binary outcomes. Specifically,
we illustrate how the ICC, sample size, and the variation
of the cluster size affect the type I error control of five
DDF approximation methods.
Compound symmetry is a reasonable and most widely

accepted variance-covariance structure for CRT data;
therefore, it is the only consideration in this study. Under
the range from 0.001 to 0.1, our results show that the ICC
has little effect on the small sample type I error control of
all the five DDF approximation methods (Figures 1, 2, 3, 4
and 5). There are two components of the sample size (N)
in a CRT—number of clusters (K) and size of each cluster

(ni) — and the relationship of N ¼
XK

i¼1
ni . As expected,

larger K can keep the type I error rates closer to the nom-
inal level for all the five DDF approximation methods
(Figures 1, 2, 3, 4 and 5). Interestingly, the cluster size
variation but not the average cluster size greatly affects
the type I error rates of the DDF approximation methods
in different ways (Figures 1, 2, 3, 4 and 5). However, the
effects of cluster size variation can be diminished by in-
creasing the total number of clusters. The variation of
cluster sizes has little effect on the type I error rates when
the number of clusters achieves 30.
The observed type I error rates of the Residual method

to test the null hypotheses of intervention effect under
various CRT scenarios are shown in Figure 1. The Re-
sidual DDF approximation does not consider the correl-
ation of individuals among the same cluster and is
calculated by subtracting 2 (the rank of X matrix in our
settings) from the total number of individuals across all
clusters. Clearly, the observed type I error rates of the Re-
sidual method are inflated when the total cluster number
is less than 30. The inflation becomes more severe as the
total cluster number becomes smaller and/or the variation
of cluster size becomes larger. The inflation of type I error
caused by the increased variation of cluster size can be di-
minished by increasing the cluster number; however, the
Residual method cannot keep the observed type I error
rate to the nominal level even for the equal cluster size
(cv = 0); therefore, the Residual method should not be
used in the GLMM analyses of CRTs if the cluster number
is smaller than 30.
The observed type I error rates of the Containment

method to test the null hypotheses of intervention effect
under various CRT scenarios are shown in Figure 2. In
the GLMM analyses of our CRT simulations, the inter-
vention effect is set to be fixed and all the clusters have
the common variance-covariance structure. Hence, the
Containment method estimates the DDF as the total
number of individuals across all clusters minus the num-
ber of clusters, i.e. N − K. Because of the large N and the
relatively small K, the Containment method has the
similar small sample performance to the Residual
method regarding the inflated type I error rates. The ob-
served type I error rates are inflated when the cluster
number is smaller than 30; the inflation becomes more
severe for smaller cluster numbers and/or for larger var-
iations of cluster size. The inflation of type I error
caused by the increased variation of cluster size can be
diminished by increasing the cluster number, but not to
nominal level given K < 30. Therefore, the Containment
method should not be used in the GLMM analyses of
CRTs with a cluster number smaller than 30.
The B-W method provides the optimal DDF approxi-

mation by providing the nominal type I error rate across
our simulations, as shown in Figure 3. In most of the
simulation situations, the observed type I error rates are
located between 0.044 to 0.056, the 95% confidence
interval of the nominal level, even when the number of
clusters is as low as 10. Greater cluster size variation is
associated with slight increases in the observed type I
error rate when the number of clusters is small, such as
K < 30. The Wald F test with B-W approximation tends
to be slightly conservative under balanced design (cv = 0)
and slightly liberal when the variation of cluster sizes is
very high (cv > 0.8); however, the observed type I error
rates under these extreme conditions are still very close
to the nominal level.
The Satterthwaite method is intended as an accurate

F test approximation and solves the DDF by matching the
moments of observed Wald F statistics and an exact F
distribution. Its type I error rate under various CRT sce-
narios is shown in Figure 4. The Wald F test with the
Satterthwaite approximation can keep the type I error
rates to nominal level as long as the number of clusters is
greater than 30. The method tends to be conservative
when the cluster number is lower than 30, and the conser-
vativeness becomes more severe with the increase of the
cluster size variation. As shown in Figure 4, the Wald F



