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Infection status outcome, machine learning
method and virus type interact to affect the
optimised prediction of hepatitis virus
immunoassay results from routine pathology
laboratory assays in unbalanced data
Alice M Richardson1,2*† and Brett A Lidbury2†
Abstract

Background: Advanced data mining techniques such as decision trees have been successfully used to predict a
variety of outcomes in complex medical environments. Furthermore, previous research has shown that combining
the results of a set of individually trained trees into an ensemble-based classifier can improve overall classification
accuracy. This paper investigates the effect of data pre-processing, the use of ensembles constructed by bagging,
and a simple majority vote to combine classification predictions from routine pathology laboratory data, particularly
to overcome a large imbalance of negative Hepatitis B virus (HBV) and Hepatitis C virus (HCV) cases versus HBV or
HCV immunoassay positive cases. These methods were illustrated using a never before analysed data set from ACT
Pathology (Canberra, Australia) relating to HBV and HCV patients.

Results: It was easier to predict immunoassay positive cases than negative cases of HBV or HCV. While applying an
ensemble-based approach rather than a single classifier had a small positive effect on the accuracy rate, this also
varied depending on the virus under analysis. Finally, scaling data before prediction also has a small positive effect
on the accuracy rate for this dataset. A graphical analysis of the distribution of accuracy rates across ensembles
supports these findings.

Conclusions: Laboratories looking to include machine learning as part of their decision support processes need to
be aware that the infection outcome, the machine learning method used and the virus type interact to affect the
enhanced laboratory diagnosis of hepatitis virus infection, as determined by primary immunoassay data in concert
with multiple routine pathology laboratory variables. This awareness will lead to the informed use of existing
machine learning methods, thus improving the quality of laboratory diagnosis via informatics analyses.
Background
Data mining approaches have found applications in
many knowledge discovery domains, including biological
research and clinical medicine [1-7]. Within data mining
developments over the past twenty years, decision tree
(recursive partitioning) learning models have received
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considerable attention. Decision trees are popular for
several reasons, for example, the capacity to model com-
plex relationships with logical rules. As Negevitzky (2002)
[3] points out, they are also simple, easy to understand,
and can be constructed relatively quickly.
In general, learning models are multi-stage decision

processes that start with an initial set of datasets, which
consists of various observations or cases for which a
known class label has been assigned. In each dataset,
segmentation algorithms look at known facts stored in a
knowledge base and perform a series of tests in a specific
order. At each stage of this process a decision is made and
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some records are separated into subsets with greater pur-
ity in terms of the class membership. This process usually
continues until no more rules can be found or some stop-
ping criterion is fulfilled. A decision tree model is a
specific example of a learning model, and is represented
by a tree structure. The tree structure consists of nodes,
non-leaf nodes and branches. The non-leaf nodes repre-
sent the attributes and leaf nodes represent the values of
the attribute to be classified.
Such learning models were applied to abundant diag-

nostic pathology laboratory data resulting from the test-
ing of patients suspected of infection by either hepatitis
B virus (HBV) or hepatitis C virus (HCV). Such data has
not been extensively mined for patterns to advance pre-
dictions for laboratory diagnoses. Pathology data pre-
sents special challenges for investigators, including data
imbalance for particular responses or predictors, and
high individual patient data variation that makes both
pattern recognition and rule detection difficult. Path-
ology data is similar worldwide, and therefore efficient
analysis of such data is of wide interest to the clinical
professions for enhanced laboratory diagnoses.
The immunoassay marker examined for HBV infection

was hepatitis B surface antigen (HBSA), and for HCV a
Table 1 Description of response and explanatory variables su

Variable abbreviation Description & definition

Response variable

HBSA Hepatitis B Surface Antigen (marker of HBV infection

HepC Patient antibody to HCV, indicating contact with vir

Explanatory variable

Age Patient (case) Age

Sex Gender: 1 = F, 2 = M

ALT Alanine aminotransferase (An intracellular enzyme r

GGT Gamma-glutamyltranspeptidase (An intracellular enz

Hb Haemoglobin

Hct Haematocrit (formerly known as “packed cell volum

Mch Mean corpuscular haemoglobin

MCHC Mean corpuscular haemoglobin concentration

MCV Mean corpuscular volume

Plt Platelets (blood clotting)

