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Abstract

This article develops a new adaptive filter algorithm intended for use in active noise control systems where it is
required to place gain or power constraints on the filter output to prevent overdriving the transducer, or to
maintain a specified system power budget. When the frequency-domain version of the least-mean-square
algorithm is used for the adaptive filter, this limiting can be done directly in the frequency domain, allowing the
adaptive filter response to be reduced in frequency regions of constraint violation, with minimal effect at other
frequencies. We present the development of a new adaptive filter algorithm that uses a penalty function
formulation to place multiple constraints on the filter directly in the frequency domain. The new algorithm
performs better than existing ones in terms of improved convergence rate and frequency-selective limiting.
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1. Introduction
Active noise control (ANC) systems can be used to re-
move interference by generating an anti-noise output
that can be used in the system to destructively cancel
the interference [1]. In some applications, it is required
to limit the maximum output level to prevent overdriv-
ing the transducer, or to maintain a specified system
power budget. In a frequency-domain implementation of
the least-mean-square (LMS) algorithm, the limiting
constraints can be placed directly in the frequency do-
main, allowing the adaptive filter response to be reduced
in the frequency regions of constraint violation, with
minimal effect at other frequencies [2]. Constraints can
be placed on either the filter gain, or filter output power,
as appropriate for the application.
A general block diagram of an ANC system is

illustrated in Figure 1, with H(z) representing the pri-
mary path or plant (e.g., an acoustic duct), W(z)
representing the adaptive filter, and S(z) representing the
secondary path (which may include the D/A converter,
power output amplifier, and the transducer). The adap-
tive filter W(z) typically uses the filtered-X LMS algo-
rithm, where the input to the LMS algorithm is first
filtered by an estimate of the secondary path [3]. The
adaptive filter will need to simultaneously identify H(z)
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and equalize S(z), with the additional constraint of
limiting the maximum level delivered to S(z).
Applications of gain-constrained adaptive systems in-

clude systems that use a microphone for feedback, and
due to the acoustic path to the microphone notches or
peaks occur in the microphone frequency response
(which may not be present in other locations). Adding
gain constraints to the adaptive filter prevents distortion
at those frequencies by limiting the peak magnitude of
the filter coefficients [2]. Applications of power-
constrained adaptive systems include requirements to
limit the maximum power delivered to S(z) to a
predetermined constraint value to prevent overdriving
the transducer, prevent output amplifier saturation, or
prevent other nonlinear behavior [4]. The primary differ-
ence between these implementations is that the gain-
constrained algorithm does not take the input power
into account when determining the constraint violation.
Previous implementations of gain and output power

limiting include output rescaling, the leaky LMS, and a
class of algorithms termed constrained steepest descent
(CSD) previously presented in [2]. We develop a new
class of gain-constrained and power-constrained algorithms
termed constrained minimal disturbance (CMD). The new
CMD algorithms provide faster convergence compared to
previous algorithms, and the ability to handle multiple
constraints.
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Figure 1 Block diagram of the ANC system.
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This article is organized as follows. Section 2 presents a
review of prior work. Section 3 presents the CMD algorithm
development. Section 4 presents a convergence analysis.
Section 5 presents simulations with comparisons to other
algorithms. Section 6 provides some concluding remarks.

2. Review of prior work
For comparison purposes, the following notation is used.

n Adaptive filter size and block size
N Sample number in the time domain
m Block number in the time or frequency domain
W Weight in the frequency domain
X Input in the frequency domain
E Error in the frequency domain
D Plant output in the frequency domain
Y Filter output in the frequency domain
C Gain or power constraint
S Secondary path

Lowercase w, x, e, d, and y are the time-domain
representations of their respective frequency-domain
counterparts. Vectors will be denoted in boldface, and
the subscript k is used to denote an individual compo-
nent of a vector. The superscript * is used to denote
complex conjugate, and the superscript T denotes vector
transpose. The parameter μ is used as a convergence
step-size coefficient, and the parameter γ is used as a
leakage coefficient.
The first two methods of power limiting were

described in detail in [5] and are briefly restated here.
The first “output clipping” simply limits the output
power to a maximum value. This is what would nor-
mally happen in a real system (e.g., the output amplifier
would saturate). With the filter output y at iteration n
denoted by y(n) and the output constraint by C, the out-
put clipping algorithm is given by

if y nþ 1ð Þ > C

y nþ 1ð Þ ¼ y nþ 1ð Þ C
y nþ 1ð Þj j :

