ON SEPARATION AXIOMS IN INTUITIONISTIC TOPOLOGICAL SPACES

SADIK BAYHAN and DOĞAN ÇOKER

(Received 21 March 2000)

Abstract

The purpose of this paper is to investigate several types of separation axioms in intuitionistic topological spaces, developed by Çoker (2000). After giving some characterizations of T_{1} and T_{2} separation axioms in intuitionistic topological spaces, we give interrelations between several types of separation axioms and some counterexamples.

2000 Mathematics Subject Classification. 54A99.

1. Introduction. After the introduction of the concept of a fuzzy set by Zadeh [15], Atanassov [1, 2] has introduced the concept of intuitionistic fuzzy set. Later Çoker et al. $[4,5,8]$ have defined intuitionistic fuzzy topological spaces, intuitionistic sets, and intuitionistic topological spaces in [6, 9, 12].
2. Preliminaries. First we present the fundamental definitions (see Çoker [4]).

Definition 2.1 (see [4]). Let X be a nonempty fixed set. An intuitionistic fuzzy set (IS for short) A is an object having the form $A=\left\langle X, A_{1}, A_{2}\right\rangle$, where A_{1} and A_{2} are subsets of X satisfying $A_{1} \cap A_{2}=\varnothing$. The set A_{1} is called the set of members of A, while A_{2} is called the set of nonmembers of A.

Definition 2.2 (see [4]). Let X be a nonempty set and let the IS's A and B be in the form $A=\left\langle X, A_{1}, A_{2}\right\rangle, B=\left\langle X, B_{1}, B_{2}\right\rangle$, respectively. Furthermore, let $\left\{A_{i}: i \in J\right\}$ be an arbitrary family of IS's in X, where $A_{i}=\left\langle X, A_{i}^{(1)}, A_{i}^{(2)}\right\rangle$. Then
(a) $A \subseteq B$ if and only if $A_{1} \subseteq B_{1}$ and $A_{2} \supseteq B_{2}$;
(b) $A=B$ if and only if $A \subseteq B$ and $B \subseteq A$;
(c) $\bar{A}=\left\langle X, A_{2}, A_{1}\right\rangle$;
(d) $\cup A_{i}=\left\langle X, \cup A_{i}^{(1)}, \cap A_{i}^{(2)}\right\rangle$;
(e) $\cap A_{i}=\left\langle X, \cap A_{i}^{(1)}, \cup A_{i}^{(2)}\right\rangle$;
(f) []$A=\left\langle X, A_{1}, A_{1}^{c}\right\rangle$;
(g) $\left\rangle A=\left\langle X, A_{2}^{c}, A_{2}\right\rangle\right.$;
(h) $\underset{\sim}{\varnothing}=\langle X, \varnothing, X\rangle ; \underset{\sim}{X}=\langle X, X, \varnothing\rangle$.

Let X be a nonempty set, $p \in X$ a fixed element in X, and let $A=\left\langle X, A_{1}, A_{2}\right\rangle$ be an IS. The IS p defined by $p=\left\langle X,\{p\},\{p\}^{c}\right\rangle$ is called an intuitionistic point (IP for short) in X. The IS $p=\left\langle\varnothing,\{\tilde{p}\}^{c}\right\rangle$ is called a vanishing intuitionistic point (VIP for short) in X. The IS $\underset{\sim}{p}$ is said to be contained in $A\left(\underset{\sim}{p} \in A\right.$ for short) if and only if $p \in A_{1}$, and similarly, $\underset{\sim}{p}$ is said to be contained in $A \underset{\sim}{p} \in A$ for short) if and only if $p \notin A_{2}$. For a
given IS A in X, we may write

$$
\begin{equation*}
A=(\cup\{\underset{\sim}{p}: \underset{\sim}{p} \in A\}) \cup(\cup \underset{\approx}{\underset{\sim}{p}} \underset{\sim}{p}: \underset{\approx}{p} \in A\}) \tag{2.1}
\end{equation*}
$$

(cf. [9]) and whenever A is not a proper IS (i.e., if A is not of the form $A=\left\langle X, A_{1}, A_{2}\right\rangle$, where $A_{1} \cup A_{2} \neq X$), then $A=\cup\{\underset{\sim}{p}: \underset{\sim}{p} \in A\}$ follows. In general, any IS A in X can be written in the form $A=A \cup \underset{\sim}{A}$, where $\underset{\sim}{\sim}=\cup\{\underset{\sim}{p}: \underset{\sim}{p} \in A\}$ and $\underset{\sim}{A}=\cup\{\underset{\sim}{p}: \underset{\sim}{p} \in A\}$. Furthermore it is easy to show that, if $A=\left\langle X, A_{1}, A_{2}\right\rangle$, then $\underset{\sim}{A}=\left\langle X, A_{1}, A_{1}^{\widetilde{c}}\right\rangle$ and $\underset{\approx}{A}=$ $\left\langle X, \varnothing, A_{2}\right\rangle$ (cf. [4, 7]).

DEFINITION 2.3 (see [4]). Let X and Y be two nonempty sets and $f: X \rightarrow Y$ a function, $B=\left\langle Y, B_{1}, B_{2}\right\rangle$ an IS in Y and $A=\left\langle X, A_{1}, A_{2}\right\rangle$ an IS in X. Then the preimage of B under f, denoted by $f^{-1}(B)$, is the IS in X defined by $f^{-1}(B)=\left\langle X, f^{-1}\left(B_{1}\right)\right.$, $\left.f^{-1}\left(B_{2}\right)\right\rangle$, and the image of A under f, denoted by $f(A)$, is the IS in Y defined by $f(A)=\left\langle Y, f\left(A_{1}\right), f_{-}\left(A_{2}\right)\right\rangle$ where $f_{-}\left(A_{2}\right)=\left(f\left(A_{2}^{c}\right)\right)^{c}$.

You may find the fundamental properties of preimages and images in [4].
DEFINITION 2.4 (see [6]). An intuitionistic topology (IT for short) on a nonempty set X is a family τ of IS's in X containing $\underset{\sim}{\varnothing}, \underset{\sim}{X}$ and closed under finite infima and arbitrary suprema. In this case the pair (X, τ) is called an intuitionistic topological space (ITS for short) and any IS in τ is known as an intuitionistic open set (IOS for short) in X. The complement \bar{A} of an IOS A in an ITS (X, τ) is called an intuitionistic closed set (ICS for short) in X.