WCC White cell count

RCC Red cell count

RDW Red cell distribution width

Neut Neutrophil. White blood cell, elevated by bacterial i

Lymph Lymphocyte. White blood cell, elevated by viral infe

Mono Monocyte. White blood cell, elevated by infection, i

Eos Eosinophil. White blood cell, elevated by allergy and

Bas Basophils. White blood cell, elevated in hypersensiti

U/L Units per litre, g/L grams/Litre, pg picograms, fL femtolitres.
polyclonal anti-HCV antibody response (HepC). As well
as the specific immunoassay data, case-associated rou-
tine diagnostic pathology variables were included in the
pattern recognition analyses (Table 1). Both HBV and
HCV are of widespread health significance as leading
causes of liver disease worldwide [8-10], and responses
to HBV or HCV infection as reflected by routine path-
ology variables, such as liver function test enzyme pro-
files (e.g. alanine amino transferase: ALT), are crucial to
diagnosis and treatment monitoring. We demonstrate
that the choice of key characteristics of data and deci-
sion tree algorithms can improve the sensitivity and spe-
cificity of diagnostic laboratory decision-making (beyond
the sensitivity and specificity of the assays themselves),
encouraging other pathology laboratories to conduct
similar experiments on appropriate data.
In this study we describe an empirical investigation of

immunoassay results (HBV or HCV) and associated rou-
tine pathology data (Table 1), which featured signifi-
cantly more negative than positive HBV or HCV cases,
by constructing single decision trees and ensembles
[11-13], and using different data pre-processing tech-
niques on the aggregated pathology data. The aim of the
study was to use the resulting trees for the enhanced
bjected to decision tree analyses

Measurement units

) Positive (1) or

us (Both HBSA and HepC detected by immunoassay) Negative (0)

Years

M or F

eleased in after liver & other tissue cell damage) U/L

yme also relevant to liver damage) U/L

g/L

e”) %

pg/RBC

g/L

fL

x 109/L

x 109/L

x 1012/L

%

nfection and early viral infection x 109/L

ction and some cancers x 109/L

nflammation, some cancers. x 109/L

parasite infection x 109/L

vity reactions. x 109/L
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Figure 1 A representative decision tree. From the matched single
analysis featuring popular explanatory variables associated with the
HBSA response variable.
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laboratory diagnosis of hepatitis virus infection, by
exploiting the range of multi-variable pathology labora-
tory data associated with direct virus immunoassay test-
ing. To achieve this aim we interrogated a data set of
18625 records from 1997 – 2007 made available by ACT
Pathology at The Canberra Hospital, ACT Australia.

Results
Single decision tree
Table 2 shows that for negative HBSA and negative HepC
predictions based on a single tree, derived from routine
pathology test explanatory variables (Table 1), the “basic
single” approach was extremely effective (sensitivity = 98-
99%). This is associated with the large sample set available
for patients who tested negative to HBV or HCV. For
positive HBSA and HepC cases, where patient sample size
was limited (n = 212 and n = 641 respectively), the basic
single approach was very poor at predicting a positive
HBSA (specificity < 5.0%), but improved for predicting a
positive HepC result, most likely a result of the 3-fold
larger sample size. (Specificity represents the accuracy of
negative case detection, while sensitivity represents the ac-
curacy of positive case detection: see Methods). For both
positive HBSA and HepC cases, the maximum accuracy
rates of approximately 65% were achieved though applying
the “matched single” approach of data pre-processing. For
positive cases, matched single pre-processing was signifi-
cantly superior to the other data selection option tested,
bootstrap single. Interestingly, prediction accuracy rates
were reduced significantly for HBSA and HepC negative
cases after bootstrap single pre-processing, with matched
single processing further reducing the accuracy rates com-
pared to the other methods. A representative decision tree
from the above described single tree analysis is shown in
Figure 1.

