Higher-order Bernoulli, Euler and Hermite polynomials

Dae San Kim ${ }^{1}$, Taekyun Kim ${ }^{2 *}$, Dmitry V Dolgy ${ }^{3}$ and Seog-Hoon Rim ${ }^{4}$

Correspondence: tkkim@kw.ac.kr
${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, S. Korea
Full list of author information is available at the end of the article

Abstract

In (Kim and Kim in J. Inequal. Appl. 2013:111, 2013; Kim and Kim in Integral Transforms Spec. Funct., 2013, doi:10.1080/10652469.2012.754756), we have investigated some properties of higher-order Bernoulli and Euler polynomial bases in $\mathbb{P}_{n}=\{p(x) \in \mathbb{Q}[x] \mid \operatorname{deg} p(x) \leq n\}$. In this paper, we derive some interesting identities of higher-order Bernoulli and Euler polynomials arising from the properties of those bases for \mathbb{P}_{n}.

1 Introduction

For $r \in \mathbb{R}$, let us define the Bernoulli polynomials of order r as follows:

$$
\begin{equation*}
\left(\frac{t}{e^{t}-1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} B_{n}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[1-18]) . \tag{1}
\end{equation*}
$$

In the special case, $x=0, B_{n}^{(r)}(0)=B_{n}^{(r)}$ are called the nth Bernoulli numbers of order r. As is well known, the Euler polynomials of order r are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{2}{e^{t}+1}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} E_{n}^{(r)}(x) \frac{t^{n}}{n!} \quad(\text { see }[1-10]) . \tag{2}
\end{equation*}
$$

For $\lambda(\neq 1) \in \mathbb{C}$, the Frobenius-Euler polynomials of order r are also given by

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right)^{r} e^{x t}=\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid \lambda) \frac{t^{n}}{n!} \quad(\text { see }[1,7]) . \tag{3}
\end{equation*}
$$

The Hermite polynomials are defined by the generating function to be:

$$
\begin{equation*}
e^{2 x t-t^{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!} \quad(\text { see }[8-10,19]) \tag{4}
\end{equation*}
$$

Thus, by (4), we get

$$
\begin{equation*}
H_{n}(x)=(H+2 x)^{n}=\sum_{l=0}^{n}\binom{n}{l} H_{n-l} 2^{l} x^{l} \quad(\text { see }[14]), \tag{5}
\end{equation*}
$$

where $H_{n}=H_{n}(0)$ are called the nth Hermite numbers. Let $\mathbb{P}_{n}=\{p(x) \in \mathbb{Q}[x] \mid \operatorname{deg} p(x) \leq$ $n\}$. Then \mathbb{P}_{n} is an $(n+1)$-dimensional vector space over \mathbb{Q}. In $[8,10]$, it is called that $\left\{E_{0}^{(r)}(x), E_{1}^{(r)}(x), \ldots, E_{n}^{(r)}(x)\right\}$ and $\left\{B_{0}^{(r)}(x), B_{1}^{(r)}(x), \ldots, B_{n}^{(r)}(x)\right\}$ are bases for \mathbb{P}_{n}. Let Ω denote the space of real-valued differential functions on $(\infty,-\infty)=\mathbb{R}$. We define four linear operators on Ω as follows:

$$
\begin{array}{lc}
I(f)(x)=\int_{x}^{x+1} f(x) d x, & \Delta(f)(x)=f(x+1)-f(x), \\
\tilde{\Delta}(f)(x)=f(x+1)+f(x), & D(f)(x)=f^{\prime}(x) . \tag{7}
\end{array}
$$

Thus, by (6) and (7), we get

$$
\begin{equation*}
I^{n}(f)(x)=\sum_{k=0}^{n}\binom{n}{k}(-1)^{n-l} f_{n}(x+l) \quad(\text { see }[8,10,12,13]), \tag{8}
\end{equation*}
$$

where $f_{1}^{\prime}=f, f_{2}^{\prime}=f_{1}, \ldots, f_{n}^{\prime}=f_{n-1}, n \in \mathbb{N}$.
In this paper, we derive some new interesting identities of higher-order Bernoulli, Euler and Hermite polynomials arising from the properties of bases of higher-order Bernoulli and Euler polynomials for \mathbb{P}_{n}.

