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Abstract
In this paper, we discuss a discrete competitive system based on density dependence
to obtain a set of sufficient conditions for the existence and asymptotic stability of the
equilibrium of systems. By obtaining the optimal harvest strategy of systems through
the extreme value method and the discrete Pontryagin maximum principle, we
provide a theoretical direction for the actual production.
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1 Introduction
Stability and permanence of a biological system have been studied by several authors [–
]. The problem of fractional differential equation was also studied [–]. However, the
rational development andmanagement of the biological resources were directly related to
sustainable development. In recent years, continuous system capture has received many
scholars’ attention [–]. Similarly, the optimal control theory is a good method [–
]. In fact, as we know, fish distribution is inhomogeneous and it is not possible to capture
successively. Therefore, it is more reasonable to consider the discrete system’s capture.
Not only it will keep the biological balance but it will also save time and produce more
economic revenue for fishermen. Due to the peculiarity of the discrete system, it is difficult
to study its stability and capture, and there are few related studies. Therefore, in this paper,
we consider the following discrete two species competitive system and discuss the system’s
stability and capturing strategy,

{
�xn = xn(a – bxn – cyn) – Exn = P(xn, yn),
�yn = yn(a – bxn – cyn) – Eyn = P(xn, yn).

(.)

Here a and a (a > , a > ) denote the intrinsic growth rate of two species xn and yn (or
life factor). b and c (b, c > ) denote the density-dependent entry. Generally speaking,
two populations are both caught by fishermen. It has practical significance to take the cap-
ture effect into consideration in order to reap the maximum economic benefits. Let E, E

(E,E > ) be the capture intensity of the two populations (that is, fishing effort multiplies
the capture coefficients) (E + E = E), and let the capture per unit time be proportional
to the stock and population, a > E and a > E. Under this assumption, we can get the
following competitive capture systems.
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The rest of the paper is arranged as follows. We discuss a set of sufficient conditions for
the stability of system (.) equilibrium based on density dependence in Section . It is dis-
cussed that system (.) stable equilibrium in the optimal acquisition strategy through the
extreme value method, by using structuring discrete Hamiltonian function and discrete
Pontryagin maximum principle, it is to obtain optimal harvest policy by three equilibri-
ums in Section .

2 Equilibrium and stability
2.1 Equilibrium
By calculating, we can get that system (.) has the following equilibriums: O(, ),
P( a–Eb

, ), P(, a–Ec
), P(x∗, y∗), where

x∗ =
(a – E)c – (a – E)c

bc – bc
, y∗ =

(a – E)b – (a – E)b
bc – bc

.

Theorem . O, P and P are non-negative equilibrium points; P(x∗, y∗) is a positive equi-
librium if and only if

b
b

>
a – E

a – E
>
c
c
. (.)

2.2 Stability of the positive equilibrium
For any initial value (x, y), let {(xn, yn)} be the solution sequence of system (.).

Theorem . Under the conditions of Theorem . and further assumption that system
(.) satisfies the following conditions:

() ( + a – E) ≤ bx∗,

() ( + a – E) ≤ cy∗,

the positive equilibrium P(x∗, y∗) is locally asymptotically stable in the region D =
{(x, y)| < x ≤ x∗,  < y ≤ y∗}, which is called the attraction domain of the positive equi-
librium point P(x∗, y∗) in system (.).

Proof Let (x, y) ∈D, considering the function:

u = bx – ( + a – E)x + x∗,

from condition (), we have � = ( + a – E) – bx∗ ≤  and b > , hence u≥ .
When x > , y > , we have

bxn + cxnyn – ( + a – E)xn + x∗ > . (.)

For (x, y) ∈ D, according to (.) and (.), we get

x = ( + a – E)x – bx – cxy < x∗.
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Because D is in the region surrounded by

a – E – bxn – cyn = , a – E – bxn – cyn = , x = , y = ,

it follows that �x = x(a – E – bx – cy) > . That is, x < x, then  < x < x < x∗.
Similarly, consider the following function:

v = cy – ( + a – E)y + y∗.

From condition () we have

� = ( + a – E) – cy∗ ≤ 

and c > , so v ≥ . When x > , y > , we have

bxnyn + cyn – ( + a – E)yn + y∗ > . (.)

For (x, y) ∈ D, from (.) and (.) we get

y = ( + a – E)y – bxy – cy < y∗.

Because D is in the region surrounded by

a – E – bxn – cyn = , a – E – bxn – cyn = ,

yn = , x = , y = ,

it follows that

�yn = yn(a – E – bxn – cyn) > .