Ensemble analysis
To augment the prediction capacity of decision trees,
decision tree ensembles can be constructed with the
average of the multiple tree results used for accuracy
prediction. Another advantage of this approach is that
the relative importance of each explanatory variable used
in the model can be estimated due to the average
Table 2 Specificity and sensitivity (%) of HBV and HCV
immunoassay outcome prediction after single decision
tree analysis

Measure Basic single Bootstrap single Matched single

HBSA specificity 98.38 89.57 45.65

HBSA sensitivity 4.6 16.92 64.62

HepC specificity 99.17 83.03 65.88

HepC sensitivity 32.35 35.29 65.89

See Software Methods for sensitivity and specificity calculations, and Phase 1
Methods for descriptions of the decision tree analyses.
frequency of its appearance across the multiple trees
comprising the ensemble (Figure 2).
For the basic multiple approach (Table 3a), the accur-

acy rates achieved for the prediction of positive HBSA
were approximately 60%, which is lower than the rates
achieved using a single tree with matched single pre-
processing (Table 2). The best result overall was found
Figure 2 Weighted importance for leading explanatory
variables strongly linked to a positive HBSA immunoassay
result. Variable importance was calculated as the number of times a
variable appeared in testing phase decision trees, Depth in decision
tree weights indicates predictor variables at the top of the tree with
the highest importance, with lower nodes contributing a lower
weighting based on a lesser hierarchy importance.



Table 3 Specificity and sensitivity (%) of HBV and HCV
immunoassay outcome prediction after decision tree
ensemble analyses

(a) Measure Raw Scale Log Scale-log

HBSA specificity 53.91 54.46 54.41 54.41

HBSA sensitivity 62.22 59.82 59.82 59.82

HepC specificity 57.75 57.65 57.77 57.66

HepC sensitivity 63.19 63.45 63.08 63.31

(b) Measure Raw Scale Log Scale-log

HBSA specificity 68.57 68.82 68.80 68.57

HBSA sensitivity 46.83 46.91 46.83 46.83

HepC specificity 58.87 58.91 58.88 58.87

HepC sensitivity 63.40 63.34 63.34 63.37

(c) Measure Raw Scale Log Scale-log

HBSA specificity 54.45 54.59 45.74 45.74

HBSA sensitivity 61.43 61.43 70.20 70.20

HepC specificity 35.04 34.87 36.90 36.88

HepC sensitivity 80.37 80.84 76.53 76.53

Methods employed were (a) basic multiple, (b) majority multiple and (c) clear
negative analyses (see Methods). Prior to accuracy analysis, explanatory
variables were subject to one of four pre-processing methods: none (raw),
scaling, logging and scale-logging. Scaling sets the range of each explanatory
variable to a common range of 0 – 100. Logging uses natural logarithm
transformation. Scale-logging uses a common range of 0 – 100 then takes the
natural logarithm.

Table 4 Analysis of variance of mean accuracy rates for a
four-factor experiment

Source SS df MS F p

Method 28.015 2 14.008 0.488 0.620

Pre-processing 0.967 3 0.322 0.011 0.998

Virus 44.815 1 44.815 1.560 0.224

Outcome 927.169 1 927.169 32.279 0.000 (*)

Method.Outcome 2909.082 2 1454.541 50.640 0.000 (*)

Method.Pre-processing 0.863 6 0.144 0.005 1.000

Method.Virus 42.649 2 21.324 0.742 0.487

Pre-processing.Outcome 8.436 3 2.812 0.098 0.960

Virus.Outcome 922.604 1 922.604 32.120 0.000 (*)

Pre-processing.Virus 0.301 2 0.100 0.003 1.000

The experiment examines interactions affecting the prediction of HBSA and
HepC immunoassay outcome.
(*) = Significant at 0.001 level.
Method = basic single, basic multiple, majority multiple or clear negative.
Pre-processing = none, log, scale, or scale-log.
Virus = Hepatitis B or Hepatitis C.
Outcome = positive or negative.
Method.Outcome = the interaction between method and outcome; other
interactions between pairs of variables to be interpreted similarly.
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for positive HepC (63.45%) using scaled data, but this re-
sults was < 1.0% different from the other positive HepC
basic multiple results (for Raw, Log and Scale-Log).
There was no need to scale and/or log the data prior to
predicting positive HBSA. The Raw result (62.2%) was
2.4% superior to the various scaling and log pre-
processing. For the basic multiple method, prior data
scaling and/or log transformation had a negligible effect
on prediction accuracy over that found for non-
transformed raw data. For the prediction of negative
HBSA or HepC, basic single and bootstrap single
methods for single decision trees were vastly superior
compared to basic multiple ensemble decision trees.
Majority multiple pre-processing (Table 3b) found that