ð1Þ

A potential problem in using output clipping for adap-
tive filtering applications is that the weight updates for
w(n) continue to occur while the filter output remains
clipped, causing potential stability problems since the fil-
ter weight update is decoupled from the filter output. To
prevent this, the ”output re-scaling” algorithm can be
used, which is given by

if y nþ 1ð Þ > C

y nþ 1ð Þ ¼ y nþ 1ð Þ C
y nþ 1ð Þj j

w nþ 1ð Þ ¼ w nþ 1ð Þ C
y nþ 1ð Þj j :

ð2Þ

Here, in addition to the output being clipped, the adap-
tive filter weights are also rescaled; filter adaptation
continues from the appropriate weight value corresponding
to the actual output.
The next algorithm to be considered for gain or power

limiting is the leaky LMS [6], which is given by

w nþ 1ð Þ ¼ 1� μγð Þw nð Þ þ μe nð Þx nð Þ: ð3Þ

The leaky LMS reduces the filter gain each iteration,
with the leakage coefficient γ controlling the rate of re-
duction. The coefficient γ is determined experimentally
according to the application, but gain reduction occurs
at all frequencies, resulting in a larger steady-state con-
vergence error. When the leakage is zero, this algorithm
reduces to the standard LMS [7].
The algorithms described thus far are processed dir-

ectly in the time domain. However, with large filter
lengths the required convolutions become computation-
ally expensive, and alternative methods can be more effi-
cient. If the processing is done in block form and a fast
Fourier transform (FFT) used, the required convolutions
become multiplications. This also allows additional
constraints to be added to limit the filter response dir-
ectly in the frequency domain. For example, in [8], an
ANC system using a loudspeaker with poor low-
frequency response was stabilized in the FFT domain by
zeroing out the low-frequency components, preventing
adaptation at those frequencies. However, using block
processing will result in a one block delay, which may be
undesirable in some real-time applications. A delayless
structure [9], with filtering in the time-domain and sig-
nal processing in the frequency-domain, can be used to
mitigate this delay. A block diagram of the delayless
frequency-domain LMS (FDLMS) is shown in Figure 2.
In delayless ANC applications with a secondary path
S(z), the adaptive filter input vector x(m) is first filtered



Figure 2 Block diagram of the delayless ANC system with
frequency-domain processing.
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by an estimate of the secondary path. The adaptive filter
weight, input, and error vectors are defined as

w mð Þ ¼ w0 nð Þw1 nð Þ . . .wN�1 nð Þ½ �T

x mð Þ ¼ x nð Þx n� 1ð Þ . . . x n� N þ 1ð Þ½ �T

e mð Þ ¼ e nð Þe n� 1ð Þ . . . e n� N þ 1ð Þ½ �T ð4Þ

A block size of N is used for both the filter and each
new set of data to maximize computational efficiency,
with m representing the block iteration. To avoid circu-
lar convolution effects, each FFT uses blocks of size 2N
[10]. The frequency-domain input and error vectors (size
2N) are defined as

X mð Þ ¼ FFT xT n� Nð Þ xT nð Þ½ �T
n o

E mð Þ ¼ FFT 0 eT nð Þ½ �T
n o

;

