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We discuss the calculation of integral cohomology ring of LG/T and QG. First we de-
scribe the root system and Weyl group of LG, then we give some homotopy equivalences
on the loop groups and homogeneous spaces, and calculate the cohomology ring struc-
tures of LG/T and QG for affine group A,. We introduce combinatorial integers (m]")
which play a crucial role in our calculations and give some interesting identities among
these integers. Last we calculate generators for ideals and rank of each module of graded
integral cohomology algebra in the local coefficient ring Z[1/2].
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1. Introduction

Kumar described the Schubert classes which are the dual to the closures of the Bruhat cells
in the flag varieties of the Kac-Moody groups associated to the infinite dimensional Kac-
Moody algebras [17]. These classes are indexed by affine Weyl groups and can be chosen
as elements of integral cohomologies of the homogeneous space Lpol Ge/B for any com-
pact simply connected semisimple Lie group G. Later, S. Kumar, and B. Kostant described
explicit cup product formulas of these classes in the cohomology algebras by using the re-
lation between the invariant-theoretic relative Lie algebra cohomology theory (using the
representation module of the nilpotent part) with the purely nil-Hecke rings [16]. These
explicit product formulas involve some BGG-type operators A’ and reflections. In the
published work [20] of the first author, using some homotopy equivalences, cohomology
ring structures of LG/T have been determined where LG is the smooth loop space on G.
He has calculated the products and explicit ring structure of LSU,/T using these ideas.
He found that it has a quotient of the divided power algebra. In this work, we list explicit
presentation of affine Weyl group of the loop group LSUs. We calculate generators for
ideals and the rank of the modules of graded cohomology algebra of LSU3/T and QSUs
in the coefficient ring Z[1/2].

Some comments about the structure of this work are in order. It is written for a reader
with a first course in algebraic topology and some understanding of the structure of
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2 Divided power algebras and Schubert calculus

compact semisimple Lie groups and their representations, plus symbolic computation
and some mathematical maturity. Some good general references are Bredon [2] for topol-
ogy and geometry, Pressley-Segal [22] for loop groups and their representations, Kac
[14] for Kac-Moody algebra theory, Hiller [10] for reflection and Coxeter groups, and
Humphreys [11] for Lie algebras and representations.

The organization of this work is as follows.

In Section 2, we describe the root system and Weyl group of LG and we give the group
presentation of the affine Weyl group of A,. We classify all elements of affine Weyl group
Wand W = W/W forffz.

In Section 3 some homotopy equivalences between loop groups and homogeneous
spaces are given.

Section 4 includes all details about Schubert calculus and cohomology of the flag space
G/B for Kac-Moody group G. In this section, we give some facts and results about Kac-
Moody Lie algebras and associated groups and the construction of dual Schubert cocycles
on the flag spaces by using the relative Lie algebra cohomology tools. The rest of the
section includes cup product formula.

In Section 5, we introduce combinatorial integers (’"J”) and give some interesting
properties of them.

In Section 6, we discuss the calculation of cohomology ring of LG/T. Last using cup
product formula we explicitly calculate the cohomology structures of LG/T and QG for
A,.

2. The root system, Weyl group, and Cartan matrix of the loop group LG

We know from compact simply connected semisimple Lie theory that the complexified
Lie algebra gc of the compact Lie group G has a decomposition under the adjoint action
of the maximal torus T of G. Then, from [11], we have the following.

THEOREM 2.1. There is a decomposition
gc =tc@ga, (2.1)
24

where gy = tc is the complexified Lie algebra of T and
gi=1éegc:t-E=at) Ve T} (2.2)

The homomorphisms a: T — T for which g, # 0 are called the roots of G. They form
a finite subset of the lattice T = Hom(T, T). By analogy, the complexified Lie algebra Lgc
of the loop group LG has a decomposition

Lgc = @g( - 2K, (2.3)

kez

where gc is the complexified Lie algebra of G. This is the decomposition into eigenspaces
of the rotation action of the circle group T on the loops. The rotation action commutes
with the adjoint action of the constant loops G, and from [22], we have the following.
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THEOREM 2.2. There is a decomposition of Lgc under the action of the maximal torus T of
G,

Lgc = @go e @g“ -z~ (2.4)
kez (ko)

The pieces in this decomposition are indexed by homomorphisms
(k,a): TXT —T. (2.5)

The homomorphisms (k,a) € Z x T which occur in the decomposition are called the
roots of LG.
Definition 2.3. The set of roots is called the root system of LG and is denoted by A.

Let 6 be (0,1). Then

A= U (AU {0} +k8) = AU {0} +Z6, (2.6)
kez

where A is the root system of G. The root system A is the union of real roots and imaginary
roots:

A=A, (2.7)

where

Are = {(a,n):a € A, nez},

~ (2.8)
Aim = {(0,7) :r € Z}.
Definition 2.4. Let the rank of G be I. Then, the set of simple roots of LG is
{(a;,0):a; €z forl <i<I}U{(—api,1)}, (2.9)

where a1 is the highest weight of the adjoint representation of G.

The root system A can be divided into three parts as the positive and the negative and
0:

A=A"U{0}UA", (2.10)

where

~

AT =ALUAL A" =ALUA; (2.11)

where
At ={(o,n) € Are:n >0} U{(a,0): € AT},

Ar = {nd:n>0}, (2.12)
A = —A} A, = —Af,..

Te?
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In the case of LSU,, for n > 3, the root system A of the loop group LSU,, has basic
elements ag = (—ap, 1) and a; = («;,0), 1 <i < n— 1 where w; is the simple root of SU,
and o = Z;:ll ;. All roots of LSU,, can be written as a sum of the simple roots a;.

THEOREM 2.5 (see [14]). The set of roots of LSU,,, for n = 3, is

i—1 j-1 n—1
3—{k2ar+lZar+kZar:k—ll—l,keZ,Osisjsn}. (2.13)

r=0 r=i r=j

CoROLLARY 2.6. The set of positive roots of LSU,, for n = 3, is

i-1 j=1 n-1
={kza,+lZar+kZa,: k1| =1,k€Z+,O<i<j<n} (2.14)

r=0 r=i r=j

CoRoOLLARY 2.7. The simple roots of LSU3 are ap = (—a; — a2, 1), a1 = (1,0), a2 = (a2,0),
where oy and a, are the simple roots of compact Lie group SUs.
The set of all positive real roots of LSUs is

{(ar,m), (az,m), (a1 + azym), (— a1,5), ( — a2,s), ( — &1 — a2,5) :m =0, s >0}.
(2.15)

Now, we will discuss the Weyl group of the loop group LG. In order to define this
group, we need a larger group structure. We define the semidirect product T x LG of T
and LG in which T acts on LG by the rotation. From [22], we have the following.

THeoreM 2.8. T X T is a maximal abelian subgroup of T x LG.

TaEOREM 2.9. The complexified Lie algebra of T x LG has a decomposition

(Cotc)® (@tc Z ea@ga z) (2.16)

k+0 (ko)

according to the characters of T X T.

We know that the roots of G are permuted by the Weyl group W. This is the group
of automorphisms of the maximal torus T which arise from conjugation in G, that is,
W = N(T)/T, where

T)={neG:nTn ! =T} (2.17)

is the normalizer of T in G. Exactly in the same way, the infinite set of roots of LG is
permuted by the Weyl group W= N(T x T)/(T x T), where N(T x T) is the normalizer
in T x LG. The group W is called the affine Weyl group.

PrOPOSITION 2.10. The affine Weyl group W is the semidirect product of the coweight lattice
TV =Hom(T, T) by the Weyl group W of G.
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We know that the Weyl group W of G acts on the Lie algebra of the maximal torus T
It is a finite group of isometries of the Lie algebra t of the maximal torus T. It preserves
the coweight lattice T. For each simple root «, the Weyl group W contains an element
1o of order two represented by exp((71/2)(eqx +e_o)) in N(T). Since the roots « can be
considered as the linear functionals on the Lie algebra t of the maximal torus T, the
action of r, on tis given by

ra(§) =& —a(§)h, foréet, (2.18)

where h, is the coroot in t corresponding to simple root «. Also, we can give the action of
74 on the roots by

ra(B) = B—a(hg)a fora,pet®, (2.19)

where t* is the dual vector space of t. The element r, is the reflection in the hyperplane
H, of t whose equation is a(§) = 0. These reflections r, generate the Weyl group W. For
G = SU,,, we have from [12] the following.

THEOREM 2.11. The Weyl group of SU,, is the symmetric group S,.

Now, we want to describe the Weyl group structure of LG. By analogy with R for real
form, the roots of the loop group LG can be considered as linear forms on the Lie algebra
R X t of the maximal abelian group T x T. The Weyl group W acts linearly on R x t,
the action of W is an obvious reflection in the affine hyperplane 1 X t and the action of
A€ TV is given by

A= (x8) = (x,E+xA). (2.20)

Thus, the Weyl group W preserves the hyperplane 1 x h, and A € T acts on it by trans-
lation by the vector A € TV C t. If a # 0, the affine hyperplane H,x can be defined as
follows. For each root (&, k),

Hyp={Eet:a(é) = —k}. (2.21)
We know that the Weyl group W of G is generated by the reflections r, in the hyperplanes
H, for the simple roots a. A corresponding statement holds for the affine Weyl group W.

ProrosiTiON 2.12. Let G be a simply connected semisimple compact Lie group. Then the
Weyl group W of the loop group LG is generated by the reflections in the hyperplanes Heyy.
The affine Weyl group W acts on the root system A by

Tk (psm) = (ra(y),m—a(hy)k)  for (a,k),(y,m) € A. (2.22)

ProposiTIiON 2.13. The Weyl group of LSU,, is the semidirect product S, x "', where S,
acts by permutation action on coordinates of 7"~

Actually the symmetric group S, acts on Z" by the permutation action, and Z"~! is the
fixed subgroup which corresponds to the eigenvalue action.



6 Divided power algebras and Schubert calculus

By Proposition 2.13, the Weyl group of LSUs is S3 x Z2. Moreover, we explicitly give
the group presentation of S3 x Z2.

PrOPOSITION 2.14. The Weyl group W of LSUs is isomorphic to the group defined by the
presentation

{ro i1} =1, rirjri = rj1irj, i # j, i,j = 0,1,2}. (2.23)

PrOPOSITION 2.15. All elements of the Weyl group W of LSUs are classified as in the follow-
ing matrices:

(rairajruk)n (ruirakruj)n
(ra, Ta;Vay ) nrai > (ra, Ta Ta; ) nrai >
(rairﬂj Ta) nrﬂirﬂj (TaTa Ta; )nrai Tay

(Ta,rakraj)m (faTaa;) (”aj”ak”a;)nz
(rairakruj)m (ratacta;) ("aj Tay ra,)nzra,-

(tataita))” (tataita) (ra,ta,ta,)  a 1a,
ra; (ratacra))" (raracra,) (ra;rara) "™ .
ta, (rata,ta;)" (ratara,) (ta,rara) " 1o,
ta, (ta;tara))" (rata,ta,) (fa facra) " 1o, T,
Tacta, (raTata,)" (ratacta) (ra;ragta)™

TayTa; (74,70, ra,)m (Tara,Ta;) (ra,- ”akra,)nz Ta,

TayTa; (rﬂirﬂkrﬂj)nl (raTata) (rajrakrﬂi)nzraj Tay

for every 7,0 € S35, and n,n1,n, € N.