Figure 1 Observed type I error rates of GLMM Wald F test with Residual approximation of denominator degrees of freedom. The type I error
rates are calculated from 5000 independent simulation replicates. The solid grey lines indicate the nominal level and the dashed grey lines
indicate the upper and lower bounds of the 95% confident interval.
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test with the Satterthwaite approximation only keeps the
observed type I error rates close to nominal level under
the balanced design (cv = 0) when the number of clusters
is smaller than 20. As cluster size variation increases, the
observed type I error rates drop dramatically. The conser-
vative type I error rates caused by the increased variation
of cluster size can be diminished by increasing the total
number of clusters, but not to nominal level. The conser-
vativeness definitely will preserve the validity of the Wald
F test, but it may decrease the statistical power of the test.
The K-R method inflates the marginal variance-

covariance matrix and then applies the Satterthwaite
method for the DDF approximation. Because we only
test the null hypothesis of intervention effect, the K-R
method has the exactly same DDF approximation as the
Satterthwaite method. Its small sample performance
with regarding the type I error rate under various CRT
scenarios is very similar to the Satterthwaite method,
but a little more conservative due to the standard error
inflation, as shown in Figure 5. Therefore, this method
will preserve the validity of the Wald F test; however, its
conservativeness may cause power loss, especially when
considerable cluster size variation.
In summary, the number of clusters and the cluster

size variation, rather than ICC and the average cluster
size, play important roles on the type I error control for
the five DDF approximation methods in GLMM analysis
to test the null intervention effect under the framework
of CRTs with binary outcomes. When the cluster num-
ber is smaller than 30, neither Residual nor Containment
method should be used due to the inflated type I errors.
In contrast, both Satterthwaite and K-R methods tend to
be conservative, especially when a considerable cluster
size variation exists. Our simulations suggest that the
B-W method preserves the type I error rates to nominal
level in the GLMM analysis of CRTs with a small num-
ber of few clusters and is robust cluster size variation. It
should be noted that only binary outcomes are studied
here and the aforementioned results may not be directly
applicable to outcomes with different distributions.

Statistical power of Wald F tests
To illustrate how the cluster size variation affects the stat-
istical power of GLMM analysis of CRTs with few hetero-
geneous clusters, the empirical powers of Satterthwaite
method, K-R method and B-W method are calculated and
compared under different CRT scenarios. Our simulations
suggest that the empirical powers of Satterthwaite method
are very close to those of K-R method; however, both of
these two methods are less powerful than the B-W



Figure 2 Observed type I error rates of GLMM Wald F test with Containment approximation of denominator degrees of freedom. The type I error
rates are calculated from 5000 independent simulation replicates. The solid grey lines indicate the nominal level and the dashed grey lines
indicate the upper and lower bounds of the 95% confident interval.
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method. The power comparison is illustrated in the
Figure 6, in which the empirical powers for K-R and B-W
methods are plotted under different variation of cluster
size in analyzing the simulated CRTs assuming: 1) 10 total
clusters equally allocated in two arms; 2) average cluster
size of 100; 3) the intraclass correlation equal to 0.001; 4)
proportion of events in control arm is 0.25; and 5) the
odds ratio equal to 1.5. Similar patterns of the empirical
powers for these methods are also observed under differ-
ent CRT settings (data not shown). Because the empirical
powers of Satterthwaite method are very close to those of
K-R method, only the empirical powers of K-R method
are plotted for the illustration. Although the empirical
powers decrease with the increase of the cluster size vari-
ation for all the three methods, Satterthwaite and K-R
methods are more sensitive to the cluster size variation as
illustrated in Figure 6. The greater power loss of Sat-
terthwaite and K-R methods could be partially explained
by their increased conservativeness with the increased
variation of cluster sizes, as shown previously. The power
difference between B-W method and K-R method (or Sat-
terthwaite method) can be diminished by increasing the
cluster number, as shown in the Figure 7. This
phenomenon is consistent with the observation that the
conservativeness of Satterthwaite and K-R methods
caused by the variation of cluster sizes can be diminished
by increasing the cluster number.
In summary, the B-W method is statistically more

powerful than the Satterthwaite or K-R method in
analysing CRTs with heterogeneous clusters, especially
when the cluster number is small and the variation of
cluster size is large.