ð5Þ

where 0 is the N-point zero vector.
The delayless FDLMS weight update equation at iter-
ation m without a gain or power constraint is given
by [9]

w mþ 1ð Þ ¼ w mð Þ þ μIFFT X� mð ÞE mð Þf gþ; ð6Þ
where the + subscript denotes the causal part of the IFFT
(corresponding to the gradient constraint in [10]), and μ
is the convergence coefficient. Adding a leakage factor
to (6) results in a frequency-domain version of the leaky
LMS which can be used to limit the adaptive filter out-
put [2], and is given by

w mþ 1ð Þ ¼ γw mð Þ þ μIFFT X� mð ÞE mð Þf gþ ð7Þ

where γ is the leakage factor.
The next two weight update equations were developed

in [2], which processes the constraints in the frequency
domain using an algorithm based on the method of
steepest descent. The delayless form of the gain-
constrained version is given by

w mþ 1ð Þ ¼ w mð Þ

þμIFFT X� mð ÞE mð Þ � 4αN W mð Þ2 � C
� ��zW mð Þ

n o
þ
ð8Þ

where the z subscript sets the result in the brackets to 0
if the value in the brackets is less than 0 (the constraint
is satisfied), or to the value of the difference (the con-
straint is violated). The constraint is individually applied
to each frequency bin. Here, α controls the “tightness” of
the penalty: a larger α places a stiffer penalty on con-
straint violation at the expense of a larger steady-state
convergence error.
The delayless form of the power-constrained algorithm

is given by

w mþ 1ð Þ ¼ w mð Þ

þμIFFT X� mð ÞE mð Þ � 4α P mð Þ � C½ �ZX mð Þ2W mð Þ� �
þ:

ð9Þ
The output power P(m) is determined by the squared

Euclidean norm of the filter output, which is required to
be limited to a constraint value C, or equivalently

P mð Þ ¼ y mð Þ2 < C: ð10Þ

Note that in (10) there is only one constraint. When
used for comparison purposes, we will denote (8) and
(9) as constrained steepest descent (CSD) algorithms.

3. New algorithm development
The new CMD algorithm will be developed using the
principle of minimal disturbance, which states that the



Sk mð Þ Xk mð Þ

Kozacky and Ogunfunmi EURASIP Journal on Advances in Signal Processing 2013, 2013:17 Page 4 of 12
http://asp.eurasipjournals.com/content/2013/1/17
weight vector should be changed in a minimal manner
from one iteration to the next [11]. A constraint is added
for filter convergence, and a constraint is also added for
either the filter gain (coefficient’s magnitude in each fre-
quency bin), or the filter output power, depending on
which we intend to limit. The method of Lagrange
multipliers [11,12] is then used to solve this constrained
optimization problem [13].

3.1. Gain-constrained algorithm
At each block update m, the new algorithm will
minimize the squared Euclidean norm of the frequency-
domain weight change in each individual frequency bin
k, where the weight change is given by

δWk mþ 1ð Þ ¼ Wk mþ 1ð Þ �Wk mð Þ; ð11Þ
subject to the condition of a posteriori filter convergence
in the frequency domain

Dk mð Þ ¼ Sk mð ÞWk mþ 1ð ÞXk mð Þ: ð12Þ
In gain-constrained applications, the algorithm will add-

itionally add a penalty based on the amount of magnitude
violation above a maximum constraint value, requiring

Wk mþ 1ð Þj j≤
ffiffiffiffiffiffi
Ck

p
ð13Þ

or equivalently

Wk mþ 1ð Þ2≤Ck : ð14Þ
The three requirements given by (11), (12), and (14)

are combined into a single cost function, written as

J mþ 1ð Þ ¼ δWk mþ 1ð Þ2

þRe λ� Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ½ �f g

þαmax;k Wk mþ 1ð Þ2 � Ck
� �2h i

z

ð15Þ
where the Lagrange multiplier λ controls the conver-
gence requirement of (12), and the Lagrange multiplier
αmax,k with subscript k controls the individual frequency
bin magnitude constraint; parameter αmax,k controls the
“tightness” of the penalty term, with a larger value pla-
cing more emphasis on meeting the constraint at the ex-
pense of increasing the convergence error [2]. The cost
function (15) is differentiated with respect to each of the
three variables and set to 0. For each frequency bin k

∂J mþ 1ð Þ
∂Wk mþ 1ð Þ ¼ 2 Wk mþ 1ð Þ �Wk mð Þ½ �� � λ�Sk mð ÞXk mð Þ

þ 2αkW
�
k mþ 1ð Þ Wk mþ 1ð Þ2 � Ck

� �
z ¼ 0

ð16Þ
∂J mþ 1ð Þ
∂λ�

¼ Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ ¼ 0 ð17Þ

∂J mþ 1ð Þ
∂αmax;k

¼ Wk mþ 1ð Þ2 � Ck
� �2h i

z
¼ 0: ð18Þ

Rearranging (16) gives

1þ 2αmax;k Wk mþ 1ð Þ2 � Ck
� �

z

	 