Proof. If each class in the entries is acted by each reflection 7, from the left and right
sides, by the relations in Proposition 2.14, we get new classes which are similar to one of
the classes above. O

From [10], we have the following.
THEOREM 2.16. The affine Weyl group W of LG is a Coxeter group.
We will give some properties of the affine Weyl group W.

Definition 2.17. The length of an element w € W is the least number of factors in the
decomposition relative to the set of the reflections {r,,}, and it is denoted by £(w).

Definition 2.18. Let wi,w; € W, y € AL. Then w, 2 w, indicates the fact that

rywr = wa, 2(wy) = €(wy) + 1. (2.25)



C.Ozel and E. Yilmaz 7

We put w < w' if there is a chain

W=W — Wy — =+ — W =W. (2.26)

The relation < is called the Bruhat order on the affine Weyl group W.

PROPOSITION 2.19. Let w € W and let w = 14,1, - - - 1o, be the reduced decomposition of
w Ifl<ig<---<ix<landw =ry 1a, - Ty then w' < w. If w' < w, then w' can be
represented as above for some indexing set {iz}. If w' — w, then there is a unique index i,
1 <i < Isuch that

W =Ta - Tay T (2.27)

The last proposition gives an alternative definition of the Bruhat ordering on W.

PROPOSITION 2.20. In the Weyl group W of LSUs, the number of elements with length s is
3s.

Proof. The proof will be done for the following cases:

0 mod 3,
s=11 mod 3, (2.28)
2 mod 3.

Let w € Wisy, be an element with length s.
For s = 0 mod 3, there exists k € Z* such that s = 3k and by Proposition 2.14, we have
elements

k . k
Aijk,O = (ra,raj”ak) >
k k
Bikj,o = (rﬂirakrﬂj) s
Ckl,kz

k k.
ikj,0 = (7a,rak7aj) 1(7ui7ak7a,)(7'ujrak”ai) B (2.29)

1 I
Df}(’;fo =14, (ta,Ta,Ta;) Hrata,ra;) (Ta;Tata;) 2r“jrﬂk’

Ejis = rata; (TaTa,Te, )" (tataita,) (Fa,Tata) 1,
such that [ijk] € S3, and
ki+k, =k—1,
h+h=k-2,
np+n=k-2,
0 <k, ky<k-1,
0=, L<k-2,

(2.30)

0<mnp, n, <k-2.
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There are 6 elements of the first- and second-kind classes, 3k elements of the third-
kind class, 3k — 3 elements of the fourth-kind class, and 3k — 3 elements of the last class.
So we have totally 9k = 3s elements with length s = 3k.

For s =1 mod 3, there exists k € Z* such that s = 3k + 1 and by Proposition 2.14, we
have elements

k
Ai‘(jk,l = (”airuj Tar) Tai
k
szkj,l = (rairﬂkrﬂj) Ta;>
k k
Cf‘,j]’.f‘f = (ratara) (ratara) (ra;rara) ra;s (2.31)

Iyl 1 l
Di;<j?l = ra} (r“ir“k rﬂj) 1 (rairakrlli) (raj rak rai) 2)

R n n
E;;cljﬁz = Ta Ty, ("af”akraj) Hrarara) (Tajrakra,) zra,"’ak
such that [ijk] € S3, and

ki+k,=k-1,
h+h=k-1,
n+n=k-2,
0 <k, ky<k-1,
0<1, L=<k-1,

0<ny, leﬁk—z.

(2.32)

There are 6 elements of the first- and second-kind classes, 3k elements of the third-
kind class, 3k elements of the fourth-kind class, and 3k — 3 elements of the last class. So
we have totally 9k + 3 = 3s elements with length s = 3k + 1.

For s =2 mod 3, there exists k € Z* such that s = 3k +2 and by Proposition 2.14, we
have elements

k
A:'Cjk,z = (rairaj rak) Ta;Vaj»
k
Bf'ckj,z = (”af”ak”aj) Ta;Tay>
ki,k k k;
iklj,z2 = (rairﬂkrﬂj) l(rﬂirﬂkrﬂi)(rajrﬂkrﬂi) zrajrﬂk) (2.33)

I, 1 I
Dﬂlc;fz = Ta; (”a,rakra,-) H(ratara) (Ta,-”ak”a,) zraj’

Eji = rata; (tata, ra,.)n1 (TaTaita) (o Tacta)"™
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such that [ijk] € S3, and

kitk,=k-1,
h+bh=k-1,
m+n=k—-1,
0 < ki, ky<k-1,
0<1, L<k-1,

0<ny, i’lzﬁk—l.

(2.34)

There are 6 elements of the first- and second-kind classes, 3k elements of the third-
kind class, 3k elements of the fourth-kind class, and 3k elements of the last class. So we
have totally 9k + 6 = 3s elements with length s = 3k + 2.

Then there are totally 3s elements with length s. O

Now we will define the subset W of the affine Weyl group W which will be used in
the text later. We know that the Weyl group W of the loop group LG is a split extension
TV — W — W, where W is the Weyl group of the compact group Lie group G. Since the
Weyl group W is a sub-Coxeter system of the affine Weyl group W, we can define the set
of cosets W/W.

LEMMA 2.21. The subgroup of W fixing 0 is the Weyl group W.
COROLLARY 2.22. Let w,w' € W. Then, w(0) = w'(0) if and only if wW = w'W in W/w.

By the last corollary, the map W/W — T given by wW — w(0) is well defined and
has an inverse map given by y; — r,, W, so the coset set W/W is identified to T" as a set.
We have from [1] the following.

TuEOREM 2.23. Each coset in W/W has a unique element of the minimal length.

We will write €(w) for the minimal length element occuring in the coset wW, for
w € W. We see that each coset wW, where w € W, has two distinguished representatives
which are not in general the same. Let the subset W of the affine Weyl group W be the set
of the minimal representative elements £(w) in the coset wW for each w € W. The subset
W has the Bruhat order since it identifies the set of the minimal representative elements
2(w). As an example, we calculate the subset W of the Weyl group of LSUs. Our aim is
to find the minimal representative elements £(w) in the right coset wW for each element
w € W, where

W = {rﬂi :Tl-z = 1, rir]-ri = ”j”i”j, 19& j) 1’] = 0’1)2}’ (2 ; )
.35
W ={rg:r} =1, rirjri = rjrirj, i # j, i j = 1,2}

We have the minimal representative elements £(w) for each coset wW, w € W as follows.
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Fors =0 mod 3, there exists k € Z* such that s = 3k and by Proposition 2.14, we have
elements

k k ki,ky Il ny,ny
A12,00 Bo21,0> Co21,00 D210, E102,0 (2.36)

such that
ki+k=k-1, ki =odd,
L+L=k-2, I =even,
n+n=k—-2, n =odd,
0 <k, ky<k-1,
0<k, L<k-2,

0<mny, ny <k-—2.

(2.37)

There are 2 elements of the first- and second-kind classes, | k/2 | elements of the third-
kind class, | k/2] elements of the fourth-kind class, and [ k/2]| — 1 many elements of the
last class if k is an even otherwise [ k/2| elements of the last class. So we have totally
3lk/2]+1=|s/2]+1if k is even otherwise 3| k/2] +2 = [ s/2] + 1 elements with length
s = 3k.

For s=1 mod 3, there exists k € Z* such that s = 3k + 1 and by Proposition 2.14, we
have elements Af,, 1, By 1, Cgi’lkj, Dlzlfﬁil, Ejgy1 such that

ki+k,=k—-1, k =odd,

L+L=k—-1, I =even,

n+ny=k—2, n =odd,
0 < ki, ky<k-1,
0<1, L<k-1,

0<ny, ny <k-—2.

(2.38)

There are 2 elements of the first- and second-kind classes, | k/2 | elements of the third-
kind class. If k is even, there are | k/2] elements of the fourth-kind class, and | k/2] — 1
elements of the last class. If k is odd, there are | k/2] + 1 elements of the fourth-kind class
and | k/2 ] elements of the last class. So we have totally 3| k/2|+1 = |s/2| + 1 if k is even
otherwise 3| k/2]+3 = [s/2] + 1 elements with length s = 3k + 1.

For s =2 mod 3, there exists k € Z* such that s = 3k +2 and by Proposition 2.14, we
have elements Af), ,, Bf,1.,, Cgi’lkfz, Déﬁ’ﬁiz, Eygy5 such that

ki+k,=k—-1, k =odd,

L+L=k—-1, I =even,

n+ny=k—1, n; =odd,
0 <k, ky<k-1,
0<1, L<k-1,

0<mnp, n, <k-1

(2.39)
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There are 2 elements of the first- and second-kind classes, | k/2 | elements of the third-
kind class, | k/2| elements of the fifth-kind class and | k/2] elements of the last class if
k is an even otherwise | k/2| + 1 many elements of the fourth class. So we have totally
31k/2]+2=1s/2]+ 1 if k is even otherwise 3| k/2] +3 = [s/2] + 1 elements with length
s = 3k + 2. Then we have the subset W = {e(w):we W}.

PROPOSITION 2.24. In the Weyl group W = W/W of LSUs, the number of elements with
length s is | s/2] + 1.

Now we will describe the Lie algebra Lp,1gc and its universal central extension in terms
of generators and relations. For a finite dimensional semisimple Lie algebra gc, we can
choose a nonzero element e, in g, for each root a. From [11], we have the following.

THEOREM 2.25. gc is a Kac-Moody Lie algebra generated by e; = ey, and f; = e_q, for i =
1,...,I where the elements a; are the simple roots and | is the rank of gc only if G is semisimple.

Let us choose generators e; and f; of Lgc corresponding to simple affine roots. Since
gc C Lgc, we can take

ze_q, forj=0,
e =
/ e; forl<j=<l,

z7le,, forj=0,
fi= ,
fi forl<j=<l,

(2.40)

where oy is the highest root of the adjoint representation. From [22], we have the follow-
ing.

THEOREM 2.26. Let gc be a semisimple Lie algebra. Then, Lpo1gc is generated by the elements
ej and f; corresponding to simple affine roots.

The Cartan matrix A11)x(+1) of Lgc has the Cartan integers a;; = aj(h,,) as entries
where a9 = —ag, and a; = «; if 1 < j < . As an example, we have the following.

