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Abstract
We establish convergence in the modular sense of an iteration scheme associated
with a pair of mappings on a nonlinear domain in modular function spaces. In
particular, we prove that such a scheme converges to a common fixed point of the
mappings. Our results are generalization of known similar results in the non-modular
setting. In particular, we avoid smoothness of the norm in the case of Banach spaces
and that of the triangle inequality of the distance in metric spaces.
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1 Introduction and basic definitions
The earliest attempts to generalize the classical function spaces Lp of Lebesgue type were
made in the early s by Orlicz and Birnbaum in connection with orthogonal expan-
sions. Their approach consisted in considering spaces of functions with some growth
properties different from the power type growth control provided by the Lp-norms.
Namely, they considered the function spaces defined as follows:

Lϕ =
{
f :R →R;∃λ >  :

∫
R

ϕ
(
λ
∣∣f (x)∣∣)dx < ∞

}
,

where ϕ : [,∞] → [,∞] was assumed to be a convex function increasing to infinity, i.e.
the function which to some extent behaves similar to power functions ϕ(t) = tp. Later on,
the assumption of convexity forOrlicz functions ϕ was frequently omitted. Let usmention
two typical examples of such functions:

ϕ(t) = et – , ϕ(t) = ln( + t).

The possibility of introducing the structure of a linearmetric in Lϕ aswell as the interesting
properties of these spaces andmany applications to differential and integral equationswith
kernels of nonpower types were among the reasons for the development of the theory of
Orlicz spaces, their applications, and generalizations for more than half a century.
We may observe two principal directions of further development. The first is the the-

ory of Banach function spaces initiated in  by Luxemburg [] and developed further
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in a series of joint papers with Zaanen []. The second one is inspired by the theory of
Orlicz spaces, based on replacing the particular integral form of the nonlinear functional,
which controls the growth of members of the space, by an abstract given functional with
some good properties. This idea was the basis of the theory of modular spaces initiated
by Nakano [] in connection with the theory of order spaces and redefined and general-
ized by Luxemburg and Orlicz in . Such spaces have been studied for almost  years
and a number of applications of such spaces in various parts of analysis, probability, and
mathematical statistics are known.
In this paper, we will consider modular spaces which lie somewhere in between the ab-

stract modular theory and Musielak-Orlicz theory, i.e. the class of modular spaces given
by modulars not of any particular form but, nevertheless, having much more convenient
properties than the abstractmodulars can possess. In other words, we present a useful tool
for applications whenever there is a need to introduce a function space by means of func-
tionals which have some reasonable properties but are far from being norms or F-norms.
Let us introduce basic notions in modular function spaces and related notations which

will be used in this chapter. For further details we refer the reader to preliminary sections
of the recent articles [–] or to the survey article []; see also [–] for the standard
framework of modular function spaces.
Let � be a nonempty set and � be a nontrivial σ -algebra of subsets of �. Let P be a

δ-ring of subsets of �, such that E ∩ A ∈ P for any E ∈ P and A ∈ �. Let us assume that
there exists an increasing sequence of sets Kn ∈P such that � =

⋃
Kn. By E we denote the

linear space of all simple functions with support from P . ByM∞ we will denote the space
of all extended measurable functions, i.e. all functions f : � → [–∞,∞] such that there
exists a sequence {gn} ⊂ E , |gn| ≤ |f | and gn(ω) → f (ω) for all ω ∈ �. By A we denote the
characteristic function of the set A.

Definition . [] Let ρ :M∞ → [,∞] be a nontrivial, convex, and even function. We
say that ρ is a regular convex function pseudomodular if:

(i) ρ() = ;
(ii) ρ is monotone, i.e. |f (ω)| ≤ |g(ω)| for all ω ∈ � implies ρ(f ) ≤ ρ(g), where

f , g ∈M∞;
(iii) ρ is orthogonally subadditive, i.e. ρ(f A∪B)≤ ρ(f A) + ρ(f B) for any A,B ∈ � such

that A∩ B 
= ∅, f ∈M;
(iv) ρ has the Fatou property, i.e. |fn(ω)| ↑ |f (ω)| for all ω ∈ � implies ρ(fn) ↑ ρ(f ),

where f ∈M∞;
(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)| ↓  implies ρ(gn) ↓ .