Let (X, τ) be an ITS on X. Then, we can also construct several other ITS's on X in the following way: $\boldsymbol{\tau}_{0,1}=\{[] G: G \in \boldsymbol{\tau}\}$ and $\boldsymbol{\tau}_{0,2}=\{\langle \rangle G: G \in \boldsymbol{\tau}\}$. Furthermore,

$$
\begin{equation*}
\boldsymbol{\tau}_{1}=\left\{G_{1}: G=\left\langle X, G_{1}, G_{2}\right\rangle \in \boldsymbol{\tau}\right\}, \quad \boldsymbol{\tau}_{2}=\left\{G_{2}^{c}: G=\left\langle X, G_{1}, G_{2}\right\rangle \in \boldsymbol{\tau}\right\} \tag{2.2}
\end{equation*}
$$

are topological spaces in X (cf. [6]).
DEFINITION 2.5. Let A and B be two IS's on X and Y, respectively. Then the product intuitionistic set (PIS for short) of A and B on $X \times Y$ is defined by $U \times V=\left\langle(X, Y), A_{1} \times\right.$ $\left.B_{1},\left(A_{2}^{c} \times B_{2}^{c}\right)^{c}\right\rangle$, where $A=\left\langle X, A_{1}, A_{2}\right\rangle$ and $B=\left\langle Y, B_{1}, B_{2}\right\rangle$.

If (X, τ) and (Y, Φ) are ITS's, then the product topology $\tau \times \Phi$ on $X \times Y$ is the IT generated by the base $\mathscr{B}=\{A \times B: A \in \tau, B \in \Phi\}$. This is so, because, if $A \times B, C \times D \in \mathscr{B}$, then $(A \times B) \cap(C \times D)=(A \cap C) \times(B \cap D)$. Let $A \in \tau, B \in \Phi$, and $A=\left\langle X, A_{1}, A_{2}\right\rangle$, $B=\left\langle Y, B_{1}, B_{2}\right\rangle$. Then we have $\pi_{1}^{-1}(A)=\left\langle(x, y), A_{1} \times Y, A_{2} \times Y\right\rangle=A \times \underset{\sim}{Y}, \pi_{2}^{-1}(B)=$ $\left\langle(X, Y), X \times B_{1}, X \times B_{2}\right\rangle=\underset{\sim}{X} \times B$, and

$$
\begin{align*}
\pi_{1}^{-1}(A) \cap \pi_{2}^{-1}(B) & =(A \times \underset{\sim}{Y}) \cap(\underset{\sim}{X} \times B) \\
& =\left\langle(X, Y),\left(A_{1} \times Y\right) \cap\left(X \times B_{1}\right),\left(A_{2} \times Y\right) \cup\left(X \times B_{2}\right)\right\rangle \\
& =\left\langle(X, Y), A_{1} \times B_{1},\left(A_{2} \times Y\right) \cup\left(X \times B_{2}\right)\right\rangle \tag{2.3}\\
& =\left\langle(X, Y), A_{1} \times B_{1},\left(A_{2}^{c} \times B_{2}^{c}\right)^{c}\right\rangle=A \times B .
\end{align*}
$$

The definition of "neighborhoods" of IP's and VIP's can be found in Coşkun and Çoker [9] and "continuous function" between ITS's can be found in Çoker [6].

Lemma 2.6. The projections $\pi_{1}: X \times Y \rightarrow X, \pi_{2}: X \times Y \rightarrow Y, \pi_{1}(x, y)=x, \pi_{2}(x, y)=$ y are continuous.

Proof. Let $A \in \tau$, then $\pi_{1}^{-1}(A)=\left\langle(x, y), \pi_{1}^{-1}\left(A_{1}\right), \pi_{1}^{-1}\left(A_{2}\right)\right\rangle$. Thus we have $\pi_{1}^{-1}(A)$ $=\left\langle(x, y), A_{1} \times Y, A_{2} \times Y\right\rangle=A \times \underset{\sim}{Y}$, that is, π_{1} is continuous.
In other words, the product topology $\tau \times \Phi$ on $X \times Y$ is indeed the initial topology on $X \times Y$ with respect to the projections $\pi_{1}: X \times Y \rightarrow X$ and $\pi_{2}: X \times Y \rightarrow Y$. Here the subbase $\left\{\pi_{1}^{-1}(A), \pi_{2}^{-1}(B): A \in \tau, B \in \Phi\right\}$ generates this product topology and the base \mathscr{B} is given by

$$
\begin{equation*}
\mathscr{B}=\left\{\pi_{1}^{-1}(A) \cap \pi_{2}^{-1}(B): A \in \tau, B \in \Phi\right\}=\{A \times B: A \in \tau, B \in \Phi\} . \tag{2.4}
\end{equation*}
$$

Definition 2.7. Given the nonempty set X, we define the diagonal Δ_{x} as the following IS in $X \times X$:

$$
\begin{equation*}
\Delta_{x}=\left\langle\left(x_{1}, x_{2}\right),\left\{\left(x_{1}, x_{2}\right): x_{1}=x_{2}\right\},\left\{\left(x_{1}, x_{2}\right): x_{1} \neq x_{2}\right\}\right\rangle . \tag{2.5}
\end{equation*}
$$

Notice that, if X and Y are two nonempty sets and $(p, q) \in X \times Y$ a fixed element in $X \times Y$, then $(p, q)_{\sim}$ is contained in $U \times V\left((p, q)_{\sim} \in U \times V\right.$ for short) if and only if $(p, q) \in U_{1} \times V_{1}$, and $(p, q) \approx$ is contained in $U \times V\left((p, q)_{\approx} \in U \times V\right.$ for short) if and only if $(p, q) \notin\left(U_{2}^{c} \times V_{2}^{c}\right)^{c}$, or equivalently $(p, q) \in U_{2}^{c} \times V_{2}^{c}$.