the prediction of a negative virus infection result was
superior for HBSA compared to HepC. For negative
HBSA and HepC, scale and/or log transformation did
not improve the performance of this prediction model,
and again basic single and bootstrap single decision tree
methods were superior (Table 2). For the prediction of
positive HBSA or HepC results, prior scaling and/or log
transformation did not improve percent accuracy be-
yond the results for raw, non-preprocessed data. How-
ever, this method did improve the results of single
decision tree basic single and bootstrap single methods
(Table 2). For positive HepC prediction, ensemble trees
produced from non-preprocessed data (raw), scale, log
and scale-log pre-processing methods produced similar
prediction accuracy rates as a single tree, matched single
method.
Finally, the clear negative method produced the best

prediction accuracy for positive HBSA (70.2%) and
HepC (80.84%) for decision tree ensembles (Table 3c).
These results were also superior to matched single pre-
processing for single decision trees (Table 2). For HBSA
prediction from routine pathology data by a single deci-
sion tree, log or scale-log transformation were the best
methods, while for HepC positive data scaling produced
the best results, but only marginally higher compared to
the raw (non-transformed) data (Table 3c). For negative
HepC predictions by this method, with or without prior
data transformation or processing, predictions were poor
at 35 – 37%. Likewise, negative HBSA prediction was
also poor with accuracy rates of 54.5% for raw or scale
methods and 45.7% for log alone or scale-log methods
for decision tree ensembles. The basic single decision
tree (Table 2) was clearly the best methods for negative
HBSA and HepC prediction.
Across the 12 experiments using ensemble classifiers,

the best mean accuracy rate was obtained for positive
HepC, using the clear negative method on scaled data.
The results of the analysis of variance of the mean accu-
racy rates further explore the interactions of importance
to these results (Table 4).

Analysis of variance
The analysis of variance (Table 4) shows that accuracy rate
depends on outcome (F = 32.279, df = 1 and 23, p = 0.000).
Positive cases have a higher accuracy rate on average than
negative. There is also a significant interaction between
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Figure 4 Sensitivity and specificity for the best method of data
pre-processing - Positive viral infection. Sensitivity and specificity
rates are shown for the scale method of pre-processing associated
with positive hepatitis B virus (HBV) or hepatitis C virus (HCV)
infection, including the two outcomes (positive or negative
prediction). BM = Basic multiple approach. MM =majority multiple
approach.
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method (e.g. basic multiple) and outcome (e.g. predicted
positive: F = 50.640, df = 2 and 23, p = 0.000). Majority
multiple does better on average at predicting negatives,
whereas the other two methods perform better on aver-
age at predicting positives. The other significant inter-
action is between virus type (HBV or HCV) and
outcome (F = 32.120, df = 1 and 23, p = 0.000). While
HepC positive status leads to higher accuracy rates on
average, the reverse is true for HBSA. Since basic mul-
tiple and majority multiple methods produce 72 and 36
accuracy rates respectively, our results include boxplots
of the range of accuracy rates for those methods across
the two viruses and two outcomes (Figures 3, 4). Figures 3
and 4 summarise results only for the scale method of pre-
processing, since that was found to be the most successful
experiment (see above). The other pre-processing results
are similar, which are confirmed by the non-significant ef-
fect of pre-processing in the analysis of variance in
Table 4.
The location of each mean accuracy rate shown in the