Similarly, as in the case of measure spaces, we say that a set A ∈ � is ρ-null if ρ(gA) = 
for every g ∈ E . We say that a property holds ρ-almost everywhere if the exceptional set
is ρ-null. As usual we identify any pair of measurable sets whose symmetric difference is
ρ-null as well as any pair of measurable functions differing only on a ρ-null set. With this
in mind, we define M = {f ∈ M∞; |f (ω)| < ∞ ρ-a.e.}, where each element is actually an
equivalence class of functions equal ρ-a.e. rather than an individual function.

Definition . [] We say that a regular function pseudomodular ρ is a regular convex
function modular if ρ(f ) =  implies f =  ρ-a.e. The class of all nonzero regular convex
function modulars defined on � will be denoted by �.

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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In this paper, we only consider convex function modulars.

Definition . [–] Let ρ be a convex function modular. A modular function space is
the vector space Lρ = {f ∈ M;ρ(λf ) →  as λ → }. In the vector space Lρ , the following
formula:

‖f ‖ρ = inf

{
α > ;ρ

(
f
α

)
≤ 

}

defines a norm, frequently called the Luxemburg norm.

Note that the monographic exposition of the theory of Orlicz spaces may be found
in the book of Krasnosel’skii and Rutickii []. For a current review of the theory of
Musielak-Orlicz spaces and modular spaces, the reader is referred to Musielak [] and
Kozlowski [].
The following definitions will be needed in this paper.

Definition . []
(a) The sequence {fn} ⊂ Lρ is said to be ρ-convergent to f ∈ Lρ if ρ(fn – f )→  as

n→ ∞.
(b) The sequence {fn} ⊂ Lρ is said to be ρ-Cauchy if ρ(fn – fm) →  as n and m → ∞.
(c) We say that Lρ is ρ-complete if and only if any ρ-Cauchy sequence in Lρ is

ρ-convergent.
(d) A subset C of Lρ is called ρ-closed if the ρ-limit of a ρ-convergent sequence of C

always belongs to C.
(e) A subset C of Lρ is called ρ-compact if every sequence in C has a ρ-convergent

subsequence in C.
(f ) A subset C of Lρ is called ρ-bounded if

δρ(C) = sup
{
ρ(f – g); f , g ∈ C

}
<∞.

(g) Let f ∈ Lρ and C ⊂ Lρ . Define the ρ-distance between f and C as:

dρ(f ,C) = inf
{
ρ(f – g); g ∈ C

}
.

The above terminology is used because of its similarity to the metric case. Since ρ does
not behave in general as a distance, one should be very careful when dealing with these
notions. In particular, ρ-convergence does not imply ρ-Cauchy since ρ does not satisfy
the triangle inequality.
The following proposition brings together a few facts that will be often used.

Proposition . [] Let ρ ∈ �.
(i) Lρ is ρ-complete.
(ii) ρ-balls Bρ(f , r) = {g ∈ Lρ ;ρ(f – g) ≤ r} are ρ-closed.
(iii) If ρ(αfn) →  for an α >  then there exists a subsequence {gn} of {fn} such that

gn →  ρ-a.e.
(iv) ρ(f ) ≤ lim infn→∞ ρ(fn) whenever fn → f ρ-a.e. (Note: this property is equivalent to

the Fatou property.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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(v) Consider the sets Lρ = {f ∈ Lρ ;ρ(f , ·) is order continuous}, and
Eρ = {f ∈ Lρ ;λf ∈ Lρ for any λ > }. Then we have Eρ ⊂ Lρ ⊂ Lρ .

We already pointed out that ρ may not satisfy the triangle inequality, so the modular
convergence and norm convergence may not be the same. This will only happen if ρ sat-
isfies the so-called �-condition.

Definition . [] Themodular function ρ is said to satisfy the�-condition if ρ(fn) →
 as n→ ∞, whenever ρ(fn) →  as n → ∞.

We have the following proposition.

Proposition . [] The following statements are equivalent:
(i) ρ satisfies the �-condition;
(ii) ρ(fn – f ) →  if and only if ρ(λ(fn – f ))→ , for all λ >  if and only if ‖fn – f ‖ → .