Definition 2.8. Let X, Y be two nonempty sets and $f: X \rightarrow Y$ a function. The graph of f, denoted by $\operatorname{GR}(f)$, is defined as the following IS in $X \times Y$:

$$
\begin{equation*}
\operatorname{GR}(f)=\left\langle(x, y),\{(x, f(x)): x \in X\},\{(x, f(x)): x \in X\}^{c}\right\rangle . \tag{2.6}
\end{equation*}
$$

3. Separation axioms in intuitionistic topological spaces. In this section, we present T_{1} and T_{2} separation axioms in ITS's. The separation axioms T_{1} and T_{2} presented here have certain similarities to those in Bayhan and Çoker [3].

Definition 3.1. Let (X, τ) be an ITS, (X, τ) is said to be
(a) $T_{1}(i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \notin U$, and $\underset{\sim}{y} \in V$, $\underset{\sim}{x} \notin V$ (cf. [3, 14]);
(b) $T_{1}(i i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \notin U$, and $\underset{\sim}{y} \in V$, $\underset{\sim}{x} \notin \underset{\sim}{x} \in V$ (cf. [3, 14]);
(c) $T_{1}(i i i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{y}}$ and $\underset{\sim}{y} \in V \subseteq \underset{\sim}{\bar{x}}$ (cf. [3]);
(d) $T_{1}(i v) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{y}}$ and $\underset{\sim}{x} \in V \subseteq \underset{\sim}{x} \underset{\sim}{x}$ (cf. [3]);
(e) $T_{1}(v) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{y} \notin U$ and $\underset{\sim}{x} \notin V$ (cf. [3]);
(f) $T_{1}(v i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{y} \notin U$ and $\underset{\sim}{x} \notin V$ (cf. [3]);
(g) $T_{1}(v i i) \Leftrightarrow \forall x \in X, \underset{\sim}{x}$ is τ-closed;
(h) $T_{1}(v i i i) \Leftrightarrow \forall x \in X, \underset{\sim}{x}$ is τ-closed.

Theorem 3.2. Let (X, τ) be an ITS, then the following implications are valid:

Proof. The proof is obvious.
Counterexample 3.3. Let $X=\{a, b, c\}$ and define the IT $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}, A, B, C, D$, $E, F, G\}$, where $A=\langle X,\{a, c\}, \varnothing\rangle, B=\langle X,\{b\}, \varnothing\rangle, C=\langle X,\{a\}, \varnothing\rangle, D=\langle X,\{c\}, \varnothing\rangle$, $E=\langle X,\{a, b\}, \varnothing\rangle, F=\langle X,\{b, c\}, \varnothing\rangle, G=\langle X, \varnothing, \varnothing\rangle$. Then (X, τ) is $T_{1}(i)$, but not $T_{1}(i i)$.

Counterexample 3.4. Let $X=\{a, b\}$ and define the IT $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}, A, B\}$ on X, where $A=\langle X, \varnothing,\{a\}\rangle, B=\langle X, \varnothing,\{b\}\rangle$. Then it is clear that (X, τ) is $T_{1}(v)$, but not $T_{1}(i)$.

Counterexample 3.5. Let $X=\{a, b, c\}$ and define the IT $\tau=\{\underset{\sim}{\varnothing} \underset{\sim}{\underset{\sim}{D}} \underset{\sim}{X}, A, B, C, D, E, F\}$ on X, where $A=\langle X, \varnothing,\{a, b\}\rangle, B=\langle X,\{c\},\{a, b\}\rangle, C=\langle X, \varnothing,\{b, c\}\rangle, D=\langle X,\{c\},\{b\}\rangle$, $E=\langle X,\{a, c\},\{b\}\rangle, F=\langle X, \varnothing,\{b\}\rangle$. Then (X, τ) is $T_{1}(v i)$, but not $T_{1}(i i)$.

Counterexample 3.6. Let $X=\{a, b, c\}$ and define the IS's $A=\langle X,\{a\},\{c\}\rangle, B=$ $\langle X,\{b\},\{a\}\rangle, C=\langle X,\{a\},\{b, c\}\rangle, D=\langle X, \varnothing,\{b\}\rangle, E=\langle X,\{a, b\}, \varnothing\rangle, F=\langle X, \varnothing,\{a, c\}\rangle$, $G=\langle X, \varnothing,\{b, c\}\rangle, H=\langle X,\{a\}, \varnothing\rangle, K=\langle X,\{a\},\{b\}\rangle$. Let τ denote the IT on X generated by the subbase $S=\{A, B, C, D, E, F, G, H, K\}$. Then (X, τ) is clearly $T_{1}(i v)$, but not T_{1} (iii).
 $C, D, E, F, G\}$, where $A=\langle X,\{a\}, \varnothing\rangle, B=\langle X,\{b\},\{\varnothing\}\rangle, C=\langle X,\{c\}, \varnothing\rangle, D=\langle X,\{a, b\}, \varnothing\rangle$, $E=\langle X,\{b, c\}, \varnothing\rangle, F=\langle X,\{a, b, c\}, \varnothing\rangle, G=\langle X, \varnothing, \varnothing\rangle$. Then the ITS (X, τ) is $T_{1}(v)$, but not $T_{1}(v i)$.

Counterexample 3.8. Let $X=\{a, b, c\}$ and consider the family $\tau=\{\underset{\sim}{\varnothing} \underset{\sim}{\underset{\sim}{X}} \underset{\sim}{X}, A, B, C$, $D, E, F, G, H, K\}$, where $A=\langle X,\{a\},\{c\}\rangle, B=\langle X,\{b\}, \varnothing\rangle, C=\langle X,\{c\}, \varnothing\rangle, D=\langle X,\{a, b\}$, $\varnothing\rangle, E=\langle X,\{a, c\}, \varnothing\rangle, F=\langle X,\{b, c\}, \varnothing\rangle, G=\langle X, \varnothing,\{c\}\rangle, H=\langle X, \varnothing, \varnothing\rangle, K=\langle X,\{a\}, \varnothing\rangle$. Then the ITS (X, τ) on X is $T_{1}(i)$, but not $T_{1}(i i i)$.

Counterexample 3.9. Let $X=\{a, b, c\}$ and consider the family $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}, A, B, C$, $D, E, F, G\}$, where $A=\langle X,\{a, c\}, \varnothing\rangle, B=\langle X,\{b, c\}, \varnothing\rangle, C=\langle X,\{b\}, \varnothing\rangle, D=\langle\tilde{X},\{\tilde{a}, b\}, \varnothing\rangle$, $E=\langle X,\{c\}, \varnothing\rangle, F=\langle X,\{a\}, \varnothing\rangle, G=\langle X, \varnothing, \varnothing\rangle$. Then the ITS (X, τ) on X is $T_{1}(i v)$, but not $T_{1}(i i)$.

