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Abstract

Strain analysis has significance both for tailoring material properties and designing nanoscale devices. In particular,
strain plays a vital role in engineering the growth thermodynamics and kinetics and is applicable for designing
optoelectronic devices. In this paper, we present a methodology for establishing the relationship between elastic
bond constants and measurable parameters, i.e., Poisson’s ratio ν and systematic elastic constant K. At the atomistic
level, this approach is within the framework of linear elastic theory and encompasses the neighbor interactions
when an atom is introduced to stress. Departing from the force equilibrium equations, the relationships between ν,
K, and spring constants are successfully established. Both the two-dimensional (2D) square lattice and common
three-dimensional (3D) structures are taken into account in the procedure for facilitating, bridging the gap between
structural complexity and numerical experiments. A new direction for understanding the physical phenomena in
strain engineering is established.
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Background
Strain always acts as a driving force in strain-engineered
nanostructure formation [1–7] and plays a crucial role
in nanoscale device designing. By manipulating strain-
dependent growth kinetic and thermodynamic condi-
tions, technically tailoring size, shape, and position of
the growing structures becomes accessible. Accordingly,
the energy band structures of the tailored structures can
thus be modified. When shedding light on device design-
ing, in particular, the strain-engineered formation of
heterostructures, junctions, and variable composition
profiles in quantum dots (QDs) and nanowires (NWs)
during epitaxial growth [8, 9], strain provides a key strat-
egy for producing optimal nanophotonic and nanoelec-
tronic materials, including high-efficiency blue and
green light-emitting diodes (LEDs) [10, 11], visible lasers
[12–14], and high-efficiency solar cells [15]. Moreover,
studies on the strain effect incorporated in two-
dimensional (2D) materials [16–18] and topological in-
sulators [19–21] also open doors to new classes of

electronic and spintronic devices. Therefore, an under-
standing of the strain effects is highly essential.
Many efforts have been devoted to tackling the strain

effects within epitaxial systems [22–29]. Among them,
finite element (FE) method based on continuum elasti-
city and atomistic strain calculations are most com-
monly used. The FE method generally developed for
macroscopic structures is integral to strain effect studies.
However, to obtain accurate results, a smaller grid size is
always favorable, which leads to increased computer
memory and time. For the atomistic strain calculations,
the bonds between atoms are often considered as ideal
springs. All through the pioneering work by Keating [28]
and other extended works, the empirical or semi-
empirical interatomic potentials that are difficult to
measure experimentally are always essential for the
strain calculation. Thus, in the atomistic calculations,
the lack of understanding of the elusive interaction coef-
ficients may hinder better comprehension of the elastic
properties.
In this work, we establish a connection between the

Poisson’s ratio, a measurable elastic constant [30], and
the spring constants used in the atomistic strain simula-
tions, within the framework of linear elasticity theory. At
the atomistic level, Poisson’s effect is caused by
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infinitesimal displacements of atoms thus the stretching
of atomistic bonds within the material lattice to accom-
modate the stress. When the bonds in the stress direc-
tion are elongated or compressed, their counterpart in
the perpendicular direction will be correspondingly
shortened or lengthened. Drawing from the atomistic
strain method [26], we considered the lattice bonds as
ideal springs, connecting all the neighboring atoms and
are within elastic deformation limit upon exerting
external force. Our description of the elastic constants
has a microscopic interpretation that incorporates all
nearest and diagonal bond springs. Under the definition
of Hooke’s law, the relationship between stress and
responded strain is simply built, resulting in force bal-
ance equations, which is vital to formulating the rela-
tionship between the Poisson’s ratio and the spring
constants.

Methods
Focusing on deriving the spring constants in the atomis-
tic strain method using the Poisson’s ratio, we give in-
sights to building up the formulism for elasticity
quantities based on the proposed approach. The explicit
methodology presented here aims to develop a useful
tool that can provide the inputs for atomistic strain ana-
lysis instead of a specific model. Drawing from the linear
elasticity, the analytical results will facilitate one to dir-
ectly use these inputs for most general crystal structures.
Based on the implementation of our derivation, the val-
idation of our formulated results is succeeded in our
previous studies [27, 31, 32]; the elastic strain is well cal-
culated utilizing our derived inputs. In the following der-
ivation, both the common two-dimensional (2D) and
three-dimensional (3D) crystal lattices are considered in
our calculations. In comparison with the effect on atom-
istic strain analysis caused by nearest neighbors, some
lower order quantities, like bond angle and nonlinear
interaction, are ignored in our derivation. Although our
result has its limitation when dealing with amorphous
materials and systems with strong metallic bonds, it is
constructed based on some general crystal lattices. It
performs well in most materials with strong chemical
bond. The derived explicit results are applicable to
numerical calculation and computations, thus paving
way for a more detailed exploration of strain-related
mechanisms.