2 Some identities of higher-order Bernoulli and Euler polynomials

First, we introduce the following theorems, which are important in deriving our results in this paper.

Theorem 1 [8] For $r \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\}$, let $p(x) \in \mathbb{P}_{n}$. Then we have

$$
p(x)=\frac{1}{2^{r}} \sum_{k=0}^{n} \sum_{j=0}^{r} \frac{1}{k!}\binom{r}{j} D^{k} p(j) E_{k}^{(r)}(x) .
$$

Theorem 2 [10] For $r \in \mathbb{Z}_{+}$, let $p(x) \in \mathbb{P}_{n}$:
(a) If $r>n$, then we have

$$
p(x)=\sum_{k=0}^{n} \sum_{j=0}^{k} \frac{1}{k!}(-1)^{k-j}\binom{k}{j}\left(I^{r-k} p(j)\right) B_{k}^{(r)}(x) .
$$

(b) If $r \leq n$, then

$$
\begin{aligned}
p(x)= & \sum_{k=0}^{r-1} \sum_{j=0}^{k} \frac{1}{k!}(-1)^{k-j}\binom{k}{j}\left(I^{r-k} p(j)\right) B_{k}^{(r)}(x) \\
& +\sum_{k=r}^{n} \sum_{j=0}^{r} \frac{1}{k!}(-1)^{r-j}\binom{k}{j}\left(D^{k-r} p(j)\right) B_{k}^{(r)}(x) .
\end{aligned}
$$

Let us take $p(x)=H_{n}(x) \in \mathbb{P}_{n}$.

Then, by (5), we get

$$
\begin{align*}
p^{(k)}(x) & =D^{k} p(x)=2^{k} n(n-1) \cdots(n-k+1) H_{n-k}(x) \\
& =2^{k} \frac{n!}{(n-k)!} H_{n-k}(x) . \tag{9}
\end{align*}
$$

From Theorem 1 and (9), we can derive the following equation (10):

$$
\begin{align*}
H_{n}(x) & =\frac{1}{2^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \frac{1}{k!}\binom{r}{j} 2^{k} \frac{n!}{(n-k)!} H_{n-k}(j)\right\} E_{k}^{(r)}(x) \\
& =\frac{1}{2^{r}} \sum_{k=0}^{n}\binom{n}{k} 2^{k}\left[\sum_{j=0}^{r}\binom{r}{j} H_{n-k}(j)\right] E_{k}^{(r)}(x) . \tag{10}
\end{align*}
$$

Therefore, by (10), we obtain the following theorem.

Theorem 3 For $n, r \in \mathbb{Z}_{+}$, we have

$$
H_{n}(x)=\frac{1}{2^{r}} \sum_{k=0}^{n}\binom{n}{k} 2^{k}\left[\sum_{j=0}^{r}\binom{r}{j} H_{n-k}(j)\right] E_{k}^{(r)}(x) .
$$

We recall an explicit expression for Hermite polynomials as follows:

$$
\begin{equation*}
H_{n}(x)=\sum_{l=0}^{\left[\frac{n}{2}\right]} \frac{(-1)^{l} n!}{l!(n-2 l)!}(2 x)^{n-2 l} . \tag{11}
\end{equation*}
$$

By (11), we get

$$
\begin{equation*}
H_{n-k}(j)=\sum_{l=0}^{\left[\frac{n-k}{2}\right]} \frac{(-1)^{l}(n-k)!}{l!(n-k-2 l)!}(2 j)^{n-k-2 l} \tag{12}
\end{equation*}
$$

Thus, by Theorem 3 and (12), we obtain the following corollary.

