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Abstract. Universality of various fermion formulations is well established in QCD-like
theories defined around the perturbative g2 = 0 fixed point. These arguments do not apply
for conformal systems that exhibit an infrared fixed point at non-vanishing g2 coupling.
We investigate the step scaling function for systems with 10 or 12 fundamental flavors
using domain wall fermions and compare it to perturbative predictions. We test univer-
sality by contrasting our findings to results published in the literature based on staggered
fermions.

1 Introduction

The concept of universality is a cornerstone of quantum field theory investigations on the lattice.
Universality means that systems with identical field content and identical symmetries in the same
space-time dimension have the same universal critical properties. Since the continuum limit is reached
when the system is tuned to criticality, universality implies that the continuum limit depends only on
the relevant operators of the system. We point out that a unique continuum limit can be defined in the
basin of attraction of every ultraviolet fixed point (UVFP) of a system.

The symmetries relevant for universality include local gauge invariance, and global ones like flavor
symmetry of fermions. While local gauge symmetries are usually preserved by the lattice action, the
flavor symmetries are frequently not. Staggered fermions break the SU(Nf ) × SU(Nf ) symmetry to
SU(Nf /4) × SU(Nf /4), while Wilson fermions break flavor symmetry completely. Thus universality
arguments do not apply to fermions unless the flavor symmetry gets restored at criticality.

QCD-like gauge-fermion systems are asymptotically free and the continuum limit is defined
around the perturbative g2 = 0 Gaussian fixed point (GFP) where the restoration of continuum flavor
symmetry can be proven perturbatively. In case of staggered fermions the taste breaking terms enter
as O(g2). Proving the continuum flavor symmetries are recovered as the bare gauge coupling g2 is
tuned to zero is non-trivial, because one has to show that all taste-breaking operators are irrelevant
at the GFP [1]. (For a concise summary see e.g. Ref. [2].) If one increases the number of flavors, a
new fixed point, in addition to the GFP, emerges where the gauge coupling becomes irrelevant. Even
though this fixed point is commonly referred to as conformal infrared fixed point (IRFP), it is actu-
ally an UVFP in the mass, which is the only relevant operator. The continuum limit in the basin of
attraction of this conformal FP is reached by tuning the fermion mass to zero. The gauge coupling
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does not require tuning; in the infrared it takes the value of the IRFP, independent of its bare value
at the cut-off. The proof showing staggered fermions are in the same universality class as continuum
fermions [1] relies however on g2 → 0. Thus if the taste breaking terms of staggered fermions do not
vanish at the conformal IRFP, staggered formulations of a conformal system might not be in the same
universality class as continuum fermions.1

A situation similar to the taste breaking of staggered fermions can be modeled in the 3-dimensional
O(n) scalar model. For illustration we summarize the results of Ref. [3] in the next section before
highlighting recent developments for SU(3) gauge theories in four dimensions.

In Sect. 3 we present our new results on the step scaling functions for SU(3) gauge theories with
10 or 12 fundamental flavors obtained with domain wall fermions (DWF). Our findings suggest that at
a conformal IRFP staggered fermions are not in the same universality class as domain wall fermions.
Finally, we conclude in Sec. 4.

2 Indications of universality violation

2.1 φ4 scalar models in three dimensions
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Figure 1. Sketch of the RG flows on the critical surface of the scalar model with symmetry breaking term as in
Eq. (1). The infrared limit is characterized by a new "cubic" fixed point [3].