centre of the boxplot is confirmed by the figures in the
“scale” column of Table 3. The spread of the accuracy
rates is slightly larger for positive outcomes compared to
negative outcomes. This strengthens the significant
effect of outcome on accuracy rate found in the analysis
of variance above. There is not much difference in the
accuracy rate distributions for the two viruses, which
also strengthens the non-significant effect of virus on
accuracy rate found in the analysis of variance (Table 4).
Figure 3 Sensitivity and specificity for the best method of data
pre-processing - Negative viral infection. Sensitivity and
specificity rates are shown for the scale method of pre-processing
associated with negative hepatitis B virus (HBV) or hepatitis C virus
(HCV) infection, including the two outcomes (positive or negative
prediction). BM = Basic multiple approach. MM =majority multiple
approach.
Discussion
Infection by Hepatitis B virus (HBV) or Hepatitis C virus
(HCV) are significant agents of acute and chronic hepa-
titis world-wide, and leading causes of liver cancer and
cirrhosis. Prevalence rates can vary widely between dif-
ferent countries; for example, HBV carrier prevalence
within Europe ranges from 0.1 to 8.0% and HCV from
0.1 to 6.0% [8]. The health impact of HBV worldwide is
substantial with 2 billion cases of infection, 360 million
cases of chronic infection and 600,000 deaths each year
associated with liver carcinoma or other HBV-induced
liver disease [9]. Based on WHO estimates from 1999,
worldwide HCV prevalence was around 3.0%, with ap-
proximately 170 million people affected by HCV disease.
Due to prolonged disease latency post HCV infection,
prevalence rates are difficult to calculate, so the quoted
rates may be underestimated [10].
Primary diagnosis of HBV or HCV, and subsequent

monitoring of infection, relies significantly on immuno-
assay techniques available via pathology departments to
detect hepatitis B virus surface antigen (HBSA), or patient
anti-HCV antibodies (HepC) associated with previous
infection. Within the suite of immunoassay markers avail-
able for HBV detection, HBSA was chosen since it is a
common HBV screening test and is elevated relatively
soon after infection (Table 1). For all analyses, HBSA or
HepC were used as the respective response variables in
the single and ensemble decision tree methods. The
explanatory variables used for all analyses comprised a
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range of other routine pathology tests run simultan-
eously with the HBV or HCV immunoassay on the same
serum samples. These additional tests reflect a number
of physiological functions that are potentially perturbed
by infection and illness, including liver function, kidney
function, presence of anaemia and infection or allergy
(Table 1). Judgments based on the linear reference
ranges decided by the laboratory for individual assay re-
sults assist in both primary diagnosis and subsequent
monitoring of disease or infection, if present.
Given the extensive range of biochemical, cellular and

physiological data available associated with HBV or
HCV immunoassay via simultaneously collected routine
pathology laboratory results, a pattern recognition ap-
proach beckons to reveal data patterns that reflect both
the presence of HBV/HCV infection, as well as infection
persistence and severity (via follow up data). To address
this opportunity, single decision trees and tree ensem-
bles were employed. A tree ensemble consists of several
individually trained trees that are jointly used to solve a
problem. Given the over-representation of negative cases
in both the HBV and HCV data, tree ensembles can give
a significant improvement in prediction accuracy over a
single classifier. Generally, constructing ensembles con-
sists of two phases, a training phase and a combining
phase [11,12].
In the training phase, several techniques to cope with

the imbalanced nature of the data were explored. One
popular method for balancing a training set is bootstrap-
ping [13]. This technique generates a training set using
random drawing (with replacement) from the original
training set. Consequently, in every new training set
there are data points that appear more than once while
others do not appear at all. Bootstrapping is an effective
technique for improving a classifier with poor perform-
ance, especially where a classifier has been presented
with a small training sample set or training set with mis-
leading data points. A second method involves downsiz-
ing the large class either at random or at “focused”
random [14,15]. Training sets were produced using a
subset of the negative individuals, as there are many
more negatives than positives in both the HBV and
HCV data sets.
In the combining phase, we have chosen to use a ma-

jority voting strategy to combine predictions of the com-
ponent classifiers. In majority voting each component
classifier votes for a category, and the category with the
majority of votes defines the ensemble category. The
best approach for negative HBSA and HepC data accuracy
was the “basic single” method (see Table 2) due to the size
of these datasets.
For smaller datasets, as found for both HBSA and