COUNTEREXAMPLE 3.10 (see [6]). Let $X=\mathbb{N}^{+}$and consider the IS's A_{n} given below:

$$
\begin{align*}
& A_{1}=\langle X,\{2,3,4, \ldots\}, \varnothing\rangle \\
& A_{2}=\langle X,\{3,4,5, \ldots\},\{1\}\rangle \\
& A_{3}=\langle X,\{4,5,6, \ldots\},\{1,2\}\rangle, \tag{3.2}\\
& A_{n}=\langle X,\{n+1, n+2, n+3, \ldots\},\{1,2,3, \ldots, n-1\}\rangle \quad(n \geq 2) .
\end{align*}
$$

Then $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}\} \cup\left\{A_{n}: n=1,2,3, \ldots\right\}$ is an IT on X. Clearly (X, τ) is $T_{1}(v i)$, but not $T_{1}(i i)$.

Proposition 3.11. Let (X, τ) be an ITS. Then
(a) (X, τ) is $T_{1}(i)$ if and only if $\left(X, \tau_{1}\right)$ is T_{1}.
(b) (X, τ) is $T_{1}($ ii $)$ if and only if $\left(X, \tau_{2}\right)$ is T_{1}.
(c) (X, τ) is $T_{1}(i)$ if and only if $\left(X, \tau_{0,1}\right)$ is $T_{1}(i)$.
(d) (X, τ) is $T_{1}($ ii $)$ if and only if $\left(X, \tau_{0,2}\right)$ is $T_{1}(i i)$.

DEFINITION 3.12. Let (X, τ) be an ITS. (X, τ) is said to be
(a) $T_{2}(i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \cap V=\underset{\sim}{\varnothing}$ (cf. [3, 13]);
(b) $T_{2}(i i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \cap V=\underset{\sim}{\varnothing}$ (cf. [3, 13]);
(c) $T_{2}(i i i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \subseteq \bar{V}$ (cf. [3, 10]);
(d) $T_{2}(i v) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \subseteq \bar{V}$ (cf. [3, 10]);
(e) $T_{2}(v) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\bar{y}}, \underset{\sim}{y} \in V \subseteq \underset{\sim}{x}$, and $U \cap V=\underset{\sim}{\varnothing}$ (cf. [3, 11]);
(f) $T_{2}(v i) \Leftrightarrow \forall x, y \in X(x \neq y) \exists U, V \in \tau$ such that $\underset{\sim}{x} \in U \subseteq \underset{\sim}{\underset{\sim}{y}} \underset{\sim}{\underset{\sim}{x}} \underset{\sim}{y} \in V \subseteq \underset{\sim}{x}$, and $U \cap V=\underset{\sim}{\varnothing}$ (cf. [3, 11]);
(g) $T_{2}(v i i) \Leftrightarrow \Delta_{x}$ is an ICS in the product ITS $\left(X \times X, \tau_{X \times X}\right)$.

Theorem 3.13. Let (X, τ) be an ITS. Then the following implications are valid:

Proof. We prove only the case $T_{2}(i) \Rightarrow T_{2}(v i i)$. We must see that $\bar{\Delta}_{X}$ is an IOS in $\left(X \times X, \tau_{X \times X}\right)$. Let $(x, y)_{\sim} \in \bar{\Delta}_{X}$. This means that $(x, y) \in\{(x, y): x \neq y\}$, that is, $x \neq y$. Since (X, τ) is $T_{2}(i)$, there exist $U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{\underset{U}{U}} \underset{\sim}{ } V$, and $U \cap V=\underset{\sim}{\varnothing}$. Now in this case we have $(x, y)_{\sim} \in U \times V \subseteq \bar{\Delta}_{X}$. Indeed, from $x \in \tilde{U}_{1}$ and $y \in V_{1}$ we get
$(x, y) \in U_{1} \times V_{1}$, that is, $(x, y)_{\sim} \in U \times V$. We also know that $U \times V \subseteq \bar{\Delta}_{X} \Leftrightarrow U_{1} \times V_{1} \subseteq$ $\{(x, y): x \neq y\}$ and $\left(U_{2}^{c} \times V_{2}^{c}\right)^{c} \supseteq\{(x, y): x=y\}$. If $\left(y_{1}, y_{2}\right) \in U_{1} \times V_{1}$, then $y_{1} \in U_{1}$, $y_{2} \in V_{1} \Rightarrow y_{1} \neq y_{2} \Rightarrow\left(y_{1}, y_{2}\right) \in\{(x, y): x \neq y\}$ follows. Thus the first inclusion is true. For the second, $\left(y_{1}, y_{2}\right) \in U_{2}^{c} \times V_{2}^{c} \Rightarrow y_{1} \in U_{2}^{c}$ and $y_{2} \in V_{2}^{c} \Rightarrow y_{1} \neq y_{2}$, that is, we have $U_{2}^{c} \times V_{2}^{c} \subseteq\{(x, y): x \neq y\}$. Thus we see that $\left(y_{1}, y_{2}\right) \in\{(x, y): x=y\}$. The second inclusion is true, too. Now since

$$
\begin{equation*}
\bar{\Delta}_{X}=\bigcup_{\left(y_{1}, y_{2}\right)_{\sim} \in \bar{\Delta}_{x}}\left(y_{1}, y_{2}\right)_{\sim}, \tag{3.4}
\end{equation*}
$$

it follows from the fact that $\bar{\Delta}_{X}$ is not a proper IS, that $\bar{\Delta}_{X}$ is an IOS in $(X \times X)$, that is, (X, τ) is $T_{2}(v i i)$.

Counterexample 3.14. Let $X=\{a, b\}$ and consider the family $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}, A, B\}$ on X, where $A=\langle X, \varnothing,\{b\}\rangle, B=\langle X, \varnothing,\{a\}\rangle$. Then the ITS (X, τ) on X is $\tilde{T_{2}}(\tilde{i u})$, but not $T_{2}(i)$.