Corollary 4 For $n, r \in \mathbb{Z}_{+}$, we have

$$
H_{n}(x)=\frac{1}{2^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \sum_{l=0}^{\left[\frac{n-k}{2}\right]} \frac{\binom{n}{k}\binom{r}{j} 2^{k}(-1)^{l}(n-k)!(2 j)^{n-k-2 l}}{l!(n-k-2 l)!}\right\} E_{k}^{(r)}(x) .
$$

Now, we consider the identities of Hermite polynomials arising from the property of the basis of higher-order Bernoulli polynomials in \mathbb{P}_{n}.
For $r>k$, by (6) and (8), we get

$$
\begin{align*}
I^{r-k} H_{n}(x) & =\sum_{l=0}^{r-k}\binom{r-k}{l}(-1)^{r-k-l} \frac{H_{n+r-k}(x+l)}{2^{r-k}(n+1) \cdots(n+r-k)} \\
& =\sum_{l=0}^{r-k}\binom{r-k}{l}(-1)^{r-k-l} \frac{n!H_{n+r-k}(x+l)}{2^{r-k}(n+r-k)!} . \tag{13}
\end{align*}
$$

Therefore, by Theorem 2 and (13), we obtain the following theorem.

Theorem 5 For $n, r \in \mathbb{Z}_{+}$, with $r>n$, we have

$$
H_{n}(x)=n!\sum_{k=0}^{n}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k} \frac{\binom{r-k}{l}\binom{k}{j}(-1)^{r-j-l} H_{n+r-k}(j+l)}{2^{r-k} k!(n+r-k)!}\right\} B_{k}^{(r)}(x) .
$$

Let us assume that $r, k \in \mathbb{Z}_{+}$, with $r \leq n$. Then, by (b) of Theorem 2, we get

$$
\begin{align*}
H_{n}(x)= & n!\sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k} \frac{\binom{r-k}{l}\binom{k}{j}(-1)^{r-j-l} H_{n+r-k}(j+l)}{2^{r-k} k!(n+r-k)!}\right\} B_{k}^{(r)}(x) \\
& +n!\sum_{k=r}^{n}\left\{\sum_{j=0}^{r} \frac{(-1)^{r-j}\binom{r}{j} 2^{k-r} H_{n+r-k}(j)}{k!(n+r-k)!}\right\} B_{k}^{(r)}(x) . \tag{14}
\end{align*}
$$

Therefore, by (14), we obtain the following theorem.

Theorem 6 For $n, r \in \mathbb{Z}_{+}$, with $r \leq n$, we have

$$
\begin{aligned}
H_{n}(x)= & n!\sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{r-k} \frac{\binom{r-k}{l}\binom{k}{j}(-1)^{r-j-l} H_{n+r-k}(j+l)}{2^{r-k} k!(n+r-k)!}\right\} B_{k}^{(r)}(x) \\
& +n!\sum_{k=r}^{n}\left\{\sum_{j=0}^{r} \frac{(-1)^{r-j}\binom{r}{j} 2^{k-r}}{k!(n+r-k)!} H_{n+r-k}(j)\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Remark From (12), we note that

$$
\begin{equation*}
H_{n+r-k}(j+l)=\sum_{m=0}^{\left[\frac{n+r-k}{2}\right]} \frac{(-1)^{m}(n+r-k)!}{m!(n+r-k-2 m)!}(2 j+2 l)^{n+r-k-2 m} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n+r-k}(j)=\sum_{m=0}^{\left[\frac{n+r-k}{2}\right]} \frac{(-1)^{m}(n+r-k)!}{m!(n+r-k-2 m)!}(2 j)^{n+r-k-2 m} \tag{16}
\end{equation*}
$$