HepC positive cohorts, other methods were required to
achieve high predictive accuracy based on associated
routine pathology data (Table 1). Furthermore, the “clear
negative” method, which used other pathology data (i.e.
ALT liver enzyme) to give the most certain true negative
cohort, was very effective. For this method, patient data
with HBSA < 0.01 and ALT < 55 U/L were considered to
be “clear negative” for HBV. We also considered patient
data with HepC ≤ 0.03 as “clear negative” for HCV. Such
combining of diverse pathology data to increase the
probability of a correct true negative or true positive de-
tection is particularly crucial in the context of blood trans-
fusion, where the accidental transmission of infectious
agents must be avoided [16].

Conclusions
This study examined the effect of data characteristics on
decision trees used to predict HBV or HCV infection
status, as detected by specific immunoassay. Improved
understanding of the behaviour of such techniques will
lead to the better definition of patient groups that display
different data patterns associated with HBV or HCV infec-
tion, and hence demonstrate a different physiological re-
sponse as defined by biochemical and cellular responses to
infection, determined by routine pathology blood tests.
Once rules are determined via data mining, patient pro-
files can be designed that will guide molecular genetic
studies on the biological basis of disease resistance or sus-
ceptibility, with the shorter term benefit of enhancing the
laboratory diagnosis and monitoring of hepatitis virus in-
fection through combined data rules, particularly for data
sets with few positive cases. This study focused on interac-
tions between aspects of the data and its pre-processing
that allow decision trees to generate effective rules, which
model hepatitis virus infection, derived from routine blood
test data that assesses liver and kidney function, as well as
a range of markers that explore red and white blood cell
function.

Methods
Software
We implemented the analysis using the RPART algorithm
in R [17]. Post decision tree construction (single and
ensemble) prediction accuracy rates were measured as in
[18] by sensitivity and specificity. Sensitivity and specificity
are defined as follows:

sensitivity ¼ TP
TP þ FNð Þ and

specificity ¼ TN
TN þ FPð Þ

where the true positive (TP) is the number of correctly
diagnosed HBSA or HepC positive cases; false negative
(FN) is the number of HBSA or HepC positive that the
model is unable to diagnose; true negative (TN) is the
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number of correctly diagnosed HBSA or HepC negative
successfully diagnosed by the model; and false positive
(FP) is the number of HBSA or HepC negative that the
model is unable to diagnose.

Data set
The data set employed in this study originally comprised
18625 individual cases (1 individual patient case per
row) of hepatitis virus testing over a decade from 1997 –
2007. Data was provided by ACT Pathology, The
Canberra Hospital (TCH), Australia. Patient identifiers
were removed by TCH staff prior to data access, with
only a laboratory ID numbers provided for the study.
After data cleaning that included the removal of rows
with missing values, 10378 rows of complete data were
compiled for HBSA, with 8801 complete data rows avail-
able for HepC. Only cleaned and complete data sets
were used in the experiments described herein. Of the
final data set, 212 rows were HBSA positive, and 641
rows positive for HepC. Therefore, the majority of the
data were negative for either HBV or HCV, stimulating
the analyses described here to derive methods to in-
crease prediction accuracy for an unbalanced data set.
HBSA was classified as positive at ≥ 1.6 immunoassay
units (IU) and HepC ≥ 0.6 IU for a positive classification.
All other HBSA and HepC results below this assay cut-off
were classified as negative (M. de Souza, ACT Pathology,
pers. comm.).
The study was divided into two phases to assess the

impact of pre-processing efficacy. The first phase com-
pared three pre-processing techniques before testing ac-
curacy for single decision trees. Phase two comprised
ensembles of 36 or 72 decision trees with pre-analysis
scaling of the data before an assessment of prediction
accuracy.

Ethics
For access to de-identified patient data, this study had
human ethics approval granted by the Human Research
Ethics Committee at The University of Canberra (protocol
07/24), The Australian National University Human Ethics
Committee (2012/349) and the ACT Health Human
Research Ethics Committee (ETHLR.11.016).