The O(n) symmetric scalar models in three dimensions have very similar structure to the 4-
dimensional conformal gauge-fermion systems. The φ4 coupling is relevant at the perturbative GFP
but irrelevant at the non-perturbative conformal Wilson-Fischer fixed point (WFFP), whereas the mass
is a relevant operator at both fixed points. The GFP has mean-field exponents for all n, but the WFFP is
different for different n. Adding to the action interaction terms breaking the symmetry O(n)→ O(n′),
multicritical phenomena can emerge (see e.g. Refs. [3, 4]). Using the ε-expansion up to fifth order a
model with potential
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is investigated in Ref. [3]. In addition to the perturbative GFP, the system has an O(n) Heisenberg
WFFP for g2 = 0 and a Z2 symmetric Ising FP for g1 = 0. The renormalization group structure of

1This issue is not related to rooting. Whether a rooted staggered action is equivalent to a local action at an IRFP with g2 > 0
is another interesting question, but not considered here.
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is investigated in Ref. [3]. In addition to the perturbative GFP, the system has an O(n) Heisenberg
WFFP for g2 = 0 and a Z2 symmetric Ising FP for g1 = 0. The renormalization group structure of

1This issue is not related to rooting. Whether a rooted staggered action is equivalent to a local action at an IRFP with g2 > 0
is another interesting question, but not considered here.

this system when both couplings are non-zero is similar to the sketch in Fig. 1. The infrared limit is
governed by neither by the O(n) nor the Z2 symmetric fixed point but by a new, “cubic” fixed point.
Perhaps the situation is similar for staggered fermions in 4-dimensional conformal models.

2.2 SU(3) gauge theory in four dimensions

Recently the gradient flow step scaling function has been used to investigate the β function in 4-
dimensional SU(3) gauge theories [5, 6]. The gradient flow step scaling function for a scale change s
is related to the discrete β-function

βs(g2
c ; L) =

g2
c(sL; a) − g2

c(L; a)
log(s2)

. (2)

The ratio c =
√

8t/L ties the lattice volume to the energy scale where the parameter t is the flow time,
L the extent of the lattice with volume L4, and g2

c(L; a) the gradient flow coupling at lattice spacing
a. 2 The continuum extrapolated discrete β-function βs(g2

c) = lim(a/L)→0 βs(g2
c , L) depends only on the

renormalized coupling g2
c , therefore it is expected to be independent of irrelevant operators introduced

by the lattice regularization. The gradient flow step scaling function is only 1-loop universal when
the simulations are done with periodic or antiperiodic boundary conditions. We do not expect the
non-perturbative lattice results to follow perturbative curves outside the small-g2

c range. In the plots
we nevertheless show the perturbative 2-loop and 4-loop MS predictions. These solely serve to guide
the eye and help to compare results obtained with different lattice actions. In the remainder of this
section we briefly point out two cases possibly indicating violations of universality which motivated
our investigations:

1. SU(3) gauge model with 2 flavors in the sextet representation: Using Wilson fermions and
the Schrödinger functional scheme Refs. [7, 8] found the step scaling function to be consistently
smaller than the 2-loop value, possibly developing an IRFP. More recently Ref. [9] investigated
the c = 0.35 gradient flow step scaling function with Wilson fermions and found that it approx-
imately follows the 4-loop MS prediction in the 0 < g2

c < 5.5 range, increasing for g2
c � 3.5,

decreasing thereafter and approaching zero around g2
c ≈ 6.0. The Lattice Higgs Collaboration

studied the gradient flow step scaling function in the same scheme using (rooted) staggered
fermions. Their results predict that βs(g2

c) increases monotonically in the range 0 < g2 < 6.5,
staying within ≈ 20% of the 2-loop value [10]. Establishing a zero in the step scaling function is
difficult, however the qualitative differences between staggered and Wilson results are striking
and are too large in the g2

c ≥ 4.0 range to be attributed to under-estimated statistical errors.