ProrosITION 2.27. Let G = SUs. The Cartan matrix Asys of Lgc is the symmetric matrix

2 -1 -1
-1 2 -1]. (2.41)
-1 -1 2

Although the relations of the Kac-Moody algebra hold in L,oigc, they do not define it.
By a theorem of Gabber and Kac [6], the relations define the universal central extension
fpolg( of Lpoigc by € which is described by the cocycle wi given by

1 2
ax(Em) = 5= | al&(@)n ©)de. (242)

0

As a vector space fpolg(c is Lpoigc ® C and the bracket is given by

[EA), (nw)] = ([&7], 0k (&,7)). (2.43)
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THEOREM 2.28. Lgc is an affine Kac-Moody algebra.

3. Some homotopy equivalences for the loop group LG and its homogeneous spaces
From [8], we have the following.

THEOREM 3.1. The compact group G is a deformation retract of G¢, and so the loop space
LG is homotopic to the complexified loop space LGc.

Now, we want to give a major result from [8].

THEOREM 3.2. The inclusion
[} :LpolGC —_— LG([ (3.1)

is a homotopy equivalence.

Now we will give some useful notations. The parabolic subgroup P of L, Gc is the
set of maps C — G¢ which have nonnegative Laurent series expansions. Then P = G¢([z].
The minimal parabolic subgroup B is the Iwahori subgroup

{feP:f(0)eB} (3.2)

where B is the finite-dimensional Borel subgroup of G. Note also that the minimal para-
bolic subgroup B corresponds to the positive roots and the parabolic subgroup P to the
roots («a,n) with n > 0. From [8] we have the following.

THEOREM 3.3. The evaluation map at zero ey : P — Gc is a homotopy equivalence with the
homotopy inverse which is the inclusion of Gc as the constant loops.

The following fact follows from the local rigidity of the trivial bundle on the projective
line. From [9], we have the following.

PropositioN 3.4. The projection
LpolG(C — LpolG(c/P (3.3)

is a principal bundle with fiber P.

Now, as a consequence of Theorem 3.2, Proposition 3.4, and Theorem 3.3, we have the
following.

TuEOREM 3.5. QG is homotopy equivalent to Lo Gc/P.

THEOREM 3.6 (see [19]). The homogeneous space

LyaGc/P= || BwP/P. (3.4)
weW/w=w
CoROLLARY 3.7. The homogeneous space

LyGe/B = | | BwB/B. (3.5)

weW
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4. Cohomology of flag manifolds of Kac-Moody groups

Now we discuss the cohomolgy of flag manifolds of Kac-Moody groups.

Let G be the group associated to the Kac-Moody Lie algebra g. Then G may be of
three different types: finite, affine, and wild. The finite type Kac-Moody groups are simply
connected semisimple finite dimensional algebraic groups. The affine type Kac-Moody
groups are the circle group extension of the group of polynomial maps from S! to a group
of finite type, or a twisted analogue. There is no concrete realization of the wild type
groups. Now, we will introduce some subgroups of the Kac-Moody group G. For e € g,
we put exp(e) = g(ix(e)) so that U, = expg, is an additive one parameter subgroup of
G. We denote by U (resp., U™) the subgroup of G generated by the U, (resp., U-,) for
a € A;. For 1 < i <, there exists a unique homomorphism ¢; : SL,(C) — G, satisfying
@(4%) =exp(ze;) and ¢(L9) = exp(zf;) for all z € C. We define

H; = {q) (g z91> 1z € (C*}; (4.1)

Gi = ¢(SL,(C)). Let N; be the normalizer of H; in Gj, H the subgroup of G generated by
all H;, and N the subgroup of G generated by all N;. There is an isomorphism W — N/H.
We put B = HU. B is called standard Borel subgroup of G. Also, we can define the negative
Borel subgroup B~ as B~ = HU ™. G has Bruhat and Birkhoff decompositions. Details can
be found in [21]. The conjugate linear involution wy of g gives an involution @, on G. Let
K denote the set of fixed points of this involution. K is called the standard real form of G.
Also, this involution preserves the subgroups Gj, H;, and H; we denote by K;, T}, and T,
respectively, the corresponding fixed point subgroups. Then, K; = ¢(SU,) and

Ti—{go (g u()l):lul —1} (4.2)

is a maximal torus of K; and T = [] T; is a maximal torus in K.
Now, we will give some facts about the topology of K. Let D (resp., D°) be the unit
disk (resp., its interior) in C and let S! be the unit circle. Given u € D, let

(1 _ | |2)1/2
2(u) = (_(1 —TM|2)1/2 . e Su,, (4.3)

and z;(u) = ¢;(z(u)). We also set

Y;={zi(u):ue D’} CK,. (4.4)
Let w =1, - - - 1;, be a reduced expression of w € W. We put Y,, = Y; - - - Y; . We have a
fibration 7 : K — K/T. The topological space K/T is called the flag variety of the K and

G. Now, we will give the topological structure in the infinite dimensional case. We define
C, = n(Yy). From [13], we have the following.
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PropositioN 4.1. The decomposition

K/T=]]C, (4.5)
wew
defines a CW structure on K/T.
The closure of C,, is given by
Cv=[] Cw. (4.6)
w<w

The closures C,, are called Schubert varieties and they are finite dimensional complex
spaces. The infinite type flag variety K/T is the inductive limit of these spaces and by
Iwasawa decomposition in [21], we have a homeomorphism K/T — G/B. From [13], we
have the following.

ProrosiTionN 4.2. The flag variety K/ T is an infinite dimensional complex projective variety.
PROPOSITION 4.3. The elements C,, are a basic form of free Z-module H,.(K/T,Z).

Now we will give the construction of the dual Schubert cocycles on the flag variety by
using the relative Lie-algebra cohomology tools. This construction was done by Kostant
[15] for finite type and extended by Kumar [17] for the Kac-Moody case.

“(g,h) denotes the standard cochain complex with differential d associated to the Lie
algebra pair (g,h) with trivial coefficients where h is the Cartan subalgebra of the Lie
algebra g. That is, ‘€ (g, h) is defined to be >,  Homp (A*(g/h), C) such that h acts trivially
on C. We define

C=>%, (4.7)
s>0
where @° = Homc (A*(g/h), C). We put the topology of pointwise convergence on %S, that

is, fu — f in % if and only if f,(x) — f(x) in C with usual topology, for all x € A(g,h).
From [3], we have the following.

THEOREM 4.4. €° is a complete, Hausdorff, topological vector space with respect to the point-
wise topology.

In [17], a continous map 0: %5 — %! and a cochain map of b on € are defined. We
define 9, b to be the restrictions of 0 and b to the subspace € (g, h). We define the following
operators on 6(g,h): S = do+ dd and L = bd + db. From [17], we have the following.

PrOPOSITION 4.5. kerS @ imS = 6.
THEOREM 4.6. d and d on €(g,h) are disjoint.

ProrosritioN 4.7 (Hodge-type decomposition). Let V' be any vector space and let d,0 :
V — V be two disjoint operators such that d* = 9* = 0. Further, assume that ker S ® im S =
V, where S = do + dd. Then, kerS — kerd/imd and kerS — kerod/ima are both isomor-
phisms.
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By the Hodge-type decomposition and Proposition 4.5, we have the following.

TueoreM 4.8. The canonical maps yas : kerS — H(6,d) and vy, : kerS — H(€,0) are
both isomorphisms.

Now, we describe a basis for ker L. We fix w € W of length s. We define ®,, = wA_ N
A. @, consists of real roots {y1,...,ys}. We pick y,, € g, of unit norm with respect to
the form {-,-} and let x), = —wo(yy,). Let M(,p—p) be the irreducible h-submodule with
the highest weight (wp — p). By [7, Proposition 2.5], the corresponding highest weight
vector is y,, A - -+ A y,,. There exists a unique element 7" € [M,,-,) ® A*(n)] such that
hv = (21 (yy, A== = A Yy AXy A==+ AX,) mod P, ® A’(n), where P,, is the orthogonal
complement of y,, A - -+ Ay, in M,,_p). Using the nondegenerate bilinear form (-) on
g, we have the embedding

e:PA(nen) — P [A(nen”)]*, wheren= P g, n = P g. (48)

k=0 k=0 acAt aEA-
Then h,, = e(h,,) € kerL. These elements {h,,} e are a C-basis of ker L. Then, we can
define s¥ = v ([1"]) € H(,0). From [16, 17], we have the following.

THEOREM 4.9. Let g be the Kac-Moody Lie algebra, let G be the group associated to the
Kac-Moody algebra g, and let B be standard Borel subgroup of G. Then

0 ifw#w,
LW, =1 T e ifw=w (4.9)

vew TANA,

This gives the expression for the d, d harmonic forms sg’ = s*/d,, which are dual to the
Schubert cells where d,, = |, s".

THEOREM 4.10 (see [18]).
H(D . H*(g,h) — H*(G/B,C) (4.10)

is a graded algebra isomorphism.

Let ¢” denote the image of so* by the integral map in the last theorem. These coho-
mology classes are dual to the closure of the Schubert cells, hence we have the following.

THEOREM 4.11. The elements e¥, w € W, form a basis of the Z-module H* (G/B, Z).

Let QY = €, Zh;, where h; is coroot, be the coroot lattice and let
P={Aeh™:A(k) €7} (4.11)

be the weight lattice dual to Q. Let S(P) = .S’ (P) be the integral symmetric algebra
over the lattice P, and S(P)* = P 50 S/(P) the augmentation ideal. Given a commutative
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ring F with unit, we denote S(P)f = S(P)r ®z F. We define the characteristic homomor-
phism y : S(P) — H*(G/B,Z) as follows: given A € P, we have the corresponding charac-
ter of B and the associated line bundle L) on G/B. We put w(1) € H*(G/B,Z) equal to
the Chern class of L) and we extend this multiplicativity to the whole S(P). We denote by
Yy the extension of y by linearity to S(P)g. In order to describe the properties of vy, we
define BGG-operator A for 1 <i <[ on S(P) by

S —ri(f)

o

Ai(f) = (4.12)
and we extend this by linearity to S(P)g.

We will introduce certain operators on cohomology of the flag space G/B which are
basic tools in the study of this theory. These operators are extension of action of the
BGG-operators A; from the image of ¥ to the whole cohomology operators. We know
that the Weyl group W acts by right multiplication on K/T and this action induces an
action of W on homology and cohomology of flag space. On the other hand, we have a
fibration p; : K/T — K/K;T with fiber K;/T;. Since the odd degree cohomologies of K;/T;
and K/K;T are trivial, then the Leray-Serre spectral sequence of the fibration degenerates
after the second term. So, H*(K/T,Z) is generated by im p;*, which is r; invariant, and
the element y(y;), where y; is fundamental weight. We define a Z-linear operator A’ on
H*(K/T,Z) lowering the degree by 2 such that r; leaves the image of A’ invariant and

x—ri(x) =A(x) Uy(a;) (4.13)

forx € H*(K/T,Z).
Let £” be the dual basis of H* (K/T,Z). Then we have the following.
ProposiTION 4.12.
eV if €(riw) > €(w),
ri(e") = v — > {any)e”  otherwise. (4.14)
Y

riw—w’

ProposiTION 4.13.