W �

k mþ 1ð Þ

¼ W �
k mð Þ þ 1

2
λ�Sk mð ÞXk mð Þ:

ð19Þ

We now propose the following interpretation of the gain-
constraint term. In steady state (after convergence), we
would expect the successive weight values to be approxi-
mately the same for a small convergence coefficient step
size. Therefore, as long as the constraint of (14) was satisfied
in the previous iteration, the penalty is set to 0. However, if
the magnitude of the filter weight exceeds the constraint
value, then the penalty is scaled in proportion to the con-
straint violation (similar to the method in [14], which
initiates the penalty at 90% of the constraint). We define

αk ¼ 2αmax;k Wk mð Þ2 � Ck
� �

z ð20Þ

where the z subscript term will force αk to zero if the con-
straint of (14) is satisfied.
Substituting (20) into (19) at frequency bin k, conju-

gating both sides, and rearranging into a recursion
results in

Wk mþ 1ð Þ ¼ 1
1þ αk½ � Wk mð Þ þ 1

2
λS�k mð ÞX�

k mð Þ
� �

:

ð21Þ
Substituting (21) into (12) gives

Dk mð Þ � Sk
1

1þ αk½ � Wk mð Þ þ 1
2
λS�k mð ÞX�

k mð Þ
� � �

Xk mð Þ ¼ 0:

ð22Þ
Rearranging (22) yields

Dk mð Þ � Sk mð ÞWk mð ÞXk mð Þ½ �
þ αkDk mð Þ � 1

2
λ Sk mð Þk k2 Xk mð Þk k2 ¼ 0:

ð23Þ

The first term in brackets is the error at frequency bin
k, Ek(m). Solving for λ results in

λ ¼ 2 Ek mð Þ þ αkDk mð Þ½ �
2 2 : ð24Þ
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Rearranging (21) into a recursion, using (24), and
introducing a convergence step size parameter μ to con-
trol the rate of adaptation yields

Wk mþ 1ð Þ

¼ 1
1þ αk

Wk mð Þ þ μ
Ek mð Þ þ αkDk mð Þ½ �
Sk mð Þ2Xk mð Þ S�k mð ÞX�

k mð Þ
" #

:

ð25Þ
Noting that Dk(m) in (25) can be written as Dk(m) = Ek

(m) + Sk Wk(m)Xk(m) results in

Wk mþ 1ð Þ ¼ 1þ μαk
1þ αk

� �
Wk mð Þ

þ μ

Sk mð Þ2Xk mð Þ2 S
�
k mð ÞX�

k mð ÞEk mð Þ:

ð26Þ

For small μ, (26) can be approximated as

Wk mþ 1ð Þ ¼ 1
1þ αk

Wk mð Þ

þ μ

Sk mð Þ2Xk mð Þ2 S
�
k mð ÞX�

k mð ÞEk mð Þ:

ð27Þ

Using the definitions

γk ¼
αk

μ 1þ αkð Þ ð28Þ

and

μk ¼
μ

Sk mð Þ2Xk mð Þ2 ð29Þ

the weight update given by (27) can be written for each
frequency bin as

Wk mþ 1ð Þ ¼ 1� μγk
� �

Wk mð Þ

þμkS
�
k mð ÞX�

k mð ÞEk mð Þ:

ð30Þ

Taking the IFFT of both sides and casting into a
delayless structure results in the new CMD algorithm
given by

w mþ 1ð Þ ¼ w mð Þ

þμIFFT
S mð ÞX� mð ÞE mð Þ
S mð Þ2X mð Þ2 � Γ mð ÞW mð Þ

( )
þ

ð31Þ
where

Γ mð Þ ¼ diag γ0 mð Þ; γ1 mð Þ; . . . ; γ2N�1 mð Þ� � ð32Þ
is a diagonal matrix of variable leakage factors as
determined by (28).
The ║X(m)║2 term provides an estimate of the input

power Px,k(m) in frequency bin k,

Px;k mð Þ ¼ E Xk mð Þ2� � ð33Þ
which can be determined recursively by [15]