Real data illustration
The GLMM is used for the data analysis and the small
sample inferences of intervention effects with different
DDF approximations are listed in Table 2. The estimated
ICC in this study is 0.026. The Residual and Containment
methods specify large DDFs and consequently generate the
smallest p values (p = 0.034 for both methods). In contrast,
the Satterthwaite and K-R methods give the smallest DDF
estimation and the most conservative p values (0.046 and
0.047, respectively). Although the Satterthwaite and K-R
methods have the same approximations of DDF in this
analysis, the K-R method has the smaller F value and more
conservative p value due to its further inflation of the
standard error estimation (0.4507 vs 0.4485). Based on our
simulation results and the facts of large variation of cluster
sizes and small number of clusters in this trial, we may ex-
pect that the Residual and Containment approximations



Figure 3 Observed type I error rates of GLMM Wald F test with Between-Within approximation of denominator degrees of freedom. The type I
error rates are calculated from 5000 independent simulation replicates. The solid grey lines indicate the nominal level and the dashed grey lines
indicate the upper and lower bounds of the 95% confident interval.
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will generate liberal tests while the Satterthwaite and K-
R approximations will generate conservative tests in
contrast. However, the B-W DDF approximation will
give the best small sample inference of intervention ef-
fect. We may conclude that the women in intervention
practices were estimated to be about 2.6 times more
likely than those in the control practices to attend for
subsequent breast screening.

Discussion
When the GLMM is used in the analyses of CRTs, the
null hypothesis of the treatment effect can be tested
using the Wald statistics by dividing treatment mean
squares by the appropriate error mean square to form a
variance ratio with an F distribution. The numerator de-
grees of freedom can be specified by the number of fixed
effect contrasts being considered, but the determination
of suitable DDF must be estimated in the unbalanced
mixed models [24]. In this study, we compare and con-
trast the small sample performances of five methods of
DDF approximation for the GLMM Wald F test under
the framework of CRTs regarding the type I error and
power. Our simulation results suggest that the B-W
method maintains the type I error rates to the nominal
level even when the number of clusters is as low as 10,
and is robust to the variation of the cluster sizes. The
Residual and Containment methods inflate the type I
error rates when the cluster number is small (<30) and
the inflation becomes more severe as the variation of
cluster sizes increases. In contrast, the Satterthwaite and
K-R methods may provide tests that are too conservative
when the cluster number is small (<30) and the conser-
vativeness becomes more severe with the increase of
cluster size variation. However, the inflation or defla-
tion of the type I error rates caused by the imbalance of
the cluster sizes can be diminished by increasing the
number of clusters. When the cluster number is greater
than 30, all the methods are robust to the variations of
the cluster sizes.
The Between-Within method is proposed for the small

sample adjustment to the longitudinal repeated measures
[18]. This method divides the residual degrees of freedom
into between-cluster and within-cluster values and assigns
a between-cluster denominator degrees of freedom to a
the fixed effect that does not change within clusters. In
the GLMM analyses of CRTs, the intervention effect does
not change within clusters, and then a between-cluster
denominator degrees of freedom, K − 2, is assigned to
the Wald F test of the null hypothesis of intervention
effects. This method is proposed for the longitudinal



Figure 4 Observed type I error rates of GLMM Wald F test with Satterthwaite approximation of denominator degrees of freedom. The type I error
rates are calculated from 5000 independent simulation replicates. The solid grey lines indicate the nominal level and the dashed grey lines
indicate the upper and lower bounds of the 95% confident interval.
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repeated measures and is supposed to be valid only for
the balanced design; however, in our simulations, this
method preserves the type I error rates to a nominal
level and it is robust to the small number of clusters
and the variation of cluster sizes.
The Residual method does not take the correlation