4.15
0 otherwise. ( )

A(e") = {s’*‘w if €(riw) < €(w),

Now, we will give the cup product formula in the cohomology of G/B where G is a
Kac-Moody group.

THEOREM 4.14.

eV = z pives (4.16)

u,y<w

where p};, is a homogeneous polynomial of degree 0 and £(u) +€(v) = £(w).
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THEOREM 4.15. Let u,v € W. Denote w™! = r;, - - - 1;, as a reduced expression.
Piv=" 2 Auer-omor-en, oo (eh), (4.17)
Ji<e < im

s eeeps =yl
Tjy o Tim =V

where m = £(v).
Since Lgc is an affine Kac-Moody algebra, we have the following isomorphism.

THEOREM 4.16.
H*(LG/T;C) = H* (Lgc, tc; C) = H* (Lge, tc; C) = H* (LpoaGe/B; C). (4.18)

Then the Z-cohomology ring of LG/T generated by the strata can be calculated using
the cup product formula in Theorem 4.14. In the last section, we will work at an example.

5. Identities on combinatorial integers ('”J”)

Now we introduce an interesting integer sequence which will play an important role in

our calculations. Let
) s (M) (7 (5.1)
j - k=0 k ] -k) .

where n,m>0and 0 < j < m+n, and

m! i K
«vz Km—ky " m=5o (5.2)
k 0 if m<k.

The generating function of the integer sequence of (’”}") is the function (1 +x)"(1 — x)™.

By definition of (m]") we have

(n,jm) if j even, (5.3)

and hence (”}”) = 0 whenever j is odd.
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THEOREM 5.1 (symmetry and antisymmetry). Let n be a nonnegative integer. For k =
0,1,2,...,n,

n—kk .
(n—k) if n even,

k,n—k
= 5.4
< k ) _(n—kk G4
n

_k ) if n odd.

Proof. By definition, for k = 0,1,2,...,n we have

(B9 =) (Y

Lo n—k k
=i:ZO(—1) <n+i—2k> (k—i)

n—k
i—n+2k [N~ k k
i:nz—:zk(_l) ( i )(”_k_i>

(5.5)

n—k
Z (_1)1(n;k> (n—i—i) if n even,
i=n—2k
R (n—k k
—inZ_Zk(—1)< ; )(n_k_i) if n odd.

Since for i < n — 2k, we have n — k — i > k so it follows that (nf;H) =0 wherei=0,1,...,
n — 2k — 1. Therefore we have

n—k in—k . '
kon—k %(—1)( ; )(n—k—i) if n even,
( k )Z n—k -k L (5.6)
_Z(_”l< i )(n_k_l.) i1 0dd,
i=0

Hence we have the desired result. O

Also we have the following identities.



C. Ozel and E. Yilmaz 19

THEOREM 5.2. Let 1, s, I, p be nonnegative integers. Then

(right-shifting property) (rf) - (T’SZ_ 1) + (rls_ _11>, (5.7)
(left-shifting property) (r}s) - (r —11,s> - (rl—_ll,s>’ (5.8)
(right-shifting expansion) (r}5> - io (m l_—ii_ 1>, (5.9)
(Vandermonde convolution) (r;5> - io (r’ls__l.p ) <f ) (5.10)
) e
CECA ) e

() =2 () =2 O (5]
()0 e ()2l
Since (*-) =0, then

(730 GG ()0 - () (72)

(5.14)

(5.13)

Let | be even. Then we have

rs\ _[(sr) _ [sr—1 sr—=1\ (r—1,s B r—1,s
9 R G ) I G B o A

Let [ be odd. Then we have

(rf) - (S’lr> o (s’rl_ 1) - (s’zr—]l) - (r _zl’s) - (rf_ll’s) (5.16)
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If we take the sum (difference) of both sides of (5.7) and (5.8), then we obtain (5.11) and
(5.12). Equations (5.9) and (5.10) can be also obtained from (5.7). O

THEOREM 5.3. Let 1, s, | be nonnegative integers. Then
rs=1\ _ ([P r—1,s
s(l_1>—(l r)(l>+r< ] >, (5.17)
r—1,s 1 s\ r,s—1
r<1_1>— (I s)(l> s( ] ), (5.18)
(r+s—1D) (T}S) - r(r _ll’s> +s<”sl_ 1). (5.19)

Proof. Let us begin the proof of the first equation (5.17). Then

r,S r—1,s ! ir s ! ifr—1 s
(7)o () ez () ) zev () ()
! ; r! s!
B E)(—l) [(l_” i1 — i)l (= )(s— [+ 1)

r! s!
T —i-! (lfi)!(sfl+i)!]

rls!
Mr=—D11—-D(s—1+1)!

I
=>(=Dil-r+r-1i
i=0

! ;! (s—1)!
=5 2 D G R == DG =T+ )]

(5.20)

since (3:11) = 0. Therefore we have

7,S r—1,s r,s—1
(l—r)(l>+r< ] >:5<l—1>' (5.21)

Let [ be odd. Then we have

r—1,s ssr—1 ST s—1,r 7, r,s—1
()= () = () () oo () ()
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Let I be even. Then we have
r—1,s . s, r—1 1 A s—1,r _ sy r,s—1
(7)== () o () () oo (7))
(5.23)

By (5.17) and (5.18),

r(r —ll,s) +S(r,sl— 1) _ S<r25_—11> —(-n (r}s) +(s—1) (rf) _r<r —ll,s>
—2r+s—]) (r;s> _S(r,sl— 1) B r(r —ll,s>

(5.24)

and hence we have

A ()

Then we get our aim. O

LEmMA 5.4. Let n be a nonnegative integer. For k = 0,1,2,...,n,

" - 2" ifk=0,
> (k’n. k) = U (5.26)
art j 0 ifk#0.
Proof. For k =0,
S (k’”,_ k) = (”) —n (5.27)
o\ ] o\
Let k # 0. Since
(1+x)" (1 = x) Z(k” k) (5.28)
j=0
for x = 1, then we have
- (k’”,‘ k), (5.29)
jo\ J
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Similarly we have the following result.

LeEMMA 5.5. Let n be a nonnegative integer. For k = 0,1,2,...,n,

o jk,n—k)_ 2" ifk=n,
go( 1)( i ) o ifk#n (530

In this section we give a result from Riordan [23]. Let P,(x) denote the Legendre poly-
nomials of nth order. Then the function

P(x,y) = zP ()" =(1-2xy+y*)" 172 (5.31)

is the generating function for Legendre polynomials. Then we have

P(1+2x,y) = (1—y) ' [1—4xy(1 - y)2] "2, (5.32)

so that, if Q,(x) = P, (1 +2x), then Q(x, y) = P(1 +2x, y). Now we have two expansions

-1/2

Qx,y) =(1—y) ' [1—4xy(1-y)?]

— z (2kk)xkyk(1 _y)fzkfl

k=0
" n+k\ (2k
-2 kzo< 2% ><k>xk’ (5.33)

Qx,y)=(1-(1 +2x)y)_1[1 —4(x+x*)y*(1 —y—2xy)_2]_1/2

_% r3 (zk) <2kk>(1+2x)” k(x4 22)5,

so that
Qx-S (”+k> <2k>xk _ anm ( ”> <2k> (14 2x)" % (x + x2)". (5.34)
2ok )k )07 & k) \k
Then
Qu(x) = D guixF(1+x)" 7%, (5.35)
k=0
where

(5.36)
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so that
Qu(x) = kio (Z)Zxk(l +x)" 7k, (5.37)
Since
o ~37) = (e = S 1y (2:>z-2" o, (538)

then we have the following identities:
m\ & 2n+k) (2k 2 (2n)’
(—1)”( ) = Z(—l)k( )( )22” => ( ) (-1)k. (5.39)
n = 2k k o\ k

Thus we can give our result.

LEMMA 5.6 (twin pairs). Let n be a nonnegative integer. Then,
2,20\ & j(2n ? L[2n
S =20 =D : (5.40)
n pars j n

THEOREM 5.7 (diagonal formula). Let n be a nonnegative integer. Then,

i <k,n - k) _ 21n/2] z:fn even, (5.41)
o\ k 0 ifn odd.
TaEOREM 5.8 (orthogonality formula). Let n be a nonnegative integer. For i,j = 0,1,
2,...,n,
" - o Voifie i,
in > (k’n» k) (J’n J) =8 = lfl / (5.42)
n = i k 0 ifi# ]

6. Schubert calculus in cohomology ring of the homogeneous spaces LSU3/T and QSU;

The integral cohomology of LSU3/T is generated by the Schubert classes indexed:

T _ k k ki,kz I, pnyyn;
W= {Aijk’Bikj’Cikj s Dy Eigj } (6.1)

k  kike b nin : k k ki,k
ikj> Cikj > Oikj» ¢k, be Schubert classes indexed by elements Ajj, By ;> Gy

Let lejk, b
Df};}z, E:}QJT"Z of the Weyl group W, respectively. Let X; = ¢’ € H*(LSU3/T,R) and let t =

ghr _ ghn ¢ H4(LSU3/T)R)-
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By Theorems 4.14 and 4.15, we have the following identities.
LemMa 6.1. Let w € W with £(w) = s. Then,

s 0o

— |+ 1 a012 +0210 ZfS = 3,

2
X -agp =

(EJ + 1)a012+bozl ifs<3, (6.2)

s
X b = ({EJ + 1)5021 + & (s+1)20>

where
s+
ao12 1f_ 2] =1,
_ . +1
0521%(5“)/” b3 if st 5 =2mod3,
& = ] I
_ . +1
CE)ZZLI(SHWJ 33 if —32 = (O0mod3,
B ls+1]
e(120[2(s+1)/zj 5)/3 if ST = 1mod3,
(0 if s<3m+3,
s
([3]+1)em
3m+3 3m+1 .
Xt =1 303 3mt1 m is odd,
mz Q%ZJF([%JJFI_mT)C&I if s>3m+3, s is odd,
s
([5]+1)en
3m+3 3m+1 : ,
+Le%2+([iJ+1* m )0%1 ifs>3m+3, sis even,
2 2 2
(0 ifs<3m+4,
s 3m+4
—[+1)0%+ b
(5] 1)oso 5 e
3m+2 .
+<[£J+1—m—)e%51 ifs=3m+4,
2 2
3m+4 ..
X =1 i m is even,
+2 . ,
+<[%J+1_3m2 )02"’10 ifs>3m+4, sis odd,
s 3m+4
(L]t 5 e
3m+2 . .
+([%J+1_ m2 )e%gl ifs>3m+4, sis even,
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[0 ifs<3m+5,

s 3m+5
=|+1)efh, + ——b
QZJ )eloz 2 021

3m+3 .
+< 2 +1—mT)c(’)"21 ifs=3m+5,

X ety =1 m is odd.