That is,

y > y,

thus

 < y < y < y∗, (x, y) ∈ D.

By the recursive method, the solutions (xn, yn) ∈D of system (.) satisfy the conditions
of theorem and  < xn < xn+ < x∗,  < yn < yn+ < y∗ (n = , , . . .).
According to the monotone bounded theorem limn→∞ xn =M, limn→∞ yn =N .
Let n → ∞. In (.), {xn}, {yn} are monotonically increasing sequences and the positive

equilibrium point of system (.) is unique, we getM = x∗,N = y∗. So the sequence of {xn},
{yn} converges to the positive equilibrium P. �
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Theorem . Under the conditions of Theorem . and further assumption that system
(.) satisfies the following conditions:

() (c + ac – Ec – ca + cE) > bcx
∗;

() c + ac + cE ≤ Ec + ca + bcx
∗;

() c + cE ≥ ac + cE + ca;

() (b + ba – bE + ab – Eb) > cby
∗;

() b + ba + Eb ≤ ab + bE + bcx
∗;

() ba + ab + bE ≤ b + bE,

P(x∗, y∗) in system (.) is locally asymptotically stable in the region

D =
{
(x, y)

∣∣∣x∗ < x ≤ a – E

b
, y∗ < y≤ a – E

c

}
,

which is the attraction domain of P(x∗, y∗).

Proof Let (x, y) ∈ D, since D is included in the region on the top of the two straight
lines a –E –bxn–cyn = , a –E –bxn–cyn =  and�x = x(a –E –bx –cy) < ,
that is, x < x.
Consider the following function:

u = bt –
(
 + a – E –

ca – cE

c

)
t + x∗.

Fromcondition ()we get� = 
c
(c+ac–Ec–ca+cE)–bx∗ > . This function

has two real zero points:

t =
c + ac – Ec – ca + cE ± √

�c
bc

.

From condition () we get

c + ac – Ec – ca + cE – bcx
∗ ≤  ≤

√
(c + ac – ca – Ec) – bcx∗,

hence t ≤ x∗.
From condition () we get

t =
c + ac – cE – ca + cE +

√
�c

bc
>
a – E

b
,

t < x∗ < a–E
b

< t. And when t < t < t, u < , so for x∗ < t < a–E
b

,

bt +
(
ca – cE

c
–  – a + E

)
t + x∗ < .
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For (x, y) ∈D,

bx + cxy – ( + a – E)x + x∗ < bx +
c(a – E)

c
x – ( + a – E)x + x∗ < ,

then x = ( + a – E)x – bx – cxy > x∗, hence x∗ < x < x.
Consider the auxiliary functions

v = cs –
(
 + a – E –

ab – Eb
b

)
s + y∗.

From conditions (), () and (), y∗ < y < y can also be proved. From the recursive
method available, the solution (xn, yn) ∈ D of system (.) satisfies the conditions of the-
orem, and x∗ < xn < xn+, y∗ < yn < yn+ (n = , , . . .). By the same method used in The-
orem ., it can be proved that the solution sequence of system (.) converges to the
positive equilibrium point P. �

Based on the actual situation, population xn > , yn > , then we have the following.

Theorem. If Theorem . is satisfied, and system (.) satisfies the following conditions:

a – E <
cb + bc
bc – bc

, (.)

then system (.) is globally asymptotically stable.

Proof Define a Lyapunov function, Vn(xn, yn) = bxn + cyn, then

�Vn = b�xn + c�yn

= bxn(a – E – bxn – cyn) + cyn(a – E – bxn – cyn)

= bxn(a – E) – bbxn – cbxnyn + cyn(a – E) – bcxnyn – ccyn

≤ bxn(a – E) – bbxn + cyn(a – E) – ccyn

= –bb
(
xn –

a – E

b

)

– cc
(
yn –

a – E

c

)

+
b(a – E)

b
+
c(a – E)

c
.

From conditions () and () of Theorem . we get

(a – E)

b
≤ x∗ –


b

–
a – E

b
,

(a – E)

c
≤ y∗ –


c

–
(a – E)

c
,

�Vn ≤ –bb
(
xn –

a – E

b

)

– cc
(
yn –

a – E

c

)

+ bx∗ –
b
b

–
b(a – E)

b

+ cy∗ –
c
c

–
c(a – E)

c

= –bb
(
xn –

a – E

b

)

– cc
(
yn –

a – E

c

)

+ (a – E) –
b
b

–
b(a – E)

b
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–
c
c

–
c(a – E)

c

= –bb
(
xn –

a – E

b

)

– cc
(
yn –

a – E

c

)

–
(bc + bc) + (a – E)(bc – bc)

bc
.