Results and Discussion
2D Square Lattice
For a clear and easy to understand example of the gen-
eral derivation to obtain the microscopic constants, we
start with the 2D square lattice. The 2D square lattice is
the most commonly used 2D simulation cell for qualita-
tive studies of the general mechanisms. This simple

generic 2D structure should capture the essential steps
in the formulation and guide the study for more compli-
cated systems.
Assuming that the displacements of atoms, thus the

infinitesimal changes of bond lengths, are along the axial
direction, Poisson’s ratio ν is often expressed as ν = −
dεtrans/dεaxial, where εtrans and εaxial represent the trans-
verse and axial strains, respectively. The unit cell of a 2D
square system demonstrated in Fig. 1a is composed of
four atoms and has two types of spring bonds along the
side and diagonal directions, respectively, with constants
K1 and K2. By the Poisson’s ratio definition, when a
stretching force F is exerted along the y direction, the
resulted two length variations along x and y directions
are expressed as δ1 and δ2, respectively, in which a
represents the lattice constant and δ1,2≪ a. The change
in diagonal length can be easily obtained by the simple
trigonometric function. The total diagonal bond length

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ δ1ð Þ2 þ aþ δ2ð Þ2

q
. Owing to the minuscule

length variations, it can be approximately expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ δ1ð Þ2 þ aþ δ2ð Þ2

q
≅

ffiffiffi
2

p
aþ δ1þδ2ffiffi

2
p by ignoring the

small second-order terms. Thus, the bond length
change in the diagonal direction is described as δdiag ¼
δ1 þ δ2ð Þ= ffiffiffi

2
p

.
Next, we separate one atom (upper left in Fig. 1a) in

this system and apply force balance analysis, shown in
Fig. 1b. We get f1 + f3 sin θ = F and f2 + f3 cos θ = 0, in
which f1 = K1δ1, f2 = K1δ2, and f 3 ¼ K2δdiag ¼ K 2⋅
δ1 þ δ2ð Þ= ffiffiffi

2
p

by Hooke’s law. Since δ1,2≪ a, θ ≈ 45°.
Solving the above equations, we get the expression of
Poisson’s ratio ν and the comprehensive elastic constant
K of the whole system along the force direction

ν ¼ −
δ2
δ1

¼ K2

2K1 þ K2
; ð1Þ

K ¼ F
δ1

¼ 2K1 K 1 þ K 2ð Þ
2K1 þ K2ð Þ : ð2Þ

Note that both ν and K are measurable quantities in
the lab. By solving the equation sets (1) and (2), finally,
we get the relationship between K1,2, K, and ν

K1 ¼ K
1þ ν

; ð3aÞ

K2 ¼ 2νK
1−ν2

: ð3bÞ

Note that if K2 = 0, then ν = 0 and K = K1 as needed.

Simple Cubic Lattice
Having set up the 2D square lattice as a reference, we
now derive the expressions of spring constants in terms
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of the Poisson’s ratio for common 3D crystal structures
(shown in Fig. 2) following the established procedure.
We commence with choosing the simple cubic (SC)

structure illustrated in Fig. 2a. We consider three dis-
tinct types of elastic springs along edge, face diagonal,
and body diagonal directions, and the three main related
coefficients are defined as K1, K2, and K3, respectively.
Following the practice used for 2D cases, we set the dis-
placement values δz = δ1≪ a and δx = δy = δ2≪ a, whiles
the remaining values in the diagonal directions can be
easily derived via geometry analysis.
From equilibrium conditions, the force balance

equations are

K1 þ K2 þ K3

3

� �
δ1 þ K2 þ 2K3

3

� �
δ2 ¼ F ; ð4aÞ

K2

2
þ K3

3

� �
δ1 þ K1 þ 3K 2

2
þ 2K3

3

� �
δ2 ¼ 0: ð4bÞ

According to Eq. (4b), the Poisson’s ratio is acquired
through

ν ¼ −
δ2
δ1

¼ 3K2 þ 2K 3

6K1 þ 9K 2 þ 4K3
: ð5Þ

Now, we substitute δ2 ¼ − 3K2þ2K3
6K1þ9K2þ4K3

δ1 into Eq. (4a),

and the comprehensive elastic constant along z-axis is

Fig. 1 a A schematic illustration of 2D square system and b the selected atom (upper left in a) responded to forces