Theorem 7 [10] For $n, r \in \mathbb{Z}_{+}$, with $r>n$ and $p(x) \in \mathbb{P}_{n}$, we have

$$
p(x)=\sum_{k=0}^{n}\left\{\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_{2}(l+r-k, r-k)}{(l+r-k)!k!}(-1)^{k-j}\binom{k}{j} p^{(l)}(j)\right\} B_{k}^{(r)}(x)
$$

where $S_{2}(l, n)$ is the Stirling number of the second kind and $p^{(l)}(j)=D^{l} p(j)$.
Theorem 8 [10] For $n, r \in \mathbb{Z}_{+}$, with $r \leq n$ and $p(x) \in \mathbb{P}_{n}$, we have

$$
\begin{aligned}
p(x)= & \sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_{2}(l+r-k, r-k)}{(l+r-k)!k!}(-1)^{k-j}\binom{k}{j} p^{(l)}(j)\right\} B_{k}^{(r)}(x) \\
& +\sum_{k=r}^{n}\left\{\sum_{j=0}^{r} \frac{(-1)^{r-j}}{k!}\binom{r}{j} p^{(k-r)}(j)\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Let us take $p(x)=H_{n}(x) \in \mathbb{P}_{n}$. Then, by Theorem 7 and Theorem 8 , we obtain the following corollary.

Corollary 9 For $n, r \in \mathbb{Z}_{+}$:

(a) For $r>n$, we have

$$
H_{n}(x)=n!\sum_{k=0}^{n}\left\{\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_{2}(l+r-k, r-k)}{(l+r-k)!k!(n-l)!}(-1)^{k-j}\binom{k}{j} 2^{l} H_{n-l}(j)\right\} B_{k}^{(r)}(x) .
$$

(b) For $r \leq n$, we have

$$
\begin{aligned}
H_{n}(x)= & n!\sum_{k=0}^{r-1}\left\{\sum_{j=0}^{k} \sum_{l=0}^{n} \frac{(r-k)!S_{2}(l+r-k, r-k)}{(l+r-k)!k!(n-l)!}(-1)^{k-j}\binom{k}{j} 2^{l} H_{n-l}(j)\right\} B_{k}^{(r)}(x) \\
& +n!\sum_{k=r}^{n}\left\{\sum_{j=0}^{r} \frac{(-1)^{r-j}\binom{r}{j} 2^{k-r} H_{n-k+r}(j)}{k!(n-k+r)!}\right\} B_{k}^{(r)}(x) .
\end{aligned}
$$

Theorem 10 [9] For $p(x) \in \mathbb{P}_{n}$, we have

$$
p(x)=\frac{1}{(1-\lambda)^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \frac{1}{k!}\binom{r}{j}(-\lambda)^{r-j} p^{(k)}(j)\right\} H_{k}^{(r)}(x \mid \lambda) .
$$

Let us take $p(x)=H_{n}(x) \in \mathbb{P}_{n}$. Then

$$
\begin{align*}
H_{n}(x) & =\frac{1}{(1-\lambda)^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \frac{1}{k!}\binom{r}{j}(-\lambda)^{r-j} 2^{k} \frac{n!}{(n-k)!} H_{n-k}(j)\right\} H_{k}^{(r)}(x \mid \lambda) \\
& =\frac{1}{(1-\lambda)^{r}} \sum_{k=0}^{n}\binom{n}{k} 2^{k}\left\{\sum_{j=0}^{r}\binom{r}{j}(-\lambda)^{r-j} H_{n-k}(j)\right\} H_{k}^{(r)}(x \mid \lambda) \\
& =\frac{1}{(1-\lambda)^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \sum_{l=0}^{\left[\frac{n-k}{2}\right]} \frac{\binom{n}{k} 2^{k}\binom{r}{j}(-\lambda)^{r-j}(-1)^{l}(n-k)!(2 j)^{n-k-2 l}}{l!(n-k-2 l)!}\right\} H_{k}^{(r)}(x \mid \lambda) . \tag{17}
\end{align*}
$$

Therefore, by (17), we obtain the following corollary.