+ , ;
+< % +1_3mz—3)e%2 ifs>3m+5, sis odd,

3m+5
(HE

2
3m+3 . .
+< % +1_mT)c6”21 ifs>3m+5, sis even,

(6.3)
By Theorems 4.14 and 4.15, we have the following identities.

LEMMA 6.2. Let w € W with £(w) = s. Then,
s 0 )
5 +1 ao12 — 0210 ZfS >1,
s )
([EJ + 1)Cl012 —boa ifs=1, (6.4)
s
t- b = —({EJ + 1)5021 +&152)5

t-ape =

where
- s
aor2 ’f_i_ =0,
pdlwal=ars e % = Imod3,
&k =1 757
(205 3 =2mod3,
e(létzs/zj—3)/3 if % = 0mod3,
0 ifs<3m+3,
tocpy = —-3m-3 s 3m+1 . s odd, o
=l ([ 5] 012 e iszames,
0 ifs<3m+4,
con 10 3o m is even,
O (5] e pezomes
0 ifs<3m+5,

toeltn=1-3m-5 3m+3 m is odd.
: mTD%BI+([%J+1—mT)e%2 ifs>=3m+5,
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LEMMA 6.3. Let w € W with £(w) =s. Then,
{ N
2

b1 = { bo21 + 6102 + & (s+1)2)

0 [
J agr2 + ¢ on if s is even,
X1 -ao2 =
s
2

J + 1) aoiz+¢' Yy, if sis odd, (6.6)

where
r s+l
ao12 1f_ 2] =1
. +1
0210(s+1)/zJ -4)/3 if ST = 2mod3,
§lse1y2) = 75_,_17 (6.7)
c(()22[1($+1)/2J—3)/3 1f 5 = 0m0d3’
_ . +1
e%lz(SH)/ZJ S/ if T2 5| = 1mod3.
Let m be odd,
(0 ifs<3m+3,
s 3m+1
{EJcO’"M + Tbon(e%z)
s 3m—1\_,-1  om . :
xeam =4 t3]- 77— 0y +0'0y  ifs=3m+3, siseven,
3m+le
5 e
s 3m—-1\ , ‘m . .
+ S5 Bl +0g  ifs>3m+3, sisodd,
0 if s<3m+4,
s 3m+3
{EJD%WLTE’OZI(C%I)
3m+1 . .
xi-oso=] 0o vl (| 5[ et ety ifs=dmea, sisodd,
3m+3 s 3m+3
e (515 ot

1 . .
+ey 010y +e' T, ifs>3m+4, s is even,
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(0 ifs<3m+5,
N 3m+3
bJQ%z Tbozl(agﬁl)
3m+1 . .
Xy el =1 +({%J - mT)comﬂ + Y ifs = 3m+5, s is even,
3m+3aerl
5 o1
3m+1 . .
+<{%J - %)e%z +c TN ifs>3m+5, s is odd.
(6.8)
Let m be even,
(0 ifs<3m+3,
s 3m+2 P
[EJC(r)"zl + Tbozl (efh2) + b5 (<515
x m f _ _m m—1 rm m—1 ; is odd
peelh =1+ > > 055y + 07031 + el ifs=3m+3, sis odd,
3m+2 s 3m+2
s ([ 5] e
FO P et ifs>3m+3, s is even,
(0 ifs<3m+4,
s 3m+2
[EJD%O+ Tbozl(cglﬁl)
S 3Im\ -1 m . .
Xoom, =4 AL +¢'%y ifs=3m+4, siseven,
3m+2chrl
5t
s 3m\ _,, m . .
5> Wig+e' 5 ifs>3m+4, sisodd,
(0 if s<3m+>5,
s 3m+4
bJe%ﬁTbom(D%l)
P S 3m+2 , . .
Xy, =4 +0%o+ b (e 6’;{1)4—([5J - )c6"21+c Ml ifs=3m+5, sis odd,
3m+4 s 3m+4
ot (|55 e
+o L e if s>3m+5, s is even.

(6.9)
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LEMMA 6.4. Let w € W with £(w) =s. Then,

<{%J+l)a’120+0’821 if523,
Xi-d'10 = s
{EJ + 1)&’120 +b' 102 ifS <3 (6.10)

4 S 4
X1-bhe= ({EJ + 1>b 102 + & (st1)205

where

, s+l
a’120 il =1
N . +1
a/(()ZZLI(sH)/ZJ 473 if ST =2mod3,
§List1y2) = _ +1_ (o1
¢ QLern2l-3s g ST = 0mod3,
_ . +1
g QL2155 e ST = 1mod3.
Let m be odd,
0 ifs<3m+3,
s , 3m+3 ’
(\;EJ +1)C %Z‘FTB 102
3m+1 -1
(s s
3m+3 rm

rm [4
Xi-dip=q 2 210

3m+1 ) .
+ {EJ_{_l_ m )c’%z if s >3m+3, sis odd,

3m+1 . .
* {%J”Ll_ = >°,81211 ifs>3m+3, sis even,



rm
X100 =1

rm
X1-e'50=1

Let m be even,

rm
X1 ¢ 102 =1

(lz)-

3m+4\ ,,,
T)C,wz"'e 210

rm—1

s , 3m+4 ,
(L] e 5
3m+2

(s

rm—1 rm—1
5 )D 021 T¢210

if s>3m+3, siseven,

ifs>3m+3, sis odd,
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(0 ifs<3m+4,
s , 3m+5 ,
()
3m+3 _ .
+( % +1-— m2 )e’g”w“rc’%z ifs=3m+4,
3m+é rm+1
B C 102
3m+5 . .
+( % y1o2m )a’(’)”21+c’%2 if s >3m+4, sis even,
s , 3m+5 .41
<{§J+1>0$1+—2 C%;
3m+3 _ . .
+( % +1-— m2 )3'%01+C’%2 if s >3m+4, sisodd,
(0 ifs<3m+5,
s , 3m+5 ,
(bJ+1)eTm+7Z b'102
3m+3 .
+({£J+1_ m )C/%z ifs=3m+5,
2 2
3m+5 rm+1
5 0021
3m+3 . .
+({%J+1_mT>e’§“w ifs>3m+5, sis odd,
s , 3m+5_,
QEJ+1)2’2”10+ 5 ot
3m+3 . .
+({%J+1_ mz )C'%z ifs>3m+5, siseven.
(6.12)
(0 ifs<3m+3,
s , 3m+4 ,
({EJ+1)C%2+72 b'102
3m+2 _ 1.
(5] e
3m+4 ,,
Tezm
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(0

(HER

3m+4 rm+1
5 C 102

rm
%1'0021=‘

(=S

3m+ 6D/m+l
2 021

rm
Xi-e510 =

+
2

<
(=S
<

+

s 3m+6\ ,, m
5 +1_T €210 T 07021

3m+6
TD 102

] 1 - 2t
2 2

Divided power algebras and Schubert calculus

3m+4 ,
Tbmz

s 3m+2\ .-
+([EJ+1_ 2 )egn“’l

+2
(s

3m+6
—b’
5 102

s 3m+4\ . m
+ E +1—T Clo2 T 0021

rm+1

rm rm
)C 102 107021

ifs<3m+4,

ifs=3m+4,

ifs>3m+4, sisodd,

ifs>3m+4, siseven,

ifs<3m+5,

ifs=3m+5,

if s>3m+5, siseven,

ifs>3m+5, sisodd.

By Theorems 4.14 and 4.15, we have the following identities.

LEMMA 6.5. Letw € W with £(w) =s.

Then,

S ’ 770
3o et

4
Xy a0 =

(15

if s is even,

J 1>a’120+c”210 if s is odd,

4 S 4 rr
Xo-bi2 = {EJ[’ 102+ 6" 210 + & (541205

(6.13)

(6.14)



C. Ozel and E. Yilmaz 31

where

, | s+1
a’120 lf_ 2] =1,
_ ] s+1
a/(()22[1(5+1)/2j 4)/3 lf 5 = 2m0d3,
§Ls+1)/21 =1 et (6.15)
c,g%)[z(s+l)/lj—3)/3 if > = Om0d3,
_ . +1
¢/ eI if S—z = 1mod3.
Let m be odd,
(0 ifs<3m+3,
s, 3m+1 , ,
{EJC Too + Tb 102(¢'510)
s 3m—1 _ . .
%™ =] +([EJ - )D’(’,"le +0"1p, ifs=3m+3, siseven,
3m+le,m
5 2
3m—1 . .
+<[%J—m7>c’%2+0”%2 ifs>3m+3, sis odd,
(0 if s<3m+4,

s, 3m+3 ,
|5 o+ 0 ()
2 2
, s 3m+1\ -1, . .
X0 =1 +boa (05151) +¢ %2+<{5J— 5 )e Toe i, ifs=3m+4, sis odd,

3m+3 .0 <{sJ_3m+3) m

B ¢ 102 2 2 021

+c 1o 0510+ 0y if s>3m+4, s is even,
0 ifs<3m+5,

S m 3m+3 ’ rm+1
{EJelzlo‘* S b"102("521 )

S 3m+1)\ ,, mil - .
Xyl = +([EJ_ 7 )c’102+c"210 if s=3m+5, sis even,

3m+3 rm+1

B 021

3m+1 . .
+(BJ_’”T>Q’Z1IO+:”§”I’51 ifs>3m+5, sis odd.
(6.16)
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Let m be even,

0 ifs<3m+3,
s, 3Im+2 , ,
|5 [+ 220 e ) + oo (cB)
s 3m . . . .
XM, =1 +({EJ - 7)0’6”211 +O M e ! ifs>3m+3, sisodd,
3m+2 , s 3m+2)\ ,
2 e;"10+(bJ— 2 )°T°2
"oy + et + e 5! ifs>3m+3, sis even,
(0 ifs<3m+4,
s, 3m+2 , ,
[EJD 021+ — b 102(¢'153)
S 3m rm—1 rrm . .
X0 = + AR +e'0  ifs=3m+4, siseven,
3m+2c1m+1
> 102
S 3m rm rrm . .
|+ -7 0 +e" 0 ifs>3m+4, sisodd,
0 if s<3m+5,
s, 3m+4 , Sl
[EJQ 210 5 b 102(0'531)
rm rm m+1 S 3m+2 rm rrm+1 . .
X, e ho=1 001 tbox (efpy') + =T Tt 5 ifs>3m+5, sis odd,
3m+4 _, .1 s 3m+4)\ ,
s (|2]-2220)n
+ T 0 O ety if s>3m+5, s is even.