Fig. 2 Schematic structures of a simple cubic, b body-centered cubic, c face-centered cubic, d diamond, and e hexagonal close-packed lattices
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K ¼ F
δ1

¼ 6K1
2 þ 6K2

2 þ 15K1K2 þ 6K1K3 þ 3K2K3

6K1 þ 9K2 þ 4K3
:

ð6Þ

It is noticeable here that if K2 = 0, then ν ¼ K3
3K1þ2K3

;

K ¼ 3K1
2þ3K1K3

3K1þ2K3
; if K3 = 0, then ν ¼ K2

2K1þ3K2
; K ¼

2K1
2þ2K2

2þ5K1K2
2K1þ3K2

; and if K2 = K3 = 0, then ν = 0, K = K1 as

required. Although K1, K2, and K3 are not attainable
at the same time, the relationship can be used to set
up the calculation inputs if one of the interactions is
much weaker than the others.

Body-Centered Cubic Lattice
Now, we pay attention to calculating the elastic con-
stants of the body-centered cubic (BCC) lattice which is
demonstrated in Fig. 2b.
Studying the balanced force conditions using the same

definition of displacements, we have

K1 þ K2 þ K3

6

� �
δ1 þ K2 þ K3

3

� �
δ2 ¼ F ð7aÞ

in z direction and

K2

2
þ K3

6

� �
δ1 þ K1 þ 3K 2

2
þ K3

3

� �
δ2 ¼ 0 ð7bÞ

in x and y directions.
From Eq. (7b), we obtain the Poisson’s ratio,

ν ¼ −
δ2
δ1

¼ 3K2 þ K3

6K1 þ 9K 2 þ 2K3
: ð8Þ

Substituting δ2 ¼ − 3K2þK3
6K1þ9K2þ2K3

δ1 into the balanced

condition Eq. (7a), the comprehensive elastic constant
along z direction is described as

K ¼ F
δ1

¼ 12K1
2 þ 12K2

2 þ 30K1K2 þ 6K1K3 þ 3K2K3

12K1 þ 18K2 þ 4K3
:

ð9Þ

It is observed here that if K2 = 0, then ν ¼ K3
6K1þ2K3

;

K ¼ 6K1
2þ3K1K3

6K1þ2K3
; if K3 = 0, then ν ¼ K2

2K1þ3K2
; K ¼

2K1
2þ2K2

2þ5K1K2
2K1þ3K2

; and if K2 = K3 = 0, then ν = 0, K = K1

as required. Finally, the connection between the
Poisson’s ratio and elastic constant is established for
BCC lattice.

Face-Centered Cubic Lattice
Here, we will show insights into establishing the rela-
tionship between the Poisson’s ratio and the elastic con-
stant of the face-centered cubic (FCC) lattice illustrated
in Fig. 2c. Similarly, given the minor length changes in
response to external force, we get the Poisson’s ratio by

analyzing the force equilibrium conditions. The balanced
equation in z direction is

K1 þ K2

2
þ K3

3

� �
δ1 þ K2

2
þ 2K3

3

� �
δ2 ¼ F ; ð10aÞ

and in x and y directions, the equation is given as

K2

4
þ K3

3

� �
δ1 þ K1 þ 3K 2

4
þ 2K3

3

� �
δ2 ¼ 0: ð10bÞ

And then, the Poisson’s ratio is expressed as

ν ¼ −
δ2
δ1

¼ 3K2 þ 4K3

12K 1 þ 9K2 þ 8K3
: ð11Þ

Then, we undertake substitution operations, replacing
δ2 with δ2 ¼ − 3K2þ4K3

12K1þ9K2þ8K3
δ1 in Eq. (10a). Thus the

comprehensive elastic constant along z axis is

K ¼ F
δ1

¼ 12K1
2 þ 3K2

2 þ 15K1K2 þ 12K1K3 þ 3K2K3

12K1 þ 9K2 þ 8K3
:

ð12Þ
Here the observation about the relationship show that

if K2 = 0, then ν ¼ K3
3K1þ2K3

; K ¼ 3K1
2þ3K1K3

3K1þ2K3
; if K3 = 0,

then ν ¼ K2
4K1þ3K2

; K ¼ 4K1
2þK2

2þ5K1K2
4K1þ3K2

, and if K2 = K3 = 0,

then ν = 0, K = K1 as required. Here the related equations
about Poisson’s ratio and elastic constant are built up.