Px;k mð Þ ¼ βPx;k m� 1ð Þ

þ 1� βð Þ Xk mð ÞX�
k mð Þ� �

ð34Þ

where β is a smoothing constant slightly less than 1.
(Note: In equations such as (31) which use an estimated
power value in the denominator, low power in a particu-
lar frequency bin may result in division by a very small
number, potentially causing numerical instability. To
guard against this, a small positive regularization param-
eter is added to the denominator to ensure numerical
stability [11]).
The following observations can be made of the CMD

algorithm given by (31), which is shown in Figure 3:

1. If the constraint of (14) is violated, the CMD
algorithm will reduce the magnitude of the adaptive
filter frequency response in proportion to the level of
constraint violation.

2. The CMD algorithm normalizes the weight update in
a manner similar to the normalized-LMS with
leakage. The amount of leakage is dependent on the
level of constraint violation.

3. The CMD algorithm scales the weight update by the
inverse of secondary path frequency response, resulting
in a faster convergence in regions corresponding to
valleys (low magnitude response) in the secondary path.

3.2. Power-constrained algorithm
In applications where the filter output power is to be
limited, the gain coefficient constraint is replaced by an
output power constraint. If total control effort is to be
limited [2,6], a single output power constraint can be
expressed as

Py mþ 1ð Þ≤C ð35Þ
where

Py mþ 1ð Þ ¼ 1
N

XN�1

k¼0

Wk mþ 1ð Þ2Xk mð Þ2: ð36Þ



Figure 3 Block diagram of the CMD adaptive filter with
frequency-domain processing.
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The new power constrained cost function then becomes

J mþ 1ð Þ ¼ δWk mþ 1ð Þ2

þRe


λ�
h
Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ

i�

þ αmax;k Py mþ 1ð Þ � C
� �2h i

z
: ð37Þ

Following the development of the gain-constrained al-
gorithm, this cost function is differentiated with respect
to each of the three variables and set to 0. The resulting
equations are

∂J mþ 1ð Þ
∂Wk mþ 1ð Þ ¼ 2 W mþ 1ð Þ �Wk mð Þ½ �� � λ�Sk mð ÞXk mð Þ

þ 2αkW � mþ 1ð ÞXk mð Þ2 Py mþ 1ð Þ � C
� �

z ¼ 0

ð38Þ

∂J mþ 1ð Þ
∂λ�

¼ Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ ¼ 0 ð39Þ

∂J mþ 1ð Þ
∂αmax;k

¼ Py mþ 1ð Þ � C
� �2h i

z
¼ 0: ð40Þ

Rearranging (38) yields

2αmax;kXk mð Þ2 Py mþ 1ð Þ � C
� �

z

	 

W �

k mþ 1ð Þ

þW �
k mþ 1ð Þ

¼ W �
k mð Þ þ 1

2
λ�Sk mð ÞXk mð Þ:

ð41Þ
Using the same procedure previously described after
(19), the term in (20) is replaced by

αk ¼ 2αmax;kXk mð Þ2 Py;k mð Þ � Ck
� �

z: ð42Þ

Following a development similar to the gain-constrained
case results in the CMD algorithm given by (31) using a
new diagonal matrix of leakage factors (32).
Better frequency performance can be achieved by esti-

mating the power in each frequency bin, making the al-
gorithm more selective in attenuating those frequencies
in violation of the constraint. The output power in each
frequency bin is determined by

Py;k mþ 1ð Þ ¼ Wk mþ 1ð Þ2Px;k mþ 1ð Þ: ð43Þ
Using Ck as the power constraint, it is required that

Py;k mþ 1ð Þ≤Ck : ð44Þ
The resulting cost function is given by

J mþ 1ð Þ ¼ δWk mþ 1ð Þ2

þRe λ� Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ½ �f g

þαmax;k Py;k mþ 1ð Þ � Ck
� �2h i

z
:

ð45Þ
Following the development of the gain-constrained al-

gorithm, this cost function is differentiated with respect
to each of the three variables and set to 0. The resulting
equations are

∂J mþ 1ð Þ
∂Wk mþ 1ð Þ ¼ 2 Wk mþ 1ð Þ �Wk mð Þ½ �� � λ�Sk mð ÞXk mð Þ

þ 2αkW �
k mþ 1ð ÞXk mð Þ2 Py;k mþ 1ð Þ � Ck

� �
z ¼ 0

ð46Þ
∂J mþ 1ð Þ

∂λ�
¼ Dk mð Þ � Sk mð ÞWk mþ 1ð ÞXk mð Þ ¼ 0 ð47Þ

∂J mþ 1ð Þ
∂αmax;k

¼ Py;k mþ 1ð Þ � Ck
� �2h i

z
¼ 0: ð48Þ

Rearranging (46) yields

2αmax;kXk mð Þ2 Py;k mþ 1ð Þ � Ck
� �

z

	 

W �

k mþ 1ð Þ

þW �
k mþ 1ð Þ

¼ W �
k mð Þ þ 1

2
λ�Sk mð ÞXk mð Þ:

ð49Þ
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Using the same procedure previously described after
(19), the term in (20) is replaced by

αk ¼ 2αmax;kXk mð Þ2 Py;k mð Þ � Ck
� �

z: ð50Þ
Following a development similar to the gain-constrained

case, and using a new diagonal matrix of leakage factors
(32) results in the CMD algorithm, repeated below.

w mþ 1ð Þ ¼ w mð Þ

þ μIFFT
S� mð ÞX� mð ÞE mð Þ

S mð Þ2X mð Þ2 � Γ mð ÞW mð Þ
( )

þ
;

ð51Þ
where

Γ mð Þ ¼ diag γ0 mð Þ; γ1 mð Þ; . . . ; γ2N�1 mð Þ� �
: ð52Þ

4. Convergence analysis
We assume that all signals are white, zero-mean, Gaussian
wide-sense stationary, and employ the independence as-
sumption [7] under a steady-state condition, where the
constraint violation is constant and the transform-domain
weights are mutually uncorrelated (which occurs as the fil-
ter size N grows large [16]). We will also use a normalized
input power of unity in (34), which then allows the ana-
lysis to apply to both gain-constrained and power-
constrained cases. Uncorrelated white measurement noise
with a variance of σn

2 will be denoted by ηk.

4.1. Mean value
The weight update equation (30) can be written as

Wk mþ 1ð Þ ¼ 1� μγk
� �

Wk mð Þ

þμk Dk mð Þ � Sk mð ÞWk mð ÞXk mð Þ½ �S�k mð ÞX�
k mð Þ
ð53Þ

or equivalently

Wk mþ 1ð Þ ¼ 1� μ γk þ 1
� �� �

Wk mð Þ þ μWk;opt; ð54Þ

where Wk,opt denotes the optimal Wiener solution [given
as Sk

–1 (m)Dk (m)]. Taking expectations of both sides,
using the assumptions, and noting that the input power
is normalized per (29) results in

E Wk mþ 1ð Þ½ � ¼ 1� μ γk þ 1
� �� �

E Wk mð Þ½ � þ μWk;opt ð55Þ
By induction, this recursion can be written as

E Wk mð Þ½ � ¼ 1� μ γk þ 1
� �� �m

E Wk 0ð Þ½ �

þμWk;opt

Xm�1

1� μ γk þ 1
� �� �m�1�i

ð56Þ
i¼0
Convergence requirements on μ are given below. When
these conditions are satisfied the result is

lim
m→1E Wk mð Þ½ � ¼ μWk;opt lim

m→1

Xm�1

i¼0

1� μ γk þ 1
� �� �m�1�i

;

ð57Þ
which converges in the limit to the steady-state solution
Wk,ss.