Phase 1 – single decision tree analysis
Prior to running the single decision trees and assessing
prediction accuracy, four common data pre-processing
techniques were employed [19]. The four pre-processing
techniques used were: no pre-processing (Raw), scaling
1 – 100 (Scale), a natural logarithm scale (Log) and
scale-logging (Scale-Log), a combination of the previous
two methods. Scaling sets the range of each explanatory
variable to a common range of 0 – 100. Logging uses
the natural logarithm (ln) transformation. Scale-logging
uses a common range of 0 – 100 then takes the natural
logarithm. Note also that assignment of positive or nega-
tive to data (based on HBSA or HepC value) occurs before
scaling.
After data pre-processing, three data set selection

methods were used, as follows;
Basic Single: For both HBSA (n = 10378) and HepC

(n = 8801), two-thirds of the data were randomly selected
for training with the other third of data reserved for test-
ing [19]. The single tree obtained from the training set
was applied to the testing set, and the accuracy rate
computed.
Bootstrap Single: Pre-processing was identical to the

basic single approach, but in addition used the bootstrap
technique in order to increase the number of positive
cases in the training data to match the same number of
negative cases (in the training phase). The bootstrapped
training data is then used to construct a tree classification
for the response variables HBSA and HepC, which were
compared for accuracy to the one-third testing data.
Matched Single: As an alternative to bootstrapping,

the same number of negative cases as the available num-
ber of positive cases were used to train the data, with
the negative cases selected at random from the whole
data set. This training data was then used to construct a
tree classification for the response variables HBSA and
HepC, as summarized above.

Phase 2 – decision tree ensembles
As well as the single decision tree methods above, it is
also possible to divide up the abundant negative cases
into multiple sets (see [14]) and thereby produce multiple
decision trees. Three methods for carrying out this div-
ision were studied: a description of each one follows.
Basic Multiple: Positive HBSA data was randomly di-

vided into two parts comprising of 2/3 training data
(141 cases) and 1/3 testing data (71 cases). Cases with
negative HBSA (10167 cases) were selected, and divided
into 72 random subsets (i.e. 10167/141). The 141 cases
with positive HBSA were combined with each of the
above 72 HBSA negative subsets. The above 72 subsets
were applied one at a time to construct a classification
tree for the response variables, and each of the original
72 trees applied to the remaining data, which had not
been used in construction of that individual tree, and
compute the accuracy rate for each subsequent tree
ensemble.
Majority Multiple: This method is very similar to the

basic multiple method. However, this time we created
36 subsets for training where each subset had 282 (i.e.,
141 × 2) cases with half cases negative and the other
half of cases with positive HBSA. Furthermore, we com-
puted the accuracy rate for each tree (using the same
test dataset) based on majority voting from all trees.
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The result of a majority vote is the decision of at least >
50% of the trees in the ensemble.
Clear Negative: For this method we first select the

cases that are “clearly negative” as judged by pathology
data reference ranges for HBSA or HepC immunoassay
and ALT (Table 1). “Clear negativity” is defined as
HBSA < 0.01 IU, HepC < 0.03 IU and ALT < 55U/L. We
then combined them with 2/3 of the positive cases (71
for HBSA or 214 for HepC) to construct the training set.
The remaining data are used for testing. In other words,
we have only one set for training and the remaining data
for testing, unlike the other two methods that had multiple
training sets.

Phase 3 – analysis of variance
The final phase of the study uses an analysis of variance
[20] in order to identify the amount of variation in mean
accuracy rate attributable to four factors: method, data
pre-processing, outcome and virus type (HBV or HCV).
There are three methods (basic multiple, majority mul-
tiple and clear negative). There are four pre-processing
techniques (none, scale, log, and scale-log). There are two
outcomes (predicted positive and predicted negative).
There are two viruses, Hepatitis B virus (HBV -measured
by the immunoassay marker HBSA) and Hepatitis C virus
(HCV – measured by the immunoassay marker HepC:
Table 1). The interaction between pairs of these factors
was also modelled, to see if there were settings of one
factor that caused the accuracy rates to behave differently
depending on the setting of another factor.
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