LEMMA 6.6. Let w € W with £(w) = s. Then,

S 144 144
([—J+1>a 201 +0 (1)02
2
S rr rr
([EJ+1>CL 201+ 067210
X, -b6"20 = q

rr
Xo-ap0 =

s
2

(6.17)

ifs >3,

ifs<3, (6.18)

J + 1) 6" 210 + €| (s41)205



where

Let m be odd,

rrm
X2 ¢ 510 =1

rrm

X200 =1

rrm

021 T¢ 210

if s>3m+4, sis odd,
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), s+l
a’ 201 If_ ) | L
_ . +1
D,,%12<5+1)2J 4)/3 if s = 2mod3,
&l (s+1)2) = 1 - ) (6.19)
_ . +1
¢GRI s = 0mod3,
_ . +1
e,,gzzll(m)/zj 5)/3 if s = 1mod3.
(0 ifs<3m+3,
s . 3m+3 ,
([EJ+1>C ;”10+Tb 210
3m+1 -1
+<[§J+1— = )0”%21 ifs=3m+3,
2 2
3m+3 .,
5 ¢
3m+1 . .
+<l%J+1_ m2 )C”gllo ifs>3m+3, sis odd,
s . 3m+3 ,,
(2o mes,
3m+1 -1 .
+<l%J+1_ m2 )a”%zl ifs>3m+3, sis even,
(0 ifs<3m+4,
s ., 3m+5
<l5J+1>D %2+Tb 210
3m+3 _ .
(S ]r1 -2 e ey ifs=amea,
3m+5 rrm+l1
5 210
3m+5 . .
+<[%J+1_ mz W+ 50 ifs>3m+4, siseven,
s . 3m+5 ,, .41
(L] )t 257
( 3m+3 rrm—1

)e

2
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(0 ifs<3m+5,
s 3m+5
el +1 rrm + rr
(5] 1)ers 500
+ .
+<[5J+1—3m 3)5'5”10 ifs=3m+5,
2 2
3m+50um+1
f{z-e"(@l:‘ 2 102
3m+3 . .
([ J+l— m )e”(’)"ﬂ if s >3m+5, sisodd,
s ., 3m+5_,,
(5] #1)ers 5
+ . .
([%J+1_3m 3)6’;”10 ifs>3m+5, siseven.
(6.20)
Let m be even,
(0 ifs<3m+3,
s 3m+4
+1)" N+ ——b"
(5] 1)erto 50
3m+2 _ .
+<{%J+1— m2 )D”’f(')21+"(')"211 ifs=3m+3,
3m+4
rrm e”m
X2-¢h0=7 2 021
3m+4 . .
+<{%J+1_mT> ”;”10+e”6”211 if s >3m+3, siseven,
s . 3m+4 ,,
(M“) fiot T o
3m+2 . .
+<{%J+1_ m2 )a,,%21+2u$11 ifs>3m+3, sisodd,
(0 ifs<3m+4,
s . 3m+4 ,
({2J+1)0 oo + b"210
3m+2 _ .
+<{EJ+1_ m >e”8“211 if s=3m+4,
2 2
m 3m+4cllm+1
X0 =9 2 210
3m+2 . .
+<{%J+1_ m2 )D”%z if s>3m+4, sis odd,
., 3m+4 ,,
(2ot
3m+2 _ . .
+<{%J+1_ m2 )e”g‘ml ifs>3m+4, sis even,
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b ifs<3m+5,
S . 3m+6 ,,
([3]1)eme=5 e
3m+4 .
+< % +1-— ﬂ; ) o0, ifs=3m+5,
3m+6011m+1
XM =172 102
s 3m+6\ ,,. m . .
+ 2 +1———5—-e0ﬂ+ﬂ 102 ifs>3m+5, siseven,
S ., 3m+6_,
(15]+)erte 2oy
3m+4 . .
+< % +1- m2 )c”§"10+0”’f})2 ifs>3m+5, sisodd.
(6.21)
LEMMA 6.7. Let w € W with £(w) = s. Then,
ag()l + bgo1 lfS =1,
X, - agpy = 4 9012+ a1 + boa ifs=2,
{%J Cl012 + aé’m +0810 l:fS > 3, (622)
s+1
Xy -boo1 = {‘E*me1+fbﬂp
where
s
rr . e — 0’
a201 if 12|
c(()zzlf/sz if % = 1mod3,
Els21 = 1 T (6.23)
e(l%)LZS/ZJ_4)/3 if % =2mod3,
QRIS e % = 0mod3.
Let m be odd,
(0 ifs<3m+3,
S 3m+3
[EJCS& + Tbozl(eﬁl)z)
s 3m+3 _ _ . .
Xy =1 +<{EJ +1-— 5 )05"101 +elyl ifs=3m+3, sis even,
&n+3em
5t

3m+3

+<BJ+1_ 2

)55”10 +ely! ifs>3m+3, sisodd,
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(0 ifs<3m+4,
s 3m+3
(T P N
2 2
e s 3m+1 _ . .
X5 = +b6510(0 %;1)+([EJ+1— 5 )2%21 ifs>3m+4, sis odd,
3m+3cm+1
5 ‘o
3m+3 . .
+<{%J+1— mz >D§"10+0”%§1 if s >3m+4, siseven,
0 ifs<3m+5,

[SJ m  dm+5
2

6102+T[7021(0§%1)
s 3m+5 . .
+<{EJ+1_T)c6”21+D§”IO ifs = 3m+5, sis even,

3m+5_,..
Taou

m —
X5 - ey = 1

+ . .
+<{%J +1_¥)e%2+0ﬁ0 ifs>3m+5, sisodd.

(6.24)

Let m be even,

(0 ifs<3m+3,
(EJ +1)c3‘21 +#boz1(€%2)
Xy = +6" 510 (¢ 5100 + ([%J +1- 37m)05”151 ifs>3m+3, sisodd,
SMA2
2
+(BJ+1—3”42—+2):5"10+¢”3§51 ifs>3m+3, sis even,
(0 ifs<3m+4,
HE RS
X0, = - +([%J +1- 3m2+4)e§'(’)§1 ey ifs=>3m+4, siseven,
3m+4c6n2+11
2
+<[§J +1-— 3m2+4)05”10+c6”21 ifs>3m+4, sis odd,
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(0 ifs<3m+5,
S 3m+4
({EJ + 1)2%2 + Tboz] (05”151)

3m+2 . .
Xy el = +b”210(e”(’)"£1)+({£J+l—m—)c8§1 ifs=>3m+5, sis odd,

2 2
3m+4aerl
2 021
3m+4 . .
+(l%J+1_mT)e%2+e”g’;1 ifs>3m+5, sis even.

(6.25)

Let X = & € H*(QSU;,R) and let t = " — "2 € H*(QSUs, R). The following cal-
culations will be done in Z[1/2]. Let X[" = ¥7/n! and t!") = ¢"/n).

LEMmMA 6.8. Forn,m € N,

1 m+|n/2] k,m+ \‘EJ _k
2 &k

xlnlglm] = 7] z (6.26)
k=0 m
where
(012, ifk=0,
0(221'572)/3 ifk = 1mod3,
& = o ifk =2mod3, (6.27)

e%’g‘”“ if k = 0mod3,

bo21 ifk=m+{gJ.

Proof. The proof will be done by induction on n € N. For n = 0, we will prove that the
equality

L

i _ (k’ m= k) £, (6.28)
k=0 m
where
[(a012 ifk =0,
aﬁ’g*”“ if k = 1mod3,
E=1 VP ifk=2mod3, (6.29)

e%];%m if k = 0mod3,

| bo2i ifk =m,
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is true. For m = 0, the equality holds. Suppose that for m = q the equality

tla = i (k’q_k> §s»

k=0 q
where
ao12 ifk=0,
DB if k = 1mod3,
& =1 cf)zzli_lw if k =2mod3,

e%’éﬁ)ﬁ if k = 0mod3,

| bo21 ifk=gq,

holds. Then we have

q q
todd =Y (k’q_k>t.5k = SN(-1kt- &
k=0 q

k=0
q+1 q+1 q+1
= D (=DkE+ D (=DM g+ 1 - k)& = > (=D g+ Dé
k=0 k=0 k=0
q+1
k,g+1—k
=> ( qq+1 )(q+1)fk,
k=0
where
ap12 ifk = 0,

DB if k = 1mod3,
& =1 ifk =2mod3,

e§%§_3)/3 if k = 0mod3,

| bo21 ifk=q+1.

Hence the equality

q+1
k,g+1-k
lq+1] _ q
‘ Z( q+1 )fk’

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)



where

ap12

(2k-2)/3
0319

) k=13
&k =1 <021
(2k=3)/3
€102

[ bo21

holds. Suppose that for n = I, the equality

[
Wglm] — = >
X = 2L1/2] Z 2
k=0 m
where
FClo]z,,' ifk = 0,
0221]8_2)/3 if k = 1mod3,
& = cézzliflm if k =2mod3,
e(l%,];_s)/s if k = 0mod3,
. l
bo21 ifk=m+ 5 s

holds. Let [ be even. Then we have

ifk=0,

if k = 1mod3,
if k =2mod3,
if k = 0mod3,
iftk=q+1,
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(6.35)
) &k (6.36)
(6.37)
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1

k=0 i=0

m+ll/2] m I
g S| ()l
m

k=0 i=0

k=0

where

aop12,i

(2k-2)/3
0319

(2k—1)/3
& =1 Coz1

(2k=3)/3
€102

bo21

Since [ is even, we have

where

ao12,i

(2k-2)/3
0310

(2k-1)/3
& =1 o1

(2k=3)/3
€102

bo21

m+[1/2] m l _
S12] Z Z(—l)i[(];) (m+_2J

calculus

m—i

l
| el k. +[7J K
= -] a+1)[°"T ]2 &,
= m

ifk =0,

if k = 1mod3,
if k =2mod3,
if k = 0mod3,

ifk=m+

5}

I+1

[(I+1)/2]
1" k,m+ [
[+1)g[m]) — >
A = Sl kz ( 2
-0

m

ifk=0,

if k = 1mod3,
if k = 2mod3,
if k = 0mod3,

. I+1
ifk=m+ {T

|

J‘k)@,

(6.38)

(6.39)

(6.40)

(6.41)
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Let I be odd. Then we have

m+L1/2] L
e E [ 8o

[1/2]
2 k=0

L (+1)/2] I+1
:Wlnm >SS [()(WlT‘J‘k)(lﬂ)]fk

k=0  i=0 m—i
I+1
L mHal kot { J K
= SiEal Z (I+1) 2 &ks

k=0 m

(6.42)
where
’l1012,z‘ itk =0,
o6 ??  ifk = 1mods3,
2k-1)/3 .