Counterexample 3.15. Let $X=\{a, b, c\}$ and define the IS's $A=\langle X, \varnothing,\{b, c\}\rangle$, $B=\langle X,\{b\},\{a\}\rangle, C=\langle X,\{a\},\{c\}\rangle$, and $D=\langle X, \varnothing,\{a, b\}\rangle$. Let τ denote the IT on X generated by the subbase $S=\{A, B, C, D\}$. Then (X, τ) is $T_{2}(i v)$, but not $T_{2}(i i i)$

Counterexample 3.16. Let $X=\{a, b, c\}$ and consider the family $\tau=\{\underset{\sim}{\varnothing}, \underset{\sim}{X}, A, B, C$, $D, E, F, G, H, K, L, M\}$ on X, where $A=\langle X, \varnothing,\{b\}\rangle, B=\langle X, \varnothing,\{a, c\}\rangle, C=\langle X,\{a\},\{b, c\}\rangle$, $D=\langle X, \varnothing,\{a\}\rangle, E=\langle X, \varnothing,\{a, b\}\rangle, F=\langle X, \varnothing,\{c\}\rangle, G=\langle X,\{a\},\{c\}\rangle, H=\langle X,\{a\}, \varnothing\rangle$, $K=\langle X,\{a\},\{b\}\rangle, L=\langle X, \varnothing,\{b, c\}\rangle$, and $M=\langle X, \varnothing, \varnothing\rangle$. Then the ITS (X, τ) on X is $T_{2}(v i)$, but not $T_{2}(v)$.

Counterexample 3.17. Let $X=\{a, b, c, d\}$ and define the IS's $A=\langle X,\{a\},\{b\}\rangle$, $B=\langle X,\{b\},\{a, d\}\rangle, C=\langle X,\{b\},\{c\}\rangle, D=\langle X,\{c\},\{a, b\}\rangle, E=\langle X,\{a\},\{d\}\rangle, F=\langle X,\{d\}$, $\{a\}\rangle, G=\langle X,\{b\},\{d\}\rangle, H=\langle X,\{d\},\{b\}\rangle, K=\langle X,\{c\},\{d\}\rangle, L=\langle X,\{d\},\{c\}\rangle, M=$ $\langle X,\{a\},\{c\}\rangle$, and $N=\langle X,\{c\},\{a\}\rangle$. Let τ denote the IT on X generated by the subbase $S=\{A, B, C, D, E, F, G, H, K, L, M, N\}$. Then (X, τ) is $T_{2}(i i i)$, but not $T_{2}(i)$.

Counterexample 3.18. Let $X=\{a, b\}$ and consider the family $\tau=\{\underset{\sim}{\underset{\sim}{\sim}} \underset{\sim}{X}, A, B\}$ on X, where $A=\langle X,\{b\}, \varnothing\rangle, B=\langle X, \varnothing,\{b\}\rangle$. Then the ITS (X, τ) on X is $T_{2}(i v)$, but not $T_{2}(i i)$.

Counterexample 3.19. We consider the IT on X as in Counterexample 3.15. (X, τ) is $T_{2}(i v)$, but not $T_{2}(i)$.

Counterexample 3.20. We consider the ITS on X as in Counterexample 3.14. (X, τ) is $T_{2}(i i)$, but not $T_{2}(v)$.

Proposition 3.21. Let (X, τ) be an ITS. Then
(a) (X, τ) is $T_{2}(i) \Rightarrow\left(X, \tau_{1}\right)$ is T_{2}.
(b) (X, τ) is $T_{2}(i i) \Rightarrow\left(X, \tau_{2}\right)$ is T_{2}.

Proposition 3.22. Let (X, τ) be an ITS. Then
(a) (X, τ) is $T_{2}(i) \Rightarrow\left(X, \tau_{0,1}\right)$ is $T_{2}(i)$.
(b) (X, τ) is $T_{2}(i i) \Rightarrow\left(X, \tau_{0,2}\right)$ is $T_{2}(i i)$.

THEOREM 3.23. Let (X, τ) be an ITS. Then the following implications are valid:
(a) $T_{2}(i) \Rightarrow T_{1}(i i i)$.
(b) $T_{2}(i i) \Rightarrow T_{1}(i i)$.
(c) $T_{2}(i i i) \Rightarrow T_{1}(i i i)$.
(d) $T_{2}(i v) \Rightarrow T_{1}(i v)$.
(e) $T_{2}(v) \Rightarrow T_{1}(i i i)$.
(f) $T_{2}(v i) \Rightarrow T_{1}(v i)$.

Proof. The proof is obvious.
Proposition 3.24. Let (X, τ) be $T_{2}(i)$. Then every intuitionistic point x is the intersection of all the intuitionistic closed neighborhoods of $\underset{\sim}{x}$.

Proof. Let (X, τ) be $T_{2}(i)$ and $x \in X$. We denote the intersection of IC neighborhoods of $\underset{\sim}{x}$ by the IS $C=\left\langle X, C_{1}, C_{2}\right\rangle$. We assume the contrary and suppose that there exists a distinct IP y in C, that is, $y \in C_{1}$.
CASE 1. $\{x\} \underset{\neq}{\subset} C_{1}$, then there exists $y \in C_{1}$ such that $x \neq y$. Since (X, τ) is $T_{2}(i)$, there exist IOS's U and V such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \cap V=\underset{\sim}{\varnothing}$ which implies that $U \subseteq \bar{V}$. Hence we have $\underset{\sim}{x} \in U \subseteq \bar{V}$. Thus \bar{V} is a closed neighborhood of $\underset{\sim}{x}$. From our assumption, we get $\underset{\sim}{y} \in \bar{V}$. But it is a contradiction, since $V_{1} \cap V_{2}=\varnothing$. Thus our assumption is false. This means that C consists only of the IP $\underset{\sim}{x}$.
CASE 2. $\{x\} \subset C_{2}^{c}$ and $\{x\}=C_{1}$, then there exists $y \in C_{2}^{c}$ such that $y \neq x$. Since (X, τ) is $T_{2}(i)$, there exist IOS's $U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{y} \in V$, and $U \cap V=\underset{\sim}{\varnothing} \underset{\sim}{\underset{\sim}{x}}$ and the same result as in the previous assumption holds in this case, too.

Proposition 3.25. Let (X, τ) be an ITS, (Y, Φ) a $T_{2}(i)$ ITS and $f:(X, \tau) \rightarrow(Y, \Phi) a$ continuous function. Then the graph of f is an ICS in $X \times Y$.