Corollary 11 For $n \in \mathbb{Z}_{+}$, we have

$$
H_{n}(x)=\frac{1}{(1-\lambda)^{r}} \sum_{k=0}^{n}\left\{\sum_{j=0}^{r} \sum_{l=0}^{\left[\frac{n-k}{2}\right]} \frac{\binom{n}{k} 2^{k}\binom{r}{j}(-\lambda)^{r-j}(-1)^{l}(n-k)!(2 j)^{n-k-2 l}}{l!(n-k-2 l)!}\right\} H_{k}^{(r)}(x \mid \lambda) .
$$

For $r=1$, the Frobenius-Euler polynomials are defined by the generating function to be

$$
\begin{equation*}
\left(\frac{1-\lambda}{e^{t}-\lambda}\right) e^{x t}=\sum_{n=0}^{\infty} H_{n}(x \mid \lambda) \frac{t^{n}}{n!} \quad \text { (see [9]). } \tag{18}
\end{equation*}
$$

Thus, by (18), we get

$$
\begin{equation*}
\frac{d}{d \lambda} H_{n}(x \mid \lambda)=\frac{1}{1-\lambda}\left(H_{n}^{(2)}(x \mid \lambda)-H_{n}(x \mid \lambda)\right) . \tag{19}
\end{equation*}
$$

For $n \in \mathbb{Z}_{+}$, let $p(x) \in \mathbb{P}_{n}$. Then we note that

$$
\begin{equation*}
(1-\lambda) p(x)=\sum_{k=0}^{n} \frac{1}{k!}\left\{p^{(k)}(1)-\lambda p^{(k)}(0)\right\} H_{k}(x \mid \lambda) \quad(\text { see }[9]) . \tag{20}
\end{equation*}
$$

Let us take $p(x)=H_{n}(x)$. Then, by (20), we get

$$
\begin{align*}
(1-\lambda) H_{n}(x) & =\sum_{k=0}^{n} \frac{1}{k!}\left\{2^{k} \frac{n!}{(n-k)!} H_{n-k}(1)-\lambda 2^{k} \frac{n!}{(n-k)!} H_{n-k}\right\} H_{k}(x \mid \lambda) \\
& =\sum_{k=0}^{n}\binom{n}{k} 2^{k}\left(H_{n-k}(1)-\lambda H_{n-k}\right) H_{k}(x \mid \lambda) \quad \text { (see [9]). } \tag{21}
\end{align*}
$$

Therefore, by (21), we obtain the following theorem.

Theorem 12 For $n \in \mathbb{Z}_{+}$, we have

$$
(1-\lambda) H_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} 2^{k}\left(H_{n-k}(1)-\lambda H_{n-k}\right) H_{k}(x \mid \lambda) .
$$

Let us take $\frac{d}{d \lambda}$ on the both sides of Theorem 12.
Then, we have

$$
\begin{align*}
-H_{n}(x)= & -\sum_{k=0}^{n}\binom{n}{k} 2^{k} H_{n-k} H_{k}(x \mid \lambda) \\
& +\sum_{k=0}^{n}\binom{n}{k} 2^{k}\left(H_{n-k}(1)-\lambda H_{n-k}\right)\left(\frac{d}{d \lambda} H_{k}(x \mid \lambda)\right) . \tag{22}
\end{align*}
$$

By (22), we get

$$
\begin{align*}
H_{n}(x)= & \sum_{k=0}^{n}\binom{n}{k} 2^{k} H_{n-k} H_{k}(x \mid \lambda) \\
& +\sum_{k=0}^{n}\binom{n}{k}\left(\lambda H_{n-k}-H_{n-k}(1)\right) 2^{k}\left(\frac{d}{d \lambda} H_{k}(x \mid \lambda)\right) . \tag{23}
\end{align*}
$$

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Sogang University, Seoul, 121-742, S. Korea. ${ }^{2}$ Department of Mathematics, Kwangwoon University, Seoul, 139-701, S. Korea. ${ }^{3}$ Hanrimwon, Kwangwoon University, Seoul, 139-701, S. Korea. ${ }^{4}$ Department of Mathematics Education, Kyungpook National University, Taegu, 702-701, S. Korea.