Definition . We will say that the function modular ρ is uniformly continuous if for
every ε >  and L > , there exists δ >  such that

∣∣ρ(g) – ρ(h + g)
∣∣ < ε; if ρ(h) < δ and ρ(g)≤ L.

Let us mention that uniform continuity holds for a large class of function modulars. For
instance, it can be proved that in Orlicz spaces over a finite atomless measure [] or in
sequence Orlicz spaces [], the uniform continuity of the Orlicz modular is equivalent to
the �-type condition.
Let us recall the definition of different mappings acting in a modular function space.We

start with the concept of Lipschitzian mappings.

Definition . Let ρ ∈ � and let C ⊂ Lρ be a nonempty subset. A mapping T : C → C is
called ρ-Lipschitzian mapping if there exists a constant L ≥  such that

ρ
(
T(f ) – T(g)

) ≤ Lρ(f – g) for any f , g ∈ C.

When L < , T is called ρ-contraction mapping. Moreover, if L ≤ , then T is called
ρ-nonexpansive mapping. A point f ∈ C is called a fixed point of T if T(f ) = f . The set
of fixed points of T will be denoted by F(T).

As mentioned before, one of the reasons of our interest in ρ-behavior of mappings is
that the Luxemburg norm associated with the function modular is defined in an indirect
way and consequently harder to handle than the function modular. Therefore, one may
ask what the relationship is, if there is any, between the F-norm nonexpansiveness and
the ρ-nonexpansiveness. The following example gives a partial answer.

Example . [] Let X = (,∞), and let � be the σ -algebra of all Lebesgue measurable
subsets of X. Let P denote the δ-ring of subsets of finite measures. Define a function
modular by

ρ(f ) =

e

∫ ∞



∣∣f (x)∣∣x+ dm(x).

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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Let B be the set of all measurable functions f : (,∞) → R such that  ≤ f (x) ≤ 
 . Define

the linear operator T by the formula

T(f )(x) =

{
f (x – ) for x ≥ ,
 for x ∈ [, ].

Clearly, T(B)⊂ B. In [], it is proved that for every fixed λ ≤  and for all f , g ∈ B, we have

ρ
(
λ
(
T(f ) – T(g)

)) ≤ λρ
(
λ(f – g)

)
.

In particular, if λ = , then the above inequality shows that T is ρ-nonexpansive. It is
also easy to see that B is a ρ-a.e.-bounded subset of Lρ . We observe that T is not ‖ · ‖ρ-
nonexpansive. Indeed, if we take f = [,], then

∥∥T(f )∥∥
ρ
> e≥ ‖f ‖ρ .

In this paper, we will use some geometrical properties of the modular functional.

Definition . Let ρ ∈ �. We say that ρ is strictly convex (SC), if for every f , g ∈ Lρ such
that ρ(f ) = ρ(g) and ρ(αf +(–α)g) = αρ(f )+ (–α)ρ(g), for some α ∈ (, ), we have f = g .

It is known that for a wide class of modular function spaces with the �-property,
geometric properties of the Luxemburg norm are equivalent to the same properties of
the modular. For example, in Orlicz spaces these results can be traced in early papers of
Luxemburg [],Milnes [], Akimovic [], and Kaminska []. It is also known that, under
suitable assumptions, uniform convexity in Orlicz spaces is equivalent to the very convex-
ity of the Orlicz function []. Typical examples of Orlicz functions that do not satisfy the
�-condition but are uniformly convex (and hence strictly convex) are [, ]

ϕ(t) = e|t| – |t| –  and ϕ(t) = et

– .

For the discussion of some geometrical properties of Calderon-Lozanovskii and Orlicz-
Lorentz spaces, the reader may consult [].
Recently, special attention was given to the use of the geometric properties in modular

function spaces. This is due to recent interest in the Dirichlet energy problem which we
discuss in the next example.

