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Abstract
In (Kim and Kim in J. Inequal. Appl. 2013:111, 2013; Kim and Kim in Integral Transforms
Spec. Funct., 2013, doi:10.1080/10652469.2012.754756), we have investigated some
properties of higher-order Bernoulli and Euler polynomial bases in
Pn = {p(x) ∈ Q[x]|degp(x) ≤ n}. In this paper, we derive some interesting identities of
higher-order Bernoulli and Euler polynomials arising from the properties of those
bases for Pn.

1 Introduction
For r ∈R, let us define the Bernoulli polynomials of order r as follows:
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In the special case, x = , B(r)
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n are called the nth Bernoulli numbers of order r. As
is well known, the Euler polynomials of order r are defined by the generating function to
be
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For λ (�= ) ∈C, the Frobenius-Euler polynomials of order r are also given by
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The Hermite polynomials are defined by the generating function to be:
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Thus, by (), we get
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where Hn = Hn() are called the nth Hermite numbers. Let Pn = {p(x) ∈ Q[x]|degp(x) ≤
n}. Then Pn is an (n + )-dimensional vector space over Q. In [, ], it is called that
{E(r)

 (x),E(r)
 (x), . . . ,E(r)

n (x)} and {B(r)
 (x),B(r)

 (x), . . . ,B(r)
n (x)} are bases for Pn. Let � denote

the space of real-valued differential functions on (∞, –∞) = R. We define four linear op-
erators on � as follows:

I(f )(x) =
∫ x+

x
f (x)dx, �(f )(x) = f (x + ) – f (x), ()

�̃(f )(x) = f (x + ) + f (x), D(f )(x) = f ′(x). ()

Thus, by () and (), we get

In(f )(x) =
n∑

k=

(
n
k

)
(–)n–lfn(x + l) (see [, , , ]), ()

where f ′
 = f , f ′

 = f, . . . , f ′
n = fn–, n ∈N.

In this paper, we derive some new interesting identities of higher-order Bernoulli, Euler
and Hermite polynomials arising from the properties of bases of higher-order Bernoulli
and Euler polynomials for Pn.

2 Some identities of higher-order Bernoulli and Euler polynomials
First, we introduce the following theorems, which are important in deriving our results in
this paper.

Theorem  [] For r ∈ Z+ =N∪ {}, let p(x) ∈ Pn. Then we have

p(x) =

r
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k!

(
r
j

)
Dkp(j)E(r)

k (x).

Theorem  [] For r ∈ Z+, let p(x) ∈ Pn:
(a) If r > n, then we have
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B(r)
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(b) If r ≤ n, then

p(x) =
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k=
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j

)(
Ir–kp(j)
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)
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k (x).

Let us take p(x) =Hn(x) ∈ Pn.
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Then, by (), we get

p(k)(x) =Dkp(x) = kn(n – ) · · · (n – k + )Hn–k(x)

= k
n!

(n – k)!
Hn–k(x). ()

From Theorem  and (), we can derive the following equation ():
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]
E(r)
k (x). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n, r ∈ Z+, we have

Hn(x) =

r
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(
n
k

)
k
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j

)
Hn–k(j)

]
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We recall an explicit expression for Hermite polynomials as follows:

Hn(x) =
[ n ]∑
l=

(–)ln!
l!(n – l)!

(x)n–l. ()

By (), we get

Hn–k(j) =
[ n–k ]∑
l=

(–)l(n – k)!
l!(n – k – l)!

(j)n–k–l. ()

Thus, by Theorem  and (), we obtain the following corollary.

Corollary  For n, r ∈ Z+, we have

Hn(x) =

r
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k=

{ r∑
j=

[ n–k ]∑
l=

(n
k
)(r

j
)
k(–)l(n – k)!(j)n–k–l

l!(n – k – l)!

}
E(r)
k (x).

Now, we consider the identities of Hermite polynomials arising from the property of the
basis of higher-order Bernoulli polynomials in Pn.
For r > k, by () and (), we get

Ir–kHn(x) =
r–k∑
l=

(
r – k
l

)
(–)r–k–l

Hn+r–k(x + l)
r–k(n + ) · · · (n + r – k)

=
r–k∑
l=

(
r – k
l

)
(–)r–k–l

n!Hn+r–k(x + l)
r–k(n + r – k)!

. ()

Therefore, by Theorem  and (), we obtain the following theorem.
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Theorem  For n, r ∈ Z+, with r > n, we have

Hn(x) = n!
n∑
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l
)(k
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Let us assume that r,k ∈ Z+, with r ≤ n. Then, by (b) of Theorem , we get

Hn(x) = n!
r–∑
k=

{ k∑
j=

r–k∑
l=

(r–k
l
)(k

j
)
(–)r–j–lHn+r–k(j + l)

r–kk!(n + r – k)!

}
B(r)
k (x)

+ n!
n∑
k=r

{ r∑
j=

(–)r–j
(r
j
)
k–rHn+r–k(j)

k!(n + r – k)!

}
B(r)
k (x). ()

Therefore, by (), we obtain the following theorem.

Theorem  For n, r ∈ Z+, with r ≤ n, we have
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Remark From (), we note that

Hn+r–k(j + l) =
[ n+r–k ]∑
m=

(–)m(n + r – k)!
m!(n + r – k – m)!

(j + l)n+r–k–m ()

and

Hn+r–k(j) =
[ n+r–k ]∑
m=

(–)m(n + r – k)!
m!(n + r – k – m)!

(j)n+r–k–m. ()

Theorem  [] For n, r ∈ Z+, with r > n and p(x) ∈ Pn, we have
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where S(l,n) is the Stirling number of the second kind and p(l)(j) =Dlp(j).

Theorem  [] For n, r ∈ Z+, with r ≤ n and p(x) ∈ Pn, we have
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Let us take p(x) = Hn(x) ∈ Pn. Then, by Theorem  and Theorem , we obtain the fol-
lowing corollary.

Corollary  For n, r ∈ Z+:
(a) For r > n, we have
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Therefore, by (), we obtain the following corollary.

Corollary  For n ∈ Z+, we have
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For r = , the Frobenius-Euler polynomials are defined by the generating function to be
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For n ∈ Z+, let p(x) ∈ Pn. Then we note that

( – λ)p(x) =
n∑
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Let us take p(x) =Hn(x). Then, by (), we get
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Therefore, by (), we obtain the following theorem.

Theorem  For n ∈ Z+, we have
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