Proof. We must show that $\overline{\operatorname{GR}(f)}$ is an IOS in $X \times Y$. Let $(x, y)_{\sim} \in \overline{\operatorname{GR}(f)}$. Then $(x, y) \in\{(x, f(x)): x \in X\}^{c}$ which implies that $y \neq f(x)$. Since (Y, Φ) is $T_{2}(i)$, there exist $U, V \in \Phi$ such that $\underset{\sim}{x} \in U, f(\underset{\sim}{x}) \in V$, and $U \cap V=\underset{\sim}{\varnothing}$. From the assumption that f is continuous, we see that $f^{-1}(V)=\left\langle X, f^{-1}\left(V_{1}\right), f^{-1}\left(V_{2}\right)\right\rangle$ is an open neighborhood of $\underset{\sim}{x}$. Also $f^{-1}(V) \times U$ is an open neighborhood of $(x, y)_{\sim}$. It can be shown easily that $f^{-1}(V) \times U \subseteq \overline{\mathrm{GR}(f)}$. Since $\overline{\mathrm{GR}(f)}$ is not a proper IS in $X \times Y$, our assumption holds, that is, $\overline{\operatorname{GR}(f)}$ is an IOS in $X \times Y$.

Proposition 3.26. Let (X, τ) be an ITS, (Y, Φ) a $T_{2}(i)$ ITS and $f:(X, \tau) \rightarrow(Y, \Phi)$ a continuous function. Then the IS $C=\left\{\left(x_{1}, x_{2}\right),\left\{\left(x_{1}, x_{2}\right): f\left(x_{1}\right)=f\left(x_{2}\right)\right\},\left\{\left(x_{1}, x_{2}\right)\right.\right.$: $\left.\left.f\left(x_{1}\right) \neq f\left(x_{2}\right)\right\}\right\rangle$ in $X \times Y$ is an ICS in $X \times Y$.

Proof. A similar argument as in the proof of Proposition 3.25 can be followed.

Proposition 3.27. Let (X, τ) and (Y, Φ) be two ITS's. Then
(a) If (X, τ) and (Y, Φ) are $T_{1}(i)$, then so is $(X \times Y, \tau \times \Phi)$.
(b) If (X, τ) and (Y, Φ) are $T_{1}(i i)$, then so is $(X \times Y, \tau \times \Phi)$.

Proof. (a) Let (X, τ) and (Y, Φ) be $T_{1}(i)$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ and $\left(x_{1}, y_{1}\right) \neq$ $\left(x_{2}, y_{2}\right)$. Now suppose that $x_{1} \neq x_{2}$. Since (X, τ) is $T_{1}(i)$ then there exist $U, V \in \tau$ such that $\underset{\sim}{x} \in U, \underset{\sim}{x_{2}} \notin U$, and $\underset{\sim}{x} x_{2} \in V, \underset{\sim}{x} \notin V$. Then we have IOS's $U \times \underset{\sim}{Y}=\left\langle(X, Y), U_{1} \times\right.$ $\left.Y,\left(U_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ and $V \times \underset{\sim}{Y}=\left\langle(X, Y), V_{1} \times Y,\left(V_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ in $\tau \times \Phi$ having the properties $\left(x_{1}, y_{1}\right)_{\sim} \in U \times \underset{\sim}{Y},\left(x_{2}, y_{2}\right)_{\sim} \notin U \times \underset{\sim}{Y}$, and $\left(x_{2}, y_{2}\right)_{\sim} \in V \times \underset{\sim}{Y},\left(x_{1}, y_{1}\right)_{\sim} \notin V \times \underset{\sim}{Y}$. We can prove the case $y_{1} \neq y_{2}$ similarly. Thus we conclude that $(X \times Y, \tau \times \Phi)$ is $T_{1}(i)$.
(b) Similar to the previous one.

Proposition 3.28. Let (X, τ) and (y, Φ) be two ITS's. Then
(a) If (X, τ) and (Y, Φ) are $T_{2}(i)$, then so is $(X \times Y, \tau \times \Phi)$.
(b) If ($X, \tau)$ and (Y, Φ) are $T_{2}(i i)$, then so is $(X \times Y, \tau \times \Phi)$.
(c) If (X, τ) and (Y, Φ) are $T_{2}(i i i)$, then so is $(X \times Y, \tau \times \Phi)$.
(d) If (X, τ) and (Y, Φ) are $T_{2}(v i i)$, then so is $(X \times Y, \tau \times \Phi)$.

Proof. (a) Let $(X, \tau),(Y, \Phi)$ be $T_{2}(i)$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$, and $\left(x_{1}, y_{1}\right) \neq$ (x_{2}, y_{2}) and suppose that $x_{1} \neq x_{2}$. Since (X, τ) is $T_{2}(i)$ then there exist $U, V \in \tau$ such that $\underset{\sim}{x_{1}} \in U, \underset{\sim}{x_{2}} \in V$, and $U \cap V=\underset{\sim}{\varnothing}$. Then we can form the IOS's $U \times \underset{\sim}{Y}=\left\langle(X, Y), U_{1} \times\right.$ $\left.Y,\left(U_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ and $V \times \underset{\sim}{Y}=\left\langle(X, Y), V_{1} \times Y,\left(V_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ in $\tau \times \Phi$ which contains $\left(x_{1}, y_{1}\right)_{\sim}$ and $\left(x_{2}, y_{2}\right)_{\sim}$, respectively. Now we must see that $(U \times \underset{\sim}{Y}) \cap(V \times \underset{\sim}{Y})=\underset{\sim}{\varnothing}$. Indeed,

$$
\begin{align*}
(U \times \underset{\sim}{Y}) \cap(V \times \underset{\sim}{Y}) & =\left\langle(X, Y),\left(U_{1} \times Y\right) \cap\left(V_{1} \times Y\right),\left(U_{2}^{c} \times \varnothing^{c}\right)^{c} \cup\left(V_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle \\
& =\left\langle(X, Y),\left(U_{1} \cap V_{1}\right) \times(Y \cap Y),\left[\left(U_{2}^{c} \times Y\right) \cap\left(V_{2}^{c} \times Y\right)\right]^{c}\right\rangle \\
& =\left\langle(X, Y), \varnothing \times Y,\left[\left(U_{2}^{c}\right) \cap\left(V_{2}^{c}\right) \times(Y \cap Y)\right]^{c}\right\rangle \tag{3.5}\\
& =\langle(X, Y), \varnothing, X \times Y\rangle=\underset{\sim}{\varnothing} .
\end{align*}
$$