£ = C((m 3 ifk = 2mod3, (6.43)

e§%§_3)/3 if k = 0mod3,

bo21 ifk = m+V—;1J

By the last equation, we have

m+| (1+1)/2] l+71J B
xlisngm _ 1 (k’”” l > k) &, (6.44)
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where
(012, ifk=0,
0521]6_2)/3 if k = 1mod3,
& = cézzﬁfl)m if k = 2mod3,

bo21 ifk=m+{— .

e%ﬁﬁw if k =0mod3,

l+1J
2

By the induction on #, we complete the proof of Lemma 6.8.

LEMMA 6.9. For all nonnegative integers n and m,

1 m+| (n+1)/2] m+n/2]
"2t = 2L /2] { > uapbont D u(z,k;f(z,k)},
k=0 k=0
where
(D225 ifk = 1mods3,
c(()zzliflm ifk =2mod3,
k) = - .
Sk 2(1%)]; 73 if k = 0mod3,
. +1
bo21 1fk=m+{nTJ,
[ »J . +1
(”+1)(km]) ifk=m+ nT , nodd,
k. j . +1
n(m]> ifk=m+ nT,neven,
u(l,k) = L m
. +1
ki P ifk<m+ n2 ,
(n+1)(’])—2( ] ) - .
m m . n+1
] =m+ 2 - k)
(055 (as01)  ifk = 0mods3,
Eowy =1 eom ifk = 1mod3,
L (1%)};_4)/3 ifk =2mod3,
s k ] )
2( 7 dd,
( " ) ifno
Uk = 1 h
»J . . {nJ
> - + | = - k
L<m> ifneven, j =m 5

(6.45)

(6.46)

(6.47)
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LEmMMA 6.10. For all nonnegative integers n and m,

1 m+| (n+1)/2] m+|n/2]
[n] m) — =~ 1
XX £ = 2L(n+1)/2J{ kz il + kZ “kfk}:
=0 =0

where

rbgzllf)_z)ﬁ if k = 1mod3,

(2k-1)/3

o2k if k = 2mod3,
8k =1 (295 ik = 0mod3,

boa1 ifk=m+[%1J’

o) o
v k,;j) ifk =0, neven,

e () =2(50) e
(/@253 ifk = 1mod3,
V&R ifk = 2mod3,
§'k =1 ¢/ 23 ifk = 0mod3,
b 102 ifk:m+[EJ,

2
72 (k’j) if n odd,

m
k, j , . nl
(m) 1fneven,]—m+[2J k.

LemMa 6.11. For all nonnegative integers n and m,

1 m+| (n+2)/2] m+| (n+1)/2] m+|n/2]
(] g 12 ([m] _ f /
T t[M]_ZL(n+z)/zJ{ kz Uil + kz U+ kZ Upb
=0 =0 =0

(6.48)

(6.49)

o

(6.50)
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where

& =1

Ug = A

5,102 lfk =m-+ {

[2tn+1) (’;’qj) —2 (k’];ﬂ_ 1)

(n+1)(n+2) (k’;ij) _20n+1) (k _ml’j>

( /(2k=2)/3

¢ 102 lfk = 1m0d3,
0,(()221;—1)/3 if k = 2mod3,
c’%m if k = 0mod3,

n+1

2{2(n+1)(k’;1]) —2(k’]m_
12(n+ 1)<k’]>
m
202n+ 1)<k’]>
m
rb'(()zzlifz)/s ifk = 1mod3,
c’(zzllf)_l)/s ifk = 2mod3,

,(2k=3)/3

¢ 102 if k = 0mod3,

'oéﬁ’f;z’“ ifk = 1mod3,

cgzzlifl)/s ifk = 2mod3,

e%g_?’)/"’ if k = 0mod3,

bo21 ifk=m+{n—2'—2J,

[ k,j .

nn+1) ifk =0, nodd,

m

(n+1)(n+2)<k’]) —Z(k’]_1> ifk =0, neven,
m m

(n+l)(n+2)<k’J) —2("‘”) ifk > 1, n odd,
m m

ifk =1, neven,

(6.51)

|

ifk#m+ _HTH_, n odd,
1)} ifk+m+ _HTH_, n even,
ifk=m+ _n;l_’ n odd,
ifk=m+ anlJ, n even,
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LEMMA 6.12. For all nonnegative integers n and m,

2ol 2, 2t =

where

f(l,k) =7

u(l,k) = A

E(2,k) =

u(Z,k) = <

& =1

1 m+| (n+2)/2] m+|(n—1)/2]
ZLWZ)/ZJ{ > uapbopt D ueken
k=0 k=0
m+| (n+1)/2] m+|n/2] m+|n/2)
2 wubin T 2 owbhwn T 2 U IL,}’
k=0 k=0 k=0
(6.52)
70521%72)/3 if k = 1mod3,
c(()zzliflm if k = 2mod3,
2(1%573)/3 if k = 0mod3,
. +2
bo21 lfk:m+LnTJy
( ifk=0or
k,j k,j—1
(n+1)2< J)—Zn( / ) n+2
m m + > | n odd,
y i1 ifk=0or
(n+l)(n+2)( ’J> —2(n+1)( e ) V”J
m m m+ | ——|, neven,
‘i i1 otherwise
(n+1)(n+2)( ’]>—4n( b7 ) ) n+2
m m ] =m+ ) - k)
(026" D3 ifk = 2mod3,
c2kr3 if k = 0mod3,
\e%’;‘z)“ if k = 1mod3,
i k+1,j k,j .
(n+1) Iy —o™/ if n odd,
m m
et y if n even,
2{oen(7) =G e
" ") :mﬂ 2 J_k’
’2,(221]6_2)/3 ifk = Imod3,
0'822];_1)/3 ifk = 2mod3,
c'%g? if k = 0mod3,
. +1
b' 102 lfk=m+{nTJ’
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((n+ 1) (kr;j) - 2(k’j B 1) if n odd,

m
if n even,

”El,k) = . .
21 ()20
m m j=m+ { J -k,
L 2
'D'(()zzli_zw ifk = 1mod3,

’ 7 (2k— . 7 k7 j . n
§an=1c (1%2 b7 ifk =2mod3, Uk = 2( J)’ J=m+ {EJ —k

\e’%ﬁ)ﬁ if k = 0mod3,

’0”(1%)};_2)/3 ifk = 1mod3,

c”gzllf)fl)/g' if k = 2mod3,

$= e"é%ﬁfa)/a if k = 0mod3,
kb”zm k:m+ng,
[+ 1) () k=0, nodd '—mﬂ”“J
m 1 =V, )]_ 2 >
4n kj ifk =0, neven '—m+{n—+1J
m - Y > ] - 2 >
Mk :*Z(k’1> k:m+{EJ,
m 2
otherwise

(k1,j+1)
2 m . e
\ J—””H"

(6.53)
LEMMA 6.13. For all nonnegative integers n and m,
:{O[H]:{ID]:{Z{[M}
1 m+| (n+3)/2] m+|n/2] m+| (n+2)/2]
=2L(,,+3)/2J{ > uanbunt X uekbent D #uwble

k=0 k=0 k=0

m+| (n+1)/2] m+| (n+1)/2] m+| (n+2)/2]

+ Z UGSk + Z U S(e + Z ’uE,Z,k)'S(,Z,,k)}’

k=0 k=0 k=0

(6.54)



where

Uk =1

Uk =1

(2k-2)/3
D210

(2k-1)/3
€021

1 ,(2k-3)/3

€102

bo21
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ifk = 1mod3,
ifk = 2mod3,
if k = 0mod3,

ifk=m+ VHZ_?)J’

(n+ 1)(n+2)(n+3)<k1;1j>

_2(n+1)(n+3)(k’jm_ 1) ifk =0, nodd,

m

(n+1)2(n+2)(k’;1j> 2(n? +n+1)<k j_1> ifk =0, neven,

(n+1)(n+2)(n+3) (ﬁ;j)

€210

(2k-1)/3
51

1 c,2k/3

102

4
b'102

—2(n+1)(2n+3)<k_m1’J> ifk:m+{nT+3J, n odd,
(n+1)(n+2)2<k’J>
2(2n*+3n+2 (k Lj ifk=m+v—+3J,neven,
m 2
(n+1D)(n+2 (n+3)(k’]>
m
G- otherwise
—2(n? +n+1)< ) j:m+ln;3J_k>
r0221’8 R if k = 2mod3,
1 c%ﬁf if k = 0mod3,
\e%g_l)/s ifk = 1mod3,

r(n+1)(n+2)<k+ml’j> —2(2n+1)<kr’”j> if n even,

. . if n odd,
2{(n+1)(n+2)(k+r’:’1>—2(2n+1)<kr’nj)} J':””FJ"‘
« 2 ’

([ /(2k=2)/3

if k = 1mod3,
if k = 2mod3,
if k = 0mod3,
ifk=m+ {n;—ZJ
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( k,j k—1,j . VH—ZJ
2 _ -
2{(11 +3n+2)(m> < - )} ifneven, k=m+ 5 |
(2n2 +3n+1) (ﬁ;{)
, —(3n+3)(k+1’J_1>+2(k’]_1) zfneven,k<m+[”;2J,
u(l,k) = < m m
2{(2n2+3n+1) <k’;1]>
if n odd,
—(3n+3)(k+1’1_1>+2<k’]_1)} n42
m m j=m+ L J -k,
2
’0’5221172)/3 ifk = 1mod3,
& (20 = 1 c’(l%)];l)/3 ifk = 2mod3,
Le'gﬁ’g‘s)“ if k = 0mod3,
2(3n+2) <kr’n]> ifk =0, neven,
W =1 otherwise,
@0 k,j k-1,
2(3n+3) -2 I
m m j=m+ l J —k,
rb”f’éf if k = 0mod3,
c”%*”“ if k = 1mod3,
= e"ézzli_l)ﬂ if k =2mod3,
b 210 ifk=m+ln;1J,
2(2n+1)<k’]> ifk=m+{n—+1J, n even,
m 2
’r _J herwise
Uk = . . ot
2{2(n+1)(k’]) —2<k’] 1)} hil
m m j=m+ L—J —k,
L 2
’Clllz()l 1fk = 0,
0" ifk = 0mod3,
f”(z,k) =
c”(zzllf)_z)/S if k = 1mod3,
e”ézzli_‘l)ﬁ if k =2mod3,
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2n(n+1) (kr;qj) ifk =0, n odd,
j +1,j-1\ .
(n2+3n+1)<kj>—<k J ) ifk =0, neven,
, m m
u k = - 1) j .
20 4(" - J) ifk 40, n odd,
k-1, ifk #0, neven,
2( ’ ) . [n+2J
m j=m+|—— |-k
. 2
(6.55)
Also the inverse relations can be given as follows.
LEMMA 6.14. Let w € W with £(w) = s. Then,
|s/2] N
1 k, [—J k) e (e
Go1p = zls/zJ 2 2[5/2] k%o[s Zk]t[k],
k=0 0
|12 k, EJ -k
_ ls/2]—ky [s—2k]([k]
boo1 = 572 = {EJ 2 X e,
2
s
Ls21 [ ks 2| k
m L2 ] Ls/2)—kar [s—2k] ([k] . -
031 2] g;) a1 2 Xo "™ misodd, s=3m+3, (6.56)
2
s
| L2l k, 2| k
L2 ] _ 2k .
i = Sl 21 3ma2 520k s=2KI4kT 4y s even, s > 3m + 4,
2
s
L2 k, 2| k
- ke Ls/2]—k A+ [s—2k]([k] i
e%z—zlmj% 3m+3 PRSI o) ™, misodd, s=3m+5.
2