From (a – E) < cb+bc
bc–bc

, �Vn < , then system (.) is globally asymptotically stable. �

3 The optimal economic benefit
As we know, both the fishermen and the fishing companies must consider the cost-
effectiveness when catching all kinds of fish in terms of the sale price and the capture cost.
Suppose that the largest capture intensity is Em, then  < E +E = E ≤ Em, the cost isC and
the price of the two kinds of group are p, p. The economic profit is L = pEx+pEy–CE.
For the positive equilibrium point P(x∗, y∗), the economic benefits (profits) are

L = pEx∗ + pEy∗ –CE

= pE
(a – E)c – (a – E)c

bc – bc
+ pE

(a – E)b – (a – E)b
bc – bc

–CE

= A(E + B) +D,

where

A = –
p(c + c) – p(b + b)

bc – bc
,

B = –
p(Ec + ac – ac) + p(Eb + Eb + ab – ab)

p(c + c) – p(b + b)
,

D =
pE(ab – ab – Eb)

bc – bc

–
[p(Ec + ac – ac) + p(Eb + Eb + ab – ab)]

(bc – bc)[p(c + c) – p(b + b)]
–CE.

Due to the limitation of capture ability  < E +E ≤ Em, from the knowledge of calculus,
A <  (that is, p

p
> b+b

c+c
), so L has a maximum value.

If Ec + ac > ac, Eb + Eb + ab > ab, then, when

E = –B =
p(Ec + ac – ac) + p(Eb + Eb + ab – ab)

p(c + c) + p(b + b)
> ,

L reaches the maximum:

Lmax = D =
pE(ab – ab – Eb)

bc – bc

–
[p(Ec + ac – ac) + p(Eb + Eb + ab – ab)]

(bc – bc)[p(c + c) – p(b + b)]
–CE.

For the non-negative equilibrium point P(, a–Ec
) ( < E = E ≤ Em), we obtain the

optimal harvest strategy of the non-negative equilibrium point by using the discrete
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Pontryagin maximum principle and the optimal control theory. To obtain the optimal
capture, seeking to capture the best efforts of degrees E∗

 , the goal of functions are given:

L =
∞∑
n=

αn–(pyn –C)E.

According to the discrete maximum principle, seeking optimal control E, the following
Hamilton function is introduced:

Hn = αn–(pyn –C)E + λn(a + bxn – cyn – E)yn, (.)

where α = 
+i , i is the instantaneous discount rate for periods, λn are variables, E gets

maximum value Hn, which is accompanied by the following equations:

�λn = λn – λn– = –
∂Hn

∂yn
= –αn–pE + cynλn, (.)

�λn = λn – λn– + λn– = αn–pE( – α) + cyn(λn – λn–), (.)

that is,

( – cyn)λn + (cyn – )λn– + λn– = αn–pE( – α).

Substituting n into n –  type, we have

( – cyn)λn+ + (cyn – )λn+ + λn = αnpE( – α), (.)

� = (cyn – ) – ( – cyn) = (cyn) > . (.)

If cyn < , we have a solution

λn = –
pEα

n

α –  + αcyn
. (.)

By ∂H
∂E = , we have

λn = αn–(pyn –C)/yn (.)

because

E = a – cyn. (.)

By (.), (.) and (.), we have

yα =
C( – α)

p( – α) + αCc – apα
. (.)

From (.), we have y∗ = yα as the optimal equilibrium solution. So, seeking to capture the
best efforts of degrees

E∗
 = a –

cC( – α)
p( – α) + αCc – apα

,
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this is the optimal equilibriumprogram.Then the economic profit of captured populations
is completely controlled by the discount rates α, C, p.
Similarly, consider the non-negative equilibrium point P( a–Eb

, ) ( < E = E ≤ Em). If
bxn < , we have a solution

xα =
C( – α)

p( – α) + αCb – apα
. (.)

From (.), we have y∗ = yα as the optimal equilibrium solution. So, seeking to capture
the best efforts of degrees

E∗
 = a –

bC( – α)
p( – α) + αCb – apα

,

this is the optimal equilibriumprogram.Then the economic profit of captured populations
is completely controlled by the discount rates α, C, p.

4 Conclusion
This paper qualitatively analyzes a competitive system in situations that are density con-
strained. We have discussed the stability of equilibrium point in different regions, im-
proved methods of proof in reference. Using the extreme value method to analyze the
stable positive equilibrium point is the most optimal way to capture it. By using the
Pontryagin maximum principle, through introduces the Hamilton function obtains of the
non-negative equilibrium point most superior capture strategy.
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