Thus $(X \times Y, \boldsymbol{\tau} \times \Phi)$ is $T_{2}(i)$.
(b) Similar to previous one.
(c) Assume that (X, T) and (Y, Φ) are $T_{2}(i i i)$. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in X \times Y$ and $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$. Suppose that $x_{1} \neq x_{2}$. Since (X, τ) is $T_{2}(i i i)$, then there exist $U, V \in$ τ such that $x_{1} \in U, x_{2} \in V$, and $U \subseteq \bar{V}$. Then we have IOS's $U \times \underset{\sim}{Y}=\left\langle(X, Y), U_{1} \times\right.$ $\left.Y,\left(U_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ and $V \times \underset{\sim}{Y}=\left\langle(X, Y), V_{1} \times Y,\left(V_{2}^{c} \times \varnothing^{c}\right)^{c}\right\rangle$ in $\tau \times \Phi$ containing $\left(x_{1}, y_{1}\right) \sim$ and $\left(x_{2}, y_{2}\right)_{\sim}$, respectively. Now, it is easy to see that $U \times \underset{\sim}{Y} \subseteq \overline{V \times \underset{\sim}{Y}}$ holds, which is identical to $U_{1} \times Y \subseteq\left(V_{2}^{c} \times Y\right)^{c}$ and $V_{1} \times Y \subseteq\left(U_{2}^{c} \times Y\right)^{c}$. A similar argument holds if $y_{1} \neq y_{2}$. Thus we conclude that $(X \times Y, \tau \times \Phi)$ is $T_{2}(i i i)$.
(d) We are to show that $\Delta_{X \times Y}$ is an ICS, that is, $\bar{\Delta}_{X \times Y}$ is an IOS. Since $\bar{\Delta}_{X \times Y}$ is not a proper IS in $X \times Y$, it is sufficient to show that for every $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)_{\sim} \in \bar{\Delta}_{X \times Y}$, there exists an IOS S in $(X \times Y) \times(X \times Y)$ such that $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)_{\sim} \in S \subseteq \bar{\Delta}_{X \times Y}$. Since $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)_{\sim} \in \bar{\Delta}_{X \times Y}$, we get $\left(\left(p_{1}, q_{1}\right) \neq\left(p_{2}, q_{2}\right)\right)_{\sim}$, that is, $p_{1} \neq p_{2}$ or $q_{1} \neq q_{2}$. Here come three possible cases:
(1) $p_{1} \neq p_{2}, q_{1}=q_{2}$;
(2) $p_{1}=p_{2}, q_{1} \neq q_{2}$;
(3) $p_{1} \neq p_{2}, q_{1} \neq q_{2}$.

Here we show only case (3). Other cases can be proved similarly. Let $p_{1} \neq p_{2}$, $q_{1} \neq q_{2}$. Since $\left(p_{1}, p_{2}\right)_{\sim} \in \bar{\Delta}_{X},\left(q_{1}, q_{2}\right)_{\sim} \in \bar{\Delta}_{Y}$ and $\bar{\Delta}_{X}, \bar{\Delta}_{Y}$ are IOS's, $\exists U_{1}, U_{2} \in \tau$ and V_{1},
$V_{2} \in \Phi$ such that $\left(p_{1}, p_{2}\right)_{\sim} \in U_{1} \times U_{2} \subseteq \bar{\Delta}_{X}$ and $\left(q_{1}, q_{2}\right)_{\sim} \in V_{1} \times V_{2} \subseteq \bar{\Delta}_{Y}$. We prove that $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)_{\sim} \in\left(U_{1} \times V_{1}\right) \times\left(U_{2} \times V_{2}\right) \subseteq \bar{\Delta}_{X \times Y}$. This can be shown in two steps.
STEP 1. The expression $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right)_{\sim} \in\left(U_{1} \times V_{1}\right) \times\left(U_{2} \times V_{2}\right)$ is equivalent to $\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right) \in\left(U_{1} \times V_{1}\right)^{(1)} \times\left(U_{2} \times V_{2}\right)^{(1)} \Leftrightarrow\left(\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)\right) \in\left(U_{1}^{(1)} \times V_{1}^{(1)}\right) \times$ $\left(U_{2}^{(1)} \times V_{2}^{(1)}\right)$. This means that $\left(p_{1}, q_{1}\right) \in U_{1}^{(1)} \times V_{1}^{(1)}$ and $\left(p_{2}, q_{2}\right) \in U_{2}^{(1)} \times V_{2}^{(1)}$ which are true, since $p_{1} \in U_{1}^{(1)}, p_{2} \in U_{2}^{(1)}, q_{1} \in V_{1}^{(1)}, q_{2} \in V_{2}^{(1)}$.
STEP 2. We show the inclusion $\left(U_{1} \times V_{1}\right) \times\left(U_{2} \times V_{2}\right) \subseteq \bar{\Delta}_{X \times Y}$. For this purpose we must first show that $\left(U_{1} \times V_{1}\right)^{(1)} \times\left(U_{2} \times V_{2}\right)^{(1)} \subseteq\left\{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right):\left(u_{1}, v_{1}\right) \neq\right.$ $\left.\left(u_{2}, v_{2}\right)\right\}$ or equivalently, $\left(U_{1}^{(1)} \times V_{1}^{(1)}\right) \times\left(U_{2}^{(1)} \times V_{2}^{(1)}\right) \subseteq\left\{\left(\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right):\left(u_{1}, v_{1}\right) \neq\right.$ $\left.\left(u_{2}, v_{2}\right)\right\}$. This is true since $U_{1} \times U_{2} \subseteq \bar{\Delta}_{X}$ and $V_{1} \times V_{2} \subseteq \bar{\Delta}_{Y}$, we have $U_{1}^{(1)} \times U_{2}^{(1)} \subseteq$ $\left\{\left(u_{1}, u_{2}\right): u_{1} \neq u_{2}\right\}$ and $V_{1}^{(1)} \times V_{2}^{(1)} \subseteq\left\{\left(v_{1}, v_{2}\right): v_{1} \neq v_{2}\right\}$, respectively. Thus the first inclusion is true. The second inclusion can be proved similarly. Hence $\bar{\Delta}_{X \times Y}$ is an IOS, that is, $\bar{\Delta}_{X \times Y}$ is an ICS, which means that $(X, Y, \tau \times \Phi)$ is $T_{2}(v i i)$.