Acknowledgements

This paper is supported in part by the Research Grant of Kwangwoon University in 2013.

References

1. Araci, S, Acikgoz, M: A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials. Adv. Stud. Contemp. Math. 22(3), 399-406 (2012)
2. Acikgoz, M, Erdal, D, Araci, S: A new approach to q-Bernoulli numbers and q-Bernoulli polynomials related to q-Bernstein polynomials. Adv. Differ. Equ. 2010, Article ID 951764 (2010)
3. Bayad, A, Kim, T: Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 18(2), 133-143 (2011)
4. Can, M, Cenkci, M, Kurt, V, Simsek, Y: Twisted Dedekind type sums associated with Barnes' type multiple Frobenius-Euler L-functions. Adv. Stud. Contemp. Math. 18(2), 135-160 (2009)
5. Carlitz, L: A note on q-Eulerian numbers. J. Comb. Theory, Ser. A 25(1), 90-94 (1978)
6. Cangul, IN, Simsek, Y: A note on interpolation functions of the Frobenius-Euler numbers. In: Application of Mathematics in Technical and Natural Sciences. AIP Conf. Proc., vol. 1301, pp. 59-67. Am. Inst. Phys., Melville (2010)
7. Kim, T, Choi, J: A note on the product of Frobenius-Euler polynomials arising from the p-adic integral on Z_{p}. Adv. Stud. Contemp. Math. 22(2), 215-223 (2012)
8. Kim, DS, Kim, T: A note on higher-order Bernoulli polynomials. J. Inequal. Appl. 2013, 111 (2013)
9. Kim, T: An identity of the symmetry for the Frobenius-Euler polynomials associated with the fermionic p-adic invariant q-integrals on Z_{p}. Rocky Mt. J. Math. 41(1), 239-247 (2011)
10. Kim, DS, Kim, T: Some identities of higher-order Euler polynomials arising from Euler basis. Integral Transforms Spec. Funct. (2013). doi:10.1080/10652469.2012.754756
11. Kim, DS, Kim, T: Some new identities of Frobenius-Euler numbers and polynomials. J. Inequal. Appl. 2012, 307 (2012). doi:10.1186/1029-242X-2012-307
12. Kim, T: Identities involving Frobenius-Euler polynomials arising from non-linear differential equations. J. Number Theory 132(12), 2854-2865 (2012)
13. Kim, T: New approach to q-Euler polynomials of higher order. Russ. J. Math. Phys. 17(2), 218-225 (2010)
14. Kim, T : Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}. Russ. J. Math. Phys. 16(4), 484-491 (2009)
15. Kim, T, Choi, J, Kim, YH: On q-Bernstein and q-Hermite polynomials. Proc. Jangjeon Math. Soc. 14(2), 215-221 (2011)
16. Ryoo, CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 14(4), 495-501 (2011)
17. Ryoo, CS, Agarwal, RP: Calculating zeros of the twisted Genocchi polynomials. Adv. Stud. Contemp. Math. 17(2), 147-159 (2008)
18. Simsek, Y, Yurekli, O, Kurt, V: On interpolation functions of the twisted generalized Frobenius-Euler numbers. Adv. Stud. Contemp. Math. 15(2), 187-194 (2007)
19. Shiratani, K: On the Euler numbers. Mem. Fac. Sci., Kyushu Univ., Ser. A 27, 1-5 (1973)

doi:10.1186/1687-1847-2013-103

Cite this article as: Kim et al.: Higher-order Bernoulli, Euler and Hermite polynomials. Advances in Difference Equations 2013 2013:103.

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