Wk;ss ¼ Wk;opt

1þ γk
ð58Þ

4.2. Convergence in the mean
The deviation from the steady-state solution in bin k is
defined by a weight error [17] given by

Vk mð Þ ¼ Wk mð Þ �Wk;ss ð59Þ

allowing the CMD algorithm to be expressed as

Vk mþ 1ð Þ ¼ 1� μγk � μkX
�
k mð ÞXk mð Þ� �

Vk mð Þ
þμkηkXk mð Þ � μγkWk;ss

ð60Þ

Taking expectations of both sides results in

E Vk mþ 1ð Þ½ � ¼ 1� μ γk þ 1
� �� �

E Vk mð Þ½ � � μγkWk;ss ð61Þ

By induction, this recursion can be written as

E Vk mð Þ½ � ¼ 1� μ γk þ 1
� �� �m

E Vk 0ð Þ½ �

�μγkWk;ss

Xm�1

i¼0

1� μ γk þ 1
� �� �m�1�i

ð62Þ

For this to converge requires the exponential term to
decay

1� μ γk þ 1
� ��� �� < 1 ð63Þ

resulting in

μ <
2

1þ γk
ð64Þ

with the upper bound on μ occurring for maximum con-
straint violation, given by

μ <
2

1þ γk;max
ð65Þ
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4.3. Convergence in the mean square
Both sides of (60) are first post-multiplied by their re-
spective conjugate transposes, rearranged, and after tak-
ing expectations the result is

E Vk mþ 1ð ÞV �
k mþ 1ð Þ� �

¼ E 1� μγk � μk
� �2

Vk mð ÞV �
k mð Þ

h i
þ μ2σ2

n

Xk mð Þ2 þ μ2γ2kWk;ssW
�
k;ss

�μγkE 1� μγk � μk
� �

Vk mð ÞW �
k;ss

h i
� μγkE 1� μγk � μk

� �
V �
k mð ÞWk;ss

� �
ð66Þ

Rearranging and employing the assumptions [18] gives

E Vk mþ 1ð ÞV �
k mþ 1ð Þ� �

¼ ½ 1� 2μ γk þ 1
� �þ μ2 γ2k þ 2γk þ 1

� �� �
E Vk mð ÞV �

k mð Þ� �þ μ2σ2n
Xk mð Þ2 þ μ2γ2kWk;ss mð Þ2

� 2μγk 1� μ γk þ 1
� �� �

W �
k;ssE Vk mð Þ½ �:

ð67Þ

As the weight error variance update depends on the
mean coefficient error vector,Vk(m), a state-space model
can be defined as

Zk mð Þ ¼ E Vk mð ÞV �
k mð Þ� �

E Vk mð Þ½ �
� �

ð68Þ
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Figure 4 Frequency response of gain-constrained CMD algorithm.
and the update defined as the real component of

Zk mþ 1ð Þ ¼ AZk mð Þ þ B ð69Þ
with

A ¼ A11 A12

0 A22

� �
ð70Þ

and

B ¼ B1

B2

� �
ð71Þ

where

A11 ¼ 1� 2μ γk þ 1
� �þ μ2 γ2k þ 2γk þ 1

� �

A12 ¼ �2μγk 1� μ γk þ 1
� �� �

W �
k;ss

A22 ¼ 1� μ γk þ 1
� �

B1 ¼ μ2
σ2n

Xk mð Þ2 þ γ2kWk;ss mð Þ2
 !

B2 ¼ �μγkWk;ss:

ð72Þ

For stability, it is required that the eigenvalues in the
state transition matrix A have a magnitude less than 1
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[19], requiring matrix entry A11 in (70) to be bounded to
magnitude less than 1, resulting in

1� 2μ γk þ 1
� �þ μ2 γ2k þ 2γk þ 1

� ��� �� < 1 ð73Þ

or

μ <
2

1þ γk
ð74Þ
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Figure 6 Convergence comparison, gain-constrained condition.
with the upper bound on μ occurring for maximum con-
straint violation, given by