Example . Let � ⊂ R be an open set and let p : � → [,∞) be a measurable func-
tion (called the variable exponent on �). We define the variable exponent Lebesgue space
Lp(·)(�) to consist of all measurable functions f : � →R such that

ρ(λf ) =
∫

�

∣∣λf (x)∣∣p(x) dx <∞

for some λ > . The functional ρ is called the modular of the space Lp(·)(�). The
Luxemburg norm on this space is given by the formula

‖f ‖ = inf
{
λ > ;ρ(λf ) < ∞}

.

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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The variable exponent Sobolev space W ,p(·)(�) is the space of measurable functions f :
� →R such that f and the distributional derivative f ′ are in Lp(·)(�). The function

ρ(f ) = ρ(f ) + ρ
(
f ′)

defines a modular onW ,p(·)(�). DefineW ,p(·)
 (�) as the set of f ∈W ,p(·)(�) which can be

continuously continued by  outside�. The energy operator corresponding to the bound-
ary value function g acting on the space

{
f ∈W ,p(·)(�); f – g ∈W ,p(·)

 (�)
}

is defined by

Ig(f ) =
∫

�

∣∣f ′(x)
∣∣p(x) dx = ρ

(
f ′).

The general Dirichlet energy problem is to find a function that minimizes values of the
operator Ig(·). Note that

min
{
Ig(g – f ); f ∈ W ,p(·)

 (�)
}
= dρ

(
g,W ,p(·)

 (�)
)
.

For more information on the Dirichlet energy integral problem we refer to [–].

2 Ishikawa iterates for twomappings
In [], the authors introduced the Ishikawa iterative scheme for two mappings and stud-
ied the strong convergence of this scheme to a common fixed point of the two mappings.
Let us introduce such an iterative scheme in modular function spaces. Let S and T be two
mappings defined on a nonempty closed, convex and ρ-bounded subset C of Lρ . Fix f ∈ C
and define the sequence {fn}, with f = f , and

fn+ = αnS
(
βnT(fn) + ( – βn)fn

)
+ ( – αn)fn, n = , , . . . . (.)

When S = T , the above iterative scheme collapses into the classical Ishikawa iterative
scheme for one map:

fn+ = αnT
(
βnT(fn) + ( – βn)fn

)
+ ( – αn)fn, n = , , . . . . (.)

Let S,T : C → C be two ρ-nonexpansive mappings. Assume that F = F(S) ∩ F(T) 
= ∅.
Let f ∈ C and h ∈ F . Set r = ρ(f – h). Then

C(f ) = C ∩ B(h, r) =
{
g ∈ C;ρ(h – g) ≤ r

}
is a nonempty closed and convex subset of C and invariant under both S and T . Therefore
one may always assume that C is ρ-bounded once S and T have a common fixed point.
Moreover, if {fn} is the sequence generated by (.), with f = f , then we have

ρ(fn+ – h) = ρ
(
αnS(gn) + ( – αn)fn – h

)
≤ αnρ

(
S(gn) – h

)
+ ( – αn)ρ(fn – h)

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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≤ αnρ(gn – h) + ( – αn)ρ(fn – h)

= αnρ
(
βnT(fn) + ( – βn)fn – h

)
+ ( – αn)ρ(fn – h)

≤ αn
[
βnd

(
T(fn) – h

)
+ ( – βn)ρ(fn – h)

]
+ ( – αn)ρ(fn – h)

≤ ρ(fn – h),

where gn = βnT(fn) + ( – βn)fn. This proves that {ρ(fn – h)} is decreasing, which implies
that limn→∞ ρ(fn – h) exists. Using the above inequalities, we get

lim
n→∞ρ(fn – h) = lim

n→∞ρ
(
αnS(gn) + ( – αn)fn – h

)
= lim

n→∞αnρ
(
S(gn) – h

)
+ ( – αn)ρ(fn – h)

= lim
n→∞αnρ(gn – h) + ( – αn)ρ(fn – h)

= lim
n→∞αnαnρ

(
βnT(fn) + ( – βn)fn – h

)
+ ( – αn)ρ(fn – h)

= lim
n→∞αn

[
βnd

(
T(fn) – h

)
+ ( – βn)ρ(fn – h)

]
+ ( – αn)ρ(fn – h).

Our first result discusses the convergence behavior of the sequence generated by (.).