2. SU(3) gauge theory with Nf � 8 fundamental flavors: 2-loop perturbation theory predicts
the boundary of the conformal window to be at N f � 8. The step scaling function of the
Nf = 12 flavor system has been investigated extensively with staggered fermions. Figure 5 of
Ref. [11], reproduced on the right panel of Fig. 5, shows results from three different calculations
that agree within errors and predict the step scaling function to lie between the 2- and 4-loop
perturbative values with a suggested IRFP around g2

c ≈ 7.4(3).3 This result is in some tension
with a recent domain wall fermion calculation of a 10-flavor system that predicts the gradient
flow step scaling function well below the 4-loop MS curve and suggests an IRFP around g2

c =

2Following the usual conventions, t, L, and a are dimensionful quantities.
3 At Lattice 2017 the LatHC collaboration presented a poster with updated results indicating that the step scaling function

in the g2
c ≈ 7.0 − 7.6 range is close to 0.1, i.e. it has minimal dependence on the gauge coupling in a wide g2

c range. In this
paper we concentrate on the overall shape of βs(g2

c ) at smaller couplings.
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7.0 [12, 13]. In general Nf = 10 is expected to show features that are related to the conformal
window, like a real or approximate IRFP, at stronger coupling than Nf = 12. The qualitative
features of the step scaling functions with staggered and DW fermions appear to be in conflict
with each other.

3 Step scaling function from domain wall simulations
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Figure 2. Comparison of the 10-flavor (a/L)2 → 0 extrapolated step scaling functions using the plaquette and
clover discretizations in our MDW fermion simulations. Left panel corresponds to c = 0.35, right to c = 0.4.

Motivated by the possible lack of universality of staggered fermions at a conformal fixed point we
have started a program to investigate the step scaling function of SU(3) gauge theory with Nf = 10
and 12 fundamental flavors. We use Möbius domain wall fermions with 3-levels of stout smearing
and Symanzik gauge action [14–17]. The boundary conditions are periodic for the gauge fields and
antiperiodic for the fermions in all four directions and the bare fermion mass is set to zero. Our
simulations are carried out using the Grid code [18, 19].

We simulate symmetric L4 volumes with L/a = 6, 8, 10, 12, 16, 20 and 24, although in our
analysis we use only L/a ≥ 8. On all seven volumes we have generated ensembles at 12 – 14 values
of the gauge coupling in the range 4.15 ≤ β ≤ 7.0 for Nf = 10 and 4.20 ≤ β ≤ 7.0 for Nf = 12.
For each ensemble we have typically collected 5000 Molecular Dynamics Time Units (MDTU). We
identified a first order bulk transition for both Nf = 10 and 12 around β = 4.0−4.05. The DW residual
mass increases exponentially as this transition is approached, thus limiting the range of couplings we
can simulate.

For most ensembles we chose the 5th dimension of domain wall fermions to be Ls = 12, but
increase it up to Ls = 24 on the larger (L/a = 16, 20, 24) volumes at stronger gauge coupling in
order to keep the residual mass sufficiently small. If the residual mass is too large compared to the
energy scale given by the inverse lattice size L−1, the configurations should be considered finite-mass
deformed and not volume squeezed. At finite fermion mass the gauge coupling runs faster and the
step scaling function predicted by the finite-volume gradient flow scheme would be larger than in the
chiral limit. In this sense our results here can be considered as upper bounds on βs(g2

c).
The volumes in our simulations are small compared to staggered fermion calculations. We expect

that lattice artifacts with DW fermions are smaller than with staggered, as many QCD simulations
indicate. The DW calculation of the step scaling function of Refs. [12, 13] also indicates that βs(L; g2

c)
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order to keep the residual mass sufficiently small. If the residual mass is too large compared to the
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that lattice artifacts with DW fermions are smaller than with staggered, as many QCD simulations
indicate. The DW calculation of the step scaling function of Refs. [12, 13] also indicates that βs(L; g2

c)

shows linear (a/L)2 dependence already at L/a = 8. We have started simulations with L/a = 32 to
strengthen the (a/L)2 → 0 extrapolation, but they are not included here. We measure the gradient flow
renormalized coupling using Wilson flow and consider both the clover and plaquette discretization of
the energy density. We choose c =

√
8t/L large enough so the two are consistent. We also apply t-shift

optimization to remove O(a2) cut-off effects [20] and plan to repeat the gradient flow measurements
with Symanzik flow as a further consistency check.