Remark 3.29. Let (X, τ) and ($Y, \Phi)$ be $T_{2}(i v)$. Then $(X \times Y, \tau \times \Phi)$ may not be $T_{2}(i v)$.
Here come the reverse implications.
Proposition 3.30. Let (X, τ) and (Y, Φ) be two ITS's. Then
(a) If $(X \times Y, \tau \times \Phi)$ is $T_{2}(i)$, then so are (X, τ) and (Y, Φ).
(b) If $(X \times Y, \tau \times \Phi)$ is $T_{2}(i i)$, then so are (X, τ) and (Y, Φ).
(c) If $(X \times Y, \tau \times \Phi)$ is $T_{2}(i i i)$, then so are ($X, \boldsymbol{\tau}$) and (Y, Φ).

Proof. The proofs of (a) and (b) are easy. (c) Let ($X \times Y, \tau \times \Phi$) be T_{2} (iii), and $x_{1} \neq x_{2}\left(x_{1}, x_{2} \in X\right)$. We take a fixed $y \in Y$. Then, since $\left(x_{1}, y\right) \neq\left(x_{2}, y\right)$ and $X \times Y$ is T_{2} (iii), there exist $U \times Z$ and $V \times T$ where $U, V \in \tau$ and $Z, T \in \Phi$ such that $\left(x_{1}, y\right)_{\sim} \in$ $U \times Z,\left(x_{2}, y\right)_{\sim} \in V \times T$, and $U \times Z \subseteq \overline{V \times T}$. Thus we get $\left(x_{1}, y\right) \in U_{1} \times Z_{1},\left(x_{2}, y\right) \in$ $V_{1} \times T_{1}$, and $U_{1} \times Z_{1} \subseteq\left(V_{2}^{c} \times T_{2}^{c}\right)^{c}, V_{1} \times T_{1} \subseteq\left(U_{2}^{c} \times Z_{2}^{c}\right)^{c}$; in other words $x_{1} \in U_{1}, y \in Z_{1}$, $x_{2} \in V_{1}, y \in T_{1}$, and $\left(U_{1} \times Z_{1}\right) \cap\left(V_{2}^{c} \times T_{2}^{c}\right)=\varnothing,\left(V_{1} \times T_{1}\right) \cap\left(U_{2}^{c} \times Z_{2}^{c}\right)=\varnothing$. From the last intersection we get $\left(U_{1}^{c} \times V_{2}^{c}\right) \times\left(Z_{1} \cap T_{2}^{c}\right)=\varnothing$ and $\left(V_{1} \cap U_{2}^{c}\right) \times\left(T_{1} \cap Z_{2}^{c}\right)=\varnothing$, respectively. $y \in Z_{1}$ and $y \in T_{1}$ implies that $Z_{1} \cap T_{2}^{c} \neq \varnothing$ and $U_{1} \cap V_{2}^{c}=\varnothing$ from which $U_{1} \subseteq V_{2}$ follows. Similarly $y \in T_{1} \cap Z_{2}^{c}$ and $V_{1} \cap U_{2}^{c}=\varnothing$ meaning that $V_{1} \subseteq U_{2}$. Thus $x_{1} \in U, x_{2} \in V$, and $U \subseteq \bar{V}$, that is, (X, τ) is T_{2} (iii). Similarly (Y, Φ) is $T_{2}(i i i)$, too.

References

[1] K. Atanassov, Intuitionistic fuzzy sets, VII ITKR’s Session (Sofia, June 1983 Central Sci. and Tech. Library) (V. Sgurev, ed.), Blug. Academy of Sciences, Sofia, 1984.
[2] _- Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. MR 87f:03151. Zbl 631.03040.
[3] S. Bayhan and D. Çoker, On fuzzy separation axioms in intuitionistic fuzzy topological spaces, BUSEFAL 67 (1996), 77-87.
[4] D. Çoker, A note on intuitionistic sets and intuitionistic points, Turkish J. Math. 20 (1996), no. 3, 343-351. MR 99c:03100. Zbl 862.04007.
[5]
__ An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81-89. MR 97m:54009. Zbl 923.54004.
[6]
___ An introduction to intuitionistic topological spaces, BUSEFAL 81 (2000), 51-56.
[7] D. Çoker and M. Demirci, On intuitionistic fuzzy points, Notes IFS 1 (1995), no. 2, 79-84. CMP 1417 217. Zbl 850.04011.
[8] D. Çoker and A. H. Eş, On fuzzy compactness in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 3 (1995), no. 4, 899-909. MR 96j:54010. Zbl 846.54003.
[9] E. Coşkun and D. Çoker, On neighborhood structures in intuitionistic topological spaces, Math. Balkanica (N.S.) 12 (1998), no. 3-4, 283-293. MR 1688 660. Zbl 01505530.
[10] A. A. Fora, Separation axioms for fuzzy spaces, Fuzzy Sets and Systems 33 (1989), no. 1, 59-75. MR 90k:54011. Zbl 702.54007.
[11] M. H. Ghanim, E. E. Kerre, and A. S. Mashhour, Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl. 102 (1984), no. 1, 189-202. MR 86i:54005. Zbl 543.54006.
[12] S. Özçağ and D. Çoker, On connectedness in intuitionistic fuzzy special topological spaces, Int. J. Math. Math. Sci. 21 (1998), no. 1, 33-40. CMP 1486 955. Zbl 892.54005.
[13] R. Srivastava, S. N. Lal, and A. K. Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981), no. 2, 497-506. MR 83j:54005. Zbl 491.54004.
[14] , Fuzzy T_{1}-topological spaces, J. Math. Anal. Appl. 102 (1984), no. 2, 442-448. MR 85m:54008. Zbl 557.54003.
[15] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), 338-353. MR 36\#2509. Zbl 0139.24606.

Sadik Bayhan: Department of Mathematics, Hacettepe University, Beytepe, 06532 Ankara, Turkey

DoĞan Çoker: Department of Mathematics, Akdeniz University, 07058 Antalya, Turkey

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