LEMMA 6.15. Let w € W with £(w) = s. Then,

i Ll [k BJ —k k, EJ —kd Ls/21—k y [s=2K] 4[]
‘021 = 152 kgo 3m+2 B 3m+2 2 ‘
2 2
ek EJ ik L5201k [s-2k-1]5_([K] ;
ol e |2 o B miaen =3
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1 km —k kBJ k-1
o = —(s—=2k ols/2] =k ls=2k[k]
210 2ls/2] = 3m+3 ( ) 3m+3 0
2 2
s
| b2l k’[EJ_I_k
- [s/2]-1-k [s—2k—1] [k] .
NPT g 3m+3 2 Xo Xt misodd, s = 3m+4,
2
|l k,EJ—k k’EJ_k_l
eloy = —(s—2k ols/2)—kye [s=2K]¢[k]
102 2ls/2] = 3m+4 ( ) 3m+4 0
2 2
s
1 |s/2]-1 k,{EJ—l—k
+ 2[5/2]44(:{ [572k71]x t[k], . s> 3m+5.
ols/21-1 ké) 34 0 2 miseven, s > 3m
2

(6.57)

Let R = Z[1/2] and let I'r(x0,x1,x2,y) be the divided power algebra over R, where
degxy = degx; = degx, =2 and degy = 4.

THEOREM 6.16. H*(LSU3/T,R) is graded isomorphic to T'r(xo,%1,%2, ¥)/Ir, where
_ 2] 2] 2] 3]
Iz = <2(X() +x1" +Xx; ) — XoX1 — X1X2 *XzX(),(x() *Xl) > (658)

Proof. Since the odd cohomology is trivial, by the universal coefficient theorem, the cal-
culations can be done for R = Z[1/2].
Let

fi =200 + 302 +x,121) — xox; — x1%0 — x2%0 = 0,
N (6.59)
fz = (X() — xl) =0

be two relations. Let us consider the ideal Iz = ( fi, f2). If we select the graded monomial
order with x, > x; > X, then the leading monomial of f; is x,!?! and the leading monomial
of f,is x1 3. Since the leading monomials f; and f, are relatively prime, we can say that
G = {f1, f»} is a Groebner basis for Iy [4]. Hence T'r(xo,x1,%2,¥)/Ir and Tr(x0,x1,%2, y)/
(21831, %,12) have the same basis as vector spaces [5]. The basis of T'r(xg,x1,%2, ¥)/{x1 13,
x,1%!) is the monomials not involving the third and higher powers of x;, and the sec-
ond and higher powers of x,. These are exactly the monomials which are in one of
the following forms xO[”]y["‘], xo[”]xly[’"], xO[”]xzy[m], xO[”]xlxzy[”‘], xo[”]xllz]y['”], and
xoMx, 21 x, yiml where n,m > 0.

We can show that there are exactly 3s monomial of the degree 2s with s > 0 satisfying
the above forms.



C. Ozel and E. Yilmaz 51

Let s be even. Then for each degree 2s, there are (| s/2] + 1) monomials of the type of
the form xo[”]y[”‘] and [ s/2] monomials of each type of the forms xo[”]xly[m] , %0y ylml,
xo ™26y oMy 121 yIm) and (g 2y I and (s/2] — 1) monomials of the type
of the form xo"x; 21 x, y!"), respectively. So we have totally 3s monomials.

Let s be odd. Then for each degree 2s, there are (| s/2] + 1) monomials of each type
of the forms xo ™yl xo " x; yIm1| x01"x; yIm) and | s/2 ] monomials of each type of the
forms

X0l x1 2y, 01y 121 plm) | gl 20, i) (6.60)

respectively. So we have totally 3s monomials again.
Now let us consider the integral cohomology of LSU3/T. By the lemmas above, we
have two relations in H*(LSU;/T,R) as follows:
F, = 2(:{0[2] +:£1[2] +3€2m) X0 X1 X1 X —-XX0=0,
3] (6.61)
F=(X-X) =0

Then we can define an algebra morphism ¢ : H*(LSU3/T,R) — Tr(x0,x1,%2, ¥)/Ir by

Xo — xo,
xl — X1 6
.62
X2 — x2, (6.62)
t—y
which is an isomorphism by the lemmas above. O

Now we will discuss cohomology of QG with respect to LG/T and G/T, where G is
a compact semisimple Lie group. Since QG is homotopic to Qy1, the discussion can
be restricted to the Kac-Moody groups and homogeneous spaces. The Lie algebras of
LpoiGe/BY, LpoiGe/Ge and G¢/B are g[t,t71]/b*, g[t,t7']/g, and g/b, respectively. There
is a surjective homomorphism

evi—y 1 g[t,t ']/b" — g/b, (6.63)

with kerev,_; = g[t,t7!]/g. Since the odd cohomology groups of g[t,+']/b* and g/b are
trivial, the second term Ej ™ of the Leray-Serre spectral sequence collapses and hence we
have the following.

THEOREM 6.17. Let R be a commutative ring with unit. Then there exist an injective homo-
morphism j: H*(G/T,R) — H*(LG/T,R) and a surjective homomorphism i: H*(LG/T,
R) — H*(QG,R). In particular, ] = im j* is an ideal of H*(LG/T,R) and

H*(QG,R) = H*(LG/T,R)//]. (6.64)
COROLLARY 6.18. Let R = Z[1/2]. Then,

H*(QSUs,R) = Tr(x0,x1,%2, )/ (Ir, X1,%2) = Tr(x0,x1,%2, )//{x1,%2) = Tr(x0,¥).
(6.65)
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Now we will give a different approach to determine the cohomology ring of based loop
group QG using the Schubert calculus. For a compact simply connected semisimple Lie
group G, we have the following theorem from [22].

THEOREM 6.19. The natural map
G—LG—LG/G=QG (6.66)

is a split extension of Lie groups.

THEOREM 6.20. Let G be a compact simply connected semisimple Lie group and let T be a
maximal torus of G. Then w: LG/T — LG/G is a fiber bundle with the fiber G/T.

Proof. Since LG — LG/G is a principal G-bundle and G/T is a left G-space by the action
g T =goT for g,2 € G, we have a fibration

G/T — LGXcG/T — QG. (6.67)

Therefore, we have to show that LG X G/T is diffeomorphic to LG/T. Since LG X¢ G/T
is equal to

{[y,gT1:[y,gT] = [yh,h 'gT] Vg,h € G,y € LG}, (6.68)

we define a smooth map 7: LG X¢ G/T — LG/T given by [y,gT] — ygT. It is well defined
because for h € G,

t([yh,h™'gT]) = yhh™'gT = ygT = ([y,gT]). (6.69)

For every yT, we can find an element [y,T] € LG X¢ G/T such that 7([y,T]) = yT. So, T
is a surjective map. Now, we will show that 7 is an injective map. Let [y1,21T1,[y2,£T] €
LG X G/T such that

t([ynaiT]) = 7([y2T]). (6.70)
Equation (6.70) gives
n&l =yl (6.71)
So, (y181) 7' (7282), (y282) "' (1181) € T. Then,

[ynaiT] = [yigngr'aiT] = [y1gT] = [(1ig) (nign) ™ (1282), (122) ™ (31g1) T
= [y280T] = [y2828 2T = [y2:£T].
(6.72)

Thus, we have proved that 7 is an injective map and its inverse is given by yT — [y, T
which is smooth map. Then 7 : LG/T — LG/G = QG, given by yT — G, is a fiber bundle
map. (]
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Since LG/T is a fiber bundle over QG with the fiber G/T, by the Leray-Serre spectral
sequence of the fibration and Kostant and Kumar [16, Corollary (5.13)], 0 : H*(QG,Z) —
H*(LG/T,Z) is injective and 0(H*(QG, Z)) is generated by the Schubert classes {e"}, .
in the cohomology of LG/Tand hence we can determine the cohomology ring of QG.

Let R = Z[1/2] and let Tr(y,p) be the divided power algebra with degy = 2 and
degf =4.

TaEOREM 6.21. H*(QSU(3),R) is isomorphic to Tr(y, ) with the R-module basis

P2HBIk 0 <k < BJ (6.73)

in each degree 2s for s > 1.

Proof. Since the odd cohomology is trivial, by the universal coefficient theorem, the cal-
culations can be done for R = Z[1/2]. The integral cohomology of QSUs is generated by
the Schubert classes indexed:

Wz{m:WEW}

k k ky,k Il 11, .
= {A012,i>3021,i> Conri» Daioi» Elgrs 1k =0, ky and n; odd, [; even, i = 0, 1,2}.
(6.74)
k k kysky Il ny,ny
Let ag25 boa1io €021 0210, €102,
§ L , " .
Cgélkj, Dz‘léz)i, Elpy; of the Weyl group W, respectively. O

be Schubert classes indexed by elements A'glz’i, B’O‘ZU,

LEMMA 6.22. Let w € W with £(w) = s. Then,

LS/ZJ k \‘SJ k
_ |5 | T | s/2|—k x~[s—2k] ¢ [k]
ao12 = 15721 kz 20 ols K ls—2klglkl
=0

s
1 |s/2] k; {—J -k
2 ols/21—k yls=2k] g[K]

b2t = 57
21521 & {EJ
2

s
1 & k’[EJ K
mo_ pls/2)-kxls—2klglk] . s> 3m+3,
€021 = Siga] ké) Amat1 X t misodd, s>3m+3 (6.75)
2
s
] 2 k,{—J -k
0910 = 2 ls/20=k e ls=2KIglkl g s even, s = 3m + 4,
202 =0 3m+2
2
s
1 |s/2] k) {_J - k
ety = 2 L2 =kxls=2KIgKl 4y is odd, s = 3m + 5.
228 = 3m+3
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Now we define a graded algebra isomorphism ¢ : T'r(y, ) — H*(QSU(3),R) by

ls/2] L el g [EJ y
o Zwp) - o S S ("B e 6o
k=0 k=0 j=0
where
[(a012,i ifj=0,
0521{'{2)/3 if j = 1mod3,
Qj-13 ...
£ = - ol if j = 2mod3, (6.77)
e%é_s)/s if j = 0mod3,
. N
‘5021 lf] = [EJ

Then H*(QSU(3),R) is isomorphic to T'r(y,8) with the R-module basis yls=2K18lkl 0 <
k <|s/2] in each degree 2s for s > 1.
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