3.1 Step scaling function with Nf = 10 fundamental flavors
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Figure 3. Continuum limit extrapolations in Nf = 10 at g2
c = 3.0, 4.0, 5.0 and 6.0 in the c = 0.4 gradient flow

scheme. Each panel shows the extrapolation in (a/L)2 using the plaquette and clover discretizations both with
and without near-optimal t-shift values (0.04 for plaquette, -0.075 for clover). The lines with errorband are linear
fits to the data obtained from volumes L/a ≥ 8 (filled symbols). We do not include the right-most data points
(open symbols) corresponding to L/a = 6→ 12 matching but to guide eye extend our fit results to the right using
dashed lines and a lighter shaded error band. Especially for the plaquette even those data points are close to the
linear fit lines, strengthening our confidence in the continuum extrapolation based on volumes L/a = 8 to 24.

As mentioned in Sect. 2.2, the first domain wall simulation results of the 10-flavor gradient flow
step scaling function are reported in Refs. [12, 13]. That work used optimal DW fermions without
smearing and considered volumes up to L/a = 32. The result using c = 0.3 shows that the step
scaling function is below the 3-loop MS curve and indicates an IRFP at g2

c ≈ 7.0. We do not have the
computational resources to generate configurations at couplings g2

c � 6.5 as we would need Ls ≥ 32
to keep the residual mass sufficiently small for β ≤ 4.10, and so far we did not reach an IRFP in
our simulations. When comparing the plaquette and clover discretizations of the energy density, we
observe a small but definite deviation between the two discretizations for c = 0.35. This disappears
(within our statistical errors) when we increase c to 0.40, as is shown in Fig. 2. The two discretizations
are significantly different at c = 0.3.
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Figure 4. Preliminary results for the Nf = 10 step scaling function using MDW fermions. The continuum
limit extrapolated predictions corresponding to c = 0.3, 0.35 and 0.4 are consistent when using the plaquette
discretization for the energy density and imply that the coupling is running slower than the 4-loop MS prediction.
We are not yet able to verify the existence of the IRFP predicted in Ref. [12, 13] but so far our β-function agrees
reasonably well with theirs.

The four panels of Fig. 3 show the (a/L)2 extrapolations at c = 0.4 for g2
c = 3.0, 4.0, 5.0, and

6.0. In all cases we consider both the plaquette and clover discretizations with and without near-
optimal t-shift. The (a/L)2 extrapolations, depicted by solid lines with error bands in Fig. 3 are based
on volumes with L/a ≥ 8. Extending these fit lines to the right, we observe that for the plaquette
discretization even the smallest L/a = 6 → 12 volumes are fairly close to these linear fits. The
four different extrapolations predict within errors consistent continuum limit values for β2(g2

c). Since
we use Wilson flow with Symanzik gauge action, the combination with plaquette discretization is
expected to have smaller O(a2) corrections [21]. Fig. 4 shows that the step scaling function obtained
with the plaquette discretization is largely independent of c when comparing c = 0.3, 0.35, 0.4, a
property that is not expected theoretically but seems to hold also in other models. The continuum
extrapolated step scaling function is similar to the prediction of Refs. [12, 13]. It follows the 2- and
4-loop perturbative curves up to g2

c � 3.0 but turns away at larger couplings. Our results, shown in
Fig. 4, explore the range for g2

c < 6.0 but neither confirm nor discredit the emergence of an IRFP.