Theorem . Assume ρ ∈ � is strictly convex and uniformly continuous. Let C be a
nonempty ρ-bounded, closed and convex subset of X. Let S,T : C → C be two ρ-non-
expansive mappings. Assume that F = F(S)∩ F(T) 
= ∅. Let f ∈ C and {fn} be given by (.).
Then the following hold:

(i) If αn ∈ [a,b] and βn ∈ [,b], with  < a ≤ b < , then for any subsequence {fni} of {fn}
which ρ-converges to f , we have f ∈ F(S).

(ii) If αn ∈ [a, ] and βn ∈ [a,b], with  < a ≤ b < , then for any subsequence {fni} of {fn}
which ρ-converges to f , we have f ∈ F(T).

(iii) If αn,βn ∈ [a,b], with  < a ≤ b < , then for any subsequence {fni} of {fn} which
ρ-converges to f , we have f ∈ F . In this case, we have that {fn} ρ-converges to f .

Proof Assume that {fni} ρ-converges to f . Let h ∈ F . Without loss of generality, we may
assume limn→∞ αni = α, and limn→∞ βni = β . Since {ρ(fn – h)} is decreasing and ρ is uni-
formly continuous, we get

lim
n→∞ρ(fn – h) = lim

n→∞ρ(fni – h) = ρ(f – h).

Since T is ρ-nonexpansive, {T(fni )} ρ-converges to T(f ). Moreover, as ρ is uniformly
continuous, {βniT(fni ) + ( – βni )fni} ρ-converges to βT(f ) + ( – β)f . Using the ρ-non-
expansiveness of S, we get {S(βniT(fni ) + ( – βni )fni )} ρ-converges to S(βT(f ) + ( – β)f ).
Finally, since ρ is uniformly continuous, we get {αniS(βniT(fni ) + ( – βni )fni ) + ( – αni )fni}
ρ-converges to αS(βT(f ) + ( – β)f ) + ( – α)f . The above inequalities imply

ρ(f – h) = ρ
(
αS

(
βT(f ) + ( – β)f

)
+ ( – α)f – h

)
= αρ

(
S
(
βT(f ) + ( – β)f

)
– h

)
+ ( – α)ρ(f – h)

= αρ
(
βT(f ) + ( – β)f – h

)
+ ( – α)ρ(f – h)

= α
[
βρ

(
T(f ) – h

)
+ ( – β)ρ(f – h)

]
+ ( – α)ρ(f – h).

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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Set r = ρ(f – h). Without loss of generality we may assume r >  (otherwise most of the
conclusions in the theorem are trivial). Assume that lim infn→∞ αn > . Then α 
= . Hence

ρ
(
S
(
βT(f ) + ( – β)f

)
– h

)
= ρ

(
βT(f ) + ( – β)f – h

)
= βρ

(
T(f ) – h

)
+ ( – β)r

= r,

which implies βρ(T(f ) – h) = βr. If we assume that lim infn→∞ βn > , then β 
=  which
implies ρ(T(f ) – h) = r.
() If α ∈ (, ) and β > , then

ρ
(
S
(
βT(f ) + ( – β)f

)
– h

)
= ρ

(
αS

(
βT(f ) + ( – β)f

)
+ ( – α)f – h

)
= ρ(f – h).

The strict convexity of ρ will imply S(βT(f ) + ( – β)f ) = f .
() If α ∈ (, ) and β = , then

ρ(f – h) = ρ
(
S(f ) – h

)
= ρ

(
αS(f ) + ( – α)f – h

)
.

The strict convexity of ρ will imply S(f ) = f .
() If β ∈ (, ) and α > , then

ρ(f – h) = ρ
(
T(f ) – h

)
= ρ

(
βT(f ) + ( – β)f – h

)
.

The strict convexity of ρ will imply T(f ) = f .
() If α,β ∈ (, ), then T(f ) = f and S(βT(f ) + ( – β)f ) = f . Hence S(f ) = f .