μ <
2

1þ γk;max
ð75Þ

5. Simulations
In the simulations, the experimental data from [3] is used
for the plant, modeled by a 512-term all-zero filter
centered at N/2. The output rescaling algorithm (2) is
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 Number
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Figure 7 Convergence comparison, gain-constrained condition, AR(1) colored noise input.
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applied in the frequency-domain to determine the steady-
state adaptive filter final coefficients. We demonstrate the
improved convergence performance of the CMD algo-
rithm as compared to the CSD algorithm and the leaky
LMS in both gain-constrained and power-constrained
applications. The values of constraint terms C, αmaxk,
and Ck are held constant in the simulations, but could be
shaped over frequency for specific applications. External
uncorrelated Gaussian white noise with a variance of 0.01
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Figure 8 Frequency response comparison, power-constrained conditi
is added for the convergence comparisons, and an average
of 100 runs is plotted. In the simulations, we are assuming
prior knowledge of the secondary path transfer function;
methods for on-line and off-line secondary path identifica-
tion are presented in, e.g., [20,21].

5.1. Gain-constrained algorithm
Using a unity gain secondary path, a 3-dB coefficient gain
constraint is imposed, and Figure 4 shows the plant
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Figure 9 Convergence comparison, power-constrained condition.
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frequency response and the response of the new CMD algo-
rithm, illustrating the clipping effect of the algorithm.
Using the experimental data from [3] for the second-

ary path, the algorithms should converge to the filter
in Figure 5, which shows the CMD algorithm re-
sponse, the plant frequency response, and the secondary
path frequency response. The adaptive filter in this case
will need to simultaneously identify H(z) and equalize
S(z), while still maintaining the gain constraints. The
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Figure 10 Frequency response, bin-power-constrained condition.
convergence comparison for the three algorithms for the
system in Figure 5 for a white noise input is displayed in
Figure 6. The CMD algorithm has the fastest convergence
performance. The CSD algorithm began converging in a
similar manner, but was not able to fully achieve the
relatively high 20 dB gain required at the lowest frequen-
cies in Figure 5. However, other simulations without deep
secondary path nulls showed that the two algorithms con-
verge to similar final weight values, with the CMD having
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a faster convergence rate. The leaky LMS attenuates all fre-
quencies (and not just those in violation of the constraint)
and has the poorest convergence performance. (The leaky
LMS appears smoother than the other two algorithms,
but this is due to the logarithmic scale of the y-axis
in the plots.)
Figure 7 compares the convergence of the three

algorithms for colored noise input, created by filtering the
input with a first order AR(1) low pass filter process with
coefficients [1–0.95]. The CSD algorithm requires a
significant reduction of μ in (8) to maintain stability,
resulting in a slow response. However, the increased
energy in the lower frequency regions due to the
low pass input process improved the misadjustment
for this case. The leaky LMS attenuates all frequencies
(and not just those in violation of the constraint) and
has the poorest convergence performance and highest
excess misadjustment.

5.2. Power-constrained algorithm
The frequency response and convergence of the three
algorithms is compared in Figures 8 and 9, respectively,
using a single output power constraint of 25% of the un-
constrained value (−6 dB). The CMD algorithm has the
fastest convergence performance and maintains a 6-dB
power reduction over frequency. The CSD displays simi-
lar performance, but again was not able to fully achieve
the relatively high 20 dB gain required at the lowest fre-
quencies. The leaky LMS has the poorest convergence
performance, primarily due to its inability to track the
lowest frequencies. Both the CMD and CSD algorithms
allow the power constraint to be set explicitly, while the
leaky LMS requires a trial and error approach to deter-
mine the parameters.
The CMD algorithm frequency response for the indi-

vidual bin-constrained case using the constraint of (44)
is shown in Figure 10 for a 3-dB power limit with a
wideband white noise input. Comparing this to Figure 8
illustrates how the new CMD algorithm reduces the out-
put in the frequencies of power-constraint violation,
while minimizing the effect at other frequencies.

6. Conclusion
A new algorithm was presented, the CMD LMS, for
gain-constrained and power-constrained adaptive filter
applications. Analysis results were developed for the stabil-
ity bounds in the mean and mean-square sense. The CMD
algorithm was compared to the algorithm developed in [2]
and the leaky LMS for filtered-X ANC applications. The
new CMD algorithm provides faster convergence and
improved frequency response performance, especially in
colored noise environments. Additionally, the new CMD
algorithm has the ability to handle multiple constraints in
both gain-constrained and power-constrained applications.
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