into account and is only valid for the independent out-
comes. It is not surprising that the Wald F test with the
Residual approximation of DDF has the inflated type I
error rates in the GLMM analyses of CRTs. The Con-
tainment method mimics the classical degrees of free-
dom rules for balanced ANOVA situations, and is the
default method for the SAS procedures PROC MIXED
and PROC GLIMMIX when the random statements are
specified [11]. In the analyses of CRTs, the intervention
effect is usually considered as the fixed effect so that
the DDF of the single parameter Wald F statistic for
the intervention effect by the Containment method will
be approximated in the similar way as the Residual
method. Our simulation results show that, like the Re-
sidual method, the Containment method inflates the
type I error rates to test the null hypothesis of interven-
tion effect in the GLMM analyses of CRTs. Therefore,
neither of these two methods should be considered in
the GLMM analyses of CRTs.
Both Satterthwaite and K-R methods estimate the
DDF from the data through matching the first two mo-
ments of the Wald F statistics and the approximating F
distribution [13,14]. Compared with the Satterthwaite
method, the K-R method further adjusts the covariance
matrix for the fixed effects parameters that accommo-
dates the uncertainty in the covariance matrix [14].
Since their appearance, these two methods, especially
the K-R method, have been favored by many studies
under the random complete block design, split plot de-
sign and repeated measures design [12,15]. Spilke et al.
[12] conclude that the Satterthwaite method provides
good type I error control and the K-R method gives the
best type I error control by reducing the bias of the
estimated variance-covariance matrix of fixed effects
parameters under random complete block design.
Schaalje et al. [15] investigate the repeated measures
design and conclude that the K-R method works as well
as or better than the Satterthwaite method in maintain-
ing the type I error rates close to the nominal level. In
contrast to these previous studies, our simulation re-
sults suggest that both Satterthwaite and K-R methods
tend to be overly conservative, especially when a
considerable variation of cluster sizes exists, under
the framework of CRTs and a binary outcome. Not



Figure 5 Observed type I error rates of GLMM Wald F test with Kenward-Roger approximation of denominator degrees of freedom. The type I
error rates are calculated from 5000 independent simulation replicates. The solid grey lines indicate the nominal level and the dashed grey lines
indicate the upper and lower bounds of the 95% confident interval.

Figure 6 The effects of variation of cluster sizes on the power of GLMM Wald F tests in analyzing CRTs with few heterogeneous clusters.
The observed powers and the 95% confidence intervals are calculated from 1000 independent simulation replicates.
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Figure 7 The diminished power loss of GLMM Wald F test with Kenward-Roger approximation of denominator degrees of freedom with the
increase of cluster number in analyzing CRTs with few heterogeneous clusters. The observed powers and the 95% confidence intervals are
calculated from 1000 independent simulation replicates.
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surprisingly, the conservativeness causes greater power
loss in analyzing the CRTs with few heterogeneous
clusters. Unfortunately, large variation of cluster sizes is
common in CRT design and the so caused power loss
could be very costly if the Satterthwaite or K-R method
is going to be used in the analysis.
The variance-covariance structures have been shown in

many studies to affect the small sample performances of
different denominator degrees of freedom approximations
[12,15,18]. Under the CRT framework, the compound
symmetry is the most commonly accepted variance-
covariance structure and therefore the only consideration
in our study. In actual practice, the intraclass correlation
among the same cluster is low and usually less than 0.05
[4]. Under the range (0.001, 0.01, 0.05 and 0.1) investi-
gated in this study, we find that the intraclass correlation
has little effect on the small sample performances of all
the five methods we evaluated. However, for those CRTs
with a more complicated correlation structure, such as the
Table 2 GLMM small sample inferences of intervention effect
different denominator degrees of freedom approximations

Method Intervention estimate Standard error

Residual 0.9517 0.4485

Containment 0.9517 0.4485

B-W 0.9517 0.4485

Satterthwaite 0.9517 0.4485

K-R 0.9517 0.4507
CRTs with binary longitudinal outcomes, the small sample
performances of the DDF approximations need further
evaluation. Another limitation of this study is that only
binary outcomes are considered and the small sample
performances of the five DDF methods on other types
of outcomes (count, time-to-event, etc.) need further
investigations.
Conclusion
In conclusion, we compare the small sample performances
of five DDF approximation methods in GLMM to test the
null hypothesis of intervention effect under the framework
of CRTs with binary outcomes, and find that the B-W
method outperforms the other four methods by its ability
to preserve the type I error rates to nominal level and its
relatively higher statistical power. Therefore, the B-W
method should be recommended in the GLMM analyses
of CRTs with few heterogeneous clusters.
s on women’s attendance at breast screening with

F value Numerator DF Denominator DF P value

4.50 1 2062 0.0340

4.50 1 2038 0.0340

4.50 1 24 0.0444

4.50 1 20.85 0.0460

4.46 1 20.85 0.0469
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