Let us finish the proof of Theorem .. Note that (i) implies α ∈ [a,b] and β ∈ [,b]. If
β = , then the conclusion () above implies f ∈ F(S). Otherwise the conclusion () will
imply f ∈ F . This proves (i).
For (ii), notice that α ∈ [a, ] and β ∈ [a,b]. Hence the conclusion () will imply f ∈ F(T),

which proves (ii).
For (iii), notice that α,β ∈ [a,b]. Hence the conclusion () will imply f ∈ F . Since

lim
n→∞ρ(fn – f ) = lim

n→∞ρ(fni – f ) = ,

we find that {fn} ρ-converges to f , which completes the proof of (iii). �

If we assume compactness of the domain, Theorem . will imply the following result.

Theorem . Assume ρ ∈ � is strictly convex and uniformly continuous. Let C be a
nonempty ρ-bounded, ρ-compact and convex subset of Lρ . Let S,T : C → C be two non-
expansive mappings. Assume that F = F(S) ∩ F(T) 
= ∅. Fix f ∈ C. Define {fn} as in (.),
where αn,βn ∈ [a,b], with  < a ≤ b < , and f is the initial element of the sequence. Then
{fn} ρ-converges to a common fixed point of S and T .

http://www.fixedpointtheoryandapplications.com/content/2014/1/74
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Proof Since C is ρ-compact, {fn} has a ρ-convergent subsequence {fni}, i.e., {fni} ρ-con-
verges to z. By Theorem ., we have z ∈ F and {fn} ρ-converges to z. �

The existence of a common fixed point T and S is crucial to the conclusion of Theo-
rems . and .. Note that each mapping has a nonempty fixed point set. Indeed, let C
and T be as in Theorem .. Fix ε ∈ (, ) and f ∈ C. Define the mapping Tε : C → C by

Tε(f ) = εf + ( – ε)T(f ).

Then, for any f , g ∈ C, we have

ρ
(
Tε(f ) – Tε(g)

) ≤ ( – ε)ρ(f – g).

Fix f ∈ C. Since is ρ-bounded, we get

ρ
(
Tn+h

ε (f ) – Tn
ε (f )

) ≤ ( – ε)nρ
(
Th

ε (f ) – f
) ≤ ( – ε)nδρ(C)

for any n,h ∈N. Since C is ρ-compact, there exists a subsequence {Tni
ε (f )}which is ρ-con-

vergent to h ∈ C. We claim that h is a fixed point of Tε . Indeed, since

ρ
(
Tni+

ε (f ) – Tε(h)
) ≤ ( – ε)ρ

(
Tni

ε (f ) – h
)

and

ρ
(
Tni+

ε (f ) – Tni
ε (f )

) ≤ ( – ε)niρ
(
Tε(f ) – f

) ≤ ( – ε)niδρ(C),

we conclude that Tε(h) = h. Indeed, we have

ρ

(
h – Tε(h)



)
≤ 


(
ρ
(
h – Tni

ε (f )
)
+ ρ

(
Tni

ε (f ) – Tni+
ε (f )

)
+ ρ

(
Tni+

ε (f ) – Tε(h)
))
.

If we let ni → ∞, we get ρ( h–Tε(h)
 ) = , which implies Tε(h) = h. In fact, one can now

easily show that {Tn
ε (f )} ρ-converges to h and that h is independent of f and is the only

fixed point of Tε . Clearly,

ρ
(
T(h) – h

)
= ρ

(
T(h) – ( – ε)T(h) – εf

) ≤ ερ
(
T(h) – f

) ≤ εδρ(C).

Hence inff∈C ρ(T(f ) – f ) = . As C is ρ-compact, the fixed point set of T is nonempty. As
ρ is strictly convex, F(T) is convex. Clearly F(T) is ρ-closed subset of C. Hence F(T) is
ρ-compact. If we assume that T and S commute, i.e., S ◦ T = T ◦ S, then S(F(T)) ⊂ F(T).
Consequently, S and T have a common fixed point. In general, it is not the case that S and
T have a common fixed point.
If we take S = T in Theorem ., we get the following result.

Theorem . [] Assume ρ ∈ � is strictly convex and uniformly continuous. Let C be a
nonempty ρ-bounded, ρ-compact and convex subset of Lρ . Let T : C → C be two nonex-
pansive mapping. Fix f ∈ C.Define {fn} as in (.), where αn,βn ∈ [a,b], with  < a≤ b < ,
and f is the initial element of the sequence. Then {fn} ρ-converges to a fixed point of T .
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