3.2 Step scaling function with Nf = 12 fundamental flavors

Given the tension between the step scaling function obtained for 12 flavors with staggered fermions
and the outcome of the Nf = 10 domain wall simulations presented above, we have started to inves-
tigate the 12-flavor system with DW fermions to better understand and hopefully resolve the conflict.
The step scaling function with 12 flavors is small, making its non-perturbative determination more
challenging. While 5000 MDTU per configuration was sufficient to estimate β2(g2

c) with 10 flavors,
the same statistics is not sufficient with Nf = 12. In addition we observe larger scaling violations
for the clover discretization when matching 8 → 16 volumes compared to our Nf = 10 simulations.
Adding L = 32 volumes will allow us to drop the L = 8 ensemble set or allow us to verify that all four
volume pairs are consistent with linear (a/L)2 dependence. Comparing Wilson flow with Symanzik
flow could also serve as a consistency check. At this point we present only preliminary results. Fig-
ure 5 shows the finite volume step scaling β2(L; g2) as defined in Eq. (2) for the 10→ 20 and 12→ 24
volume pairs in the c = 0.35 gradient flow scheme with both plaquette and clover discretizations. The
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Figure 5. Left panel: Preliminary results for the Nf = 12 step scaling function from our MDW fermion sim-
ulations. Using near-optimal t-shift (0.04 for the plaquette, -0.065 for the clover operator) the finite volume β
function of Eq. (2) is shown for L/a = 10→ 20 and 12→ 24. The dependence on L is weak, hence the effect of
the extrapolation to L/a→ ∞ is likely small. Larger L/a = 32 volumes are in progress and will allow a standard
infinite volume continuum extrapolation. Right panel, reproduced from Ref. [11]: Comparison of the gradient
flow step scaling functions from Refs. [11] (c = 0.25 and c = 0.3, blue and red bands), [22] (c = 0.45, magenta
symbols) and [23] (c = 0.2, black symbols). All three references use staggered fermions but given the different
renormalization schemes and analysis details the results are in surprisingly good agreement.

t-shift value was chosen to roughly minimize the volume dependence of β2(L; g2), 0.04 for the pla-
quette discretization and -0.065 for the clover one. Once the (a/L)2 extrapolation is taken, the value of
the t-shift becomes irrelevant. In addition we use the same t-shift at every g2

c , proving further that its
exact value is not important. Comparing the four β2(L; g2) bands in Fig. 5 shows that the continuum
limit extrapolated step scaling function will lie below the 4-loop MS prediction and also suggests an
IRFP around g2

c = 6.0. Results with c = 0.4 are similar.
The step scaling function implied by our preliminary results are in tension with the staggered

fermion results that predict βs(g2
c) increasing up to g2

c ≈ 5 before turning back and approaching zero
around g2

c = 7.4 as shown on the right panel of Fig. 5. However the DW step scaling function as
presented in Fig. 5 resolves the tension with the Nf = 10 results shown in Fig. 4. Both the maximum
and the implied zero of βs(g2

c) occurs at stronger couplings with Nf = 12 than Nf = 10.

4 Conclusion

Universality between continuum and staggered fermions at the Gaussian g2 = 0 fixed point is subtle,
but can be proven perturbatively. This proof does not apply at a g2 � 0 non-trivial conformal IRFP
and a simple 3-dimensional examples illustrates that universality can be broken near a conformal fixed
point. Several existing lattice calculations point to tensions between staggered and other fermion
formulations in 4-dimensional conformal or near-conformal systems.

Motivated by these observations and the importance of conformal and near-conformal models for
BSM phenomenology , we have initiated a study of the gradient flow step scaling function of Nf = 10
and 12 fundamental flavors with the domain wall fermions. By comparing results with domain wall
and staggered fermions we show that the two fermion formulations do not predict consistent results.
Our results are preliminary. Increased statistics and simulations at additional coupling and volumes
are needed to strengthen our conclusion. If confirmed, results based on staggered fermion simulations
of conformal systems or systems strongly influenced by a nearby conformal fixed point have to be
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taken with caution. While these studies provide important information on conformal systems, their
quantitative predictions might not be reliable.
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