Diamond Lattice
Now we consider the elastic constants of diamond lattice
generally adopted in many materials, including α-tin, the
semiconductors silicon and germanium, and silicon/ger-
manium alloys in any proportion. The diamond struc-
ture is sketched in Fig. 2(d), and we also define three
various spring bond constants along the nearest bond di-
rections, which are labeled as K1, K2, and K3 respectively.
Apparently, the force balance equations are

K1 þ K2

2
þ K3

12

� �
δ1 þ K2

2
þ K3

6

� �
δ2 ¼ F ð13aÞ

in z direction, and

K2

2
þ K3

6

� �
δ1 þ K1 þ 3K 2

2
þ K3

3

� �
δ2 ¼ 0 ð13bÞ

in x and y direction.
According to Eq. (13b) above, Poisson’s ratio is written as

ν ¼ −
δ2
δ1

¼ 3K 2 þ K 3

12K 1 þ 9K2 þ 2K3
: ð14Þ

Next, we replace δ2 in Eq. (13a) with δ2 ¼ −
3K2þK3

12K1þ9K2þ2K3
. After substituting, we obtain the comprehen-

sive elastic constant along z direction
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K ¼ F
δ1

¼ 48K1
2 þ 12K2

2 þ 60K 1K2 þ 12K1K3 þ 3K2K 3

48K1 þ 36K2 þ 8K3
:

ð15Þ

It is recognized that if K2 = 0, then ν ¼ K3
12K1þ2K3

; K

¼ 12K1
2þ3K1K3

12K1þ2K3
, if K3 = 0, then ν ¼ K2

4K1þ3K2
; K ¼

4K1
2þK2

2þ5K1K2
4K1þ3K2

, and if K2 = K3 = 0, then ν = 0, K = K1 as re-

quired. Finally, we attain the relationship between Pois-
son’s ratio and elastic constant for diamond lattice.

Hexagonal Close-Packed Lattice
We will concentrate on creating the formulation of Pois-
son’s ratio and elastic constants for hexagonal close-
packed (HCP) lattice, which exist in many single element
metals, such as Magnesium (Mg), Titanium (Ti), Haf-
nium (Hf), and Zinc (Zn). There are three different
spring bond constants shown in Fig. 2. Here, we still
chose Cartesian coordinates in order to facilitate the
calculation.
In accordance with the same definition of tiny length

changes, we obtain the force balance equations

K1 þ K2

2
þ K3

9

� �
δ1 þ K2

2
þ 2K3

9

� �
δ2 ¼ F ð16aÞ

in z direction and

K2

4
þ K3

9

� �
δ1 þ K1 þ 3K 2

4
þ 2K3

9

� �
δ2 ¼ 0 ð16bÞ

in x and y directions.
Through Eq. (16b), we get the expression for the

Poisson’s ratio

ν ¼ −
δ2
δ1

¼ 9K 2 þ 4K3

36K 1 þ 27K2 þ 8K 3
: ð17Þ

Now, we replace δ2 ¼ − 9K2þ4K3
36K1þ27K2þ8K3

δ1 in the bal-

anced condition Eq. (16a), and then the comprehensive
elastic constant along z direction is written as

K ¼ F
δ1

¼ 36K1
2 þ 9K2

2 þ 45K1K2 þ 12K1K3 þ 3K2K3

36K1 þ 27K2 þ 8K3
:

ð18Þ

Notably, from the above equations, we see that if K2 = 0,

then ν ¼ K3
9K1þ2K3

; K ¼ 9K1
2þ3K1K3

9K1þ2K3
; if K3 = 0, then K ¼

4K1
2þK2

2þ5K1K2
4K1þ3K2

; and if K2 =K3 = 0, then ν = 0, K =K1 as

required.
Consequently, we have established the correlations be-

tween the Poisson’s ratio and spring bond constant for
all the 3D systems exemplified in Fig. 2.

Conclusions
We successfully proposed a methodology calculating the
spring constants between neighbored atoms in atomistic
strain analysis, using quantifiable physical quantities, i.e.,
Poisson’s ratio ν and comprehensive elastic constant K.
This method describes the neighbored atom interactions
with different spring bonds and gives insight into the
force balance conditions, which contribute to obtaining
the plausible results. The 2D square lattice and the or-
dinary 3D lattices are explicated. This derivation process
gives a straightforward view of understanding the elastic
constant connections in these systems and is evidentially
useful for numerical calculation and computations. This
will pave way for a more detailed exploration of strain-
engineered nanostructure formation and functionaliza-
tion of electronic devices.
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