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A system with an absolute nonlinearity is studied in this work. It is noted that the system is chaotic and has an adjustable
amplitude variable, which is suitable for practical uses. Circuit design of such a system has been realized without any multiplier
and experimental measurements have been reported. In addition, an adaptive control has been applied to get the synchronization
of the system.

1. Introduction

Although chaos in dynamic systems has been investigated
for many years [1–4], new systems with chaos still attract
the attention of numerous researches [5–11]. Finding new
chaotic systems and investigating chaos control and chaos
synchronization methodologies are attractive topics [12–15]
due to the applications of chaos in various areas such as
waveforms of chaotic radar [16], image encryption [17],
secure image transmission [18], video encryption design [19],
and S-box construction [20].

Previous studies suggest that absolute function is effective
to design chaotic systems [21, 22]. It is worth noting that
an absolute term is not a quadratic nonlinearity and can be
implemented with diodes and operational amplifiers [22]. By
using an absolute term, one of the most elementary chaotic
systemswas introduced by Linz and Sprott [21]. Such a system
was also realized by a circuit [22]. Jerk systems with absolute
nonlinearities were presented in [23]. Authors investigated
the synchronization of a chaotic system, which includes
only four terms and an absolute-value nonlinearity [24].
In addition, absolute-value term was explored to propose

a hyperchaotic circuit without any multiplier [25]. Huang
and Liu introduced a fractional-order chaotic system with
the presence of an absolute term [26]. Bao et al. designed a
memristor-based system with four line equilibria by imple-
menting three absolute terms [27]. It is interesting that
adjustable amplitude of chaotic attractor was obtained with
absolute terms [28].

The aim of this work is to study a simple system with
chaos. There is only one nonlinear term, an absolute non-
linearity, in such system. It is noted that the system exhibits
variable chaotic attractors, which have been rarely investi-
gated in Sprott’s systemswith absolute-value nonlinearity and
six terms. Dynamics, circuit, and synchronization of such a
systemwith an absolute nonlinearity are presented in the next
sections.

2. The System with an Absolute Term and
Its Dynamics

Absolute function has been applied to construct different
systems with chaotic behavior [27, 28]. In this work, by
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Figure 1: Presentation of the bifurcation diagram for 𝑎 ∈ [5.5, 7], while 𝑏 = 4 and 𝑐 = 1.
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Figure 2: Presentation of maximum Lyapunov exponents for 𝑎 ∈ [5.5, 7], while 𝑏 = 4 and 𝑐 = 1.
using an absolute nonlinearity, we study a six-term system
described by 𝑥̇ = 𝑎 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 + 𝑏𝑧,̇𝑦 = 1 + 𝑧,𝑧̇ = −𝑐𝑥 − 𝑧. (1)

System (1) has three positive parameters (𝑎, 𝑏, 𝑐 > 0). We
have found that system (1) displays different behavior when
varying the parameter 𝑎.

We have changed the parameter 𝑎 for plotting the
bifurcation diagram and the maximum Lyapunov exponents
(presented in Figures 1 and 2). As shown in Figures 1 and 2,
system (1) is periodic for 𝑎 < 6.67. From Figures 1 and 2,
we also observe a period doubling route to chaos, which is
illustrated further in Figure 3. For 𝑎 > 6.67, chaotic dynamics
can be seen. For 𝑎 = 6.8, 𝑏 = 4, and 𝑐 = 1, chaos in system (1)
is presented in Figure 4. Chaos in this case is verified by the
Lyapunov exponents of the system 𝐿1 = 0.1046 > 0, 𝐿2 = 0,
and 𝐿3 = −1.1048.

Interestingly, we can change the amplitude of the variable𝑥 easily by adding a control parameter (𝑘𝑥) into system (1):

𝑥̇ = 𝑎 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 + 𝑏𝑧,̇𝑦 = 1 + 𝑧,𝑧̇ = −𝑐𝑥 − 𝑧 + 𝑘𝑥.
(2)

As shown in Figure 5, chaotic attractors are adjusted by using
the control parameter 𝑘𝑥. When increasing 𝑘𝑥, the average
value of the variable 𝑥 is increased (see Figure 6).

Moreover, the amplitudes of three variables (𝑥, 𝑦, 𝑧) are
changed simultaneously by introducing a control parameter
(𝑘𝑥𝑦𝑧) into system (1) as follows:

𝑥̇ = 𝑎 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 + 𝑏𝑧,̇𝑦 = 𝑘𝑥𝑦𝑧 + 𝑧,
𝑧̇ = −𝑐𝑥 − 𝑧.

(3)
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Figure 3: Different periodical dynamics observed in 𝑥-𝑧 plane for 𝑏 = 4 and 𝑐 = 1; initial conditions (𝑥(0), 𝑦(0), 𝑧(0)) = (0, 0, 0) when (a)𝑎 = 5.75, (b) 𝑎 = 6.25, (c) 𝑎 = 6.625, and (d) 𝑎 = 6.665.
As illustrated in Figure 7, chaotic attractors are reduced
and enlarged when varying the control parameter 𝑘𝑥𝑦𝑧. It
is worth noting that Sprott has discovered various systems
with absolute-value nonlinearity and six terms [3]. How-
ever, there are few systems displaying controllable chaotic
attractors, which have received significant attention recently
[29–31].

3. Circuit Design for the System

The numerical approach is vital for investigation of the
dynamics of theoretical chaotic models [32–35]. By using this
method, the dynamical behaviors of suchmodels can be char-
acterized in terms of their parameters. However, to explore
their feasibilities, the electronic circuit implementation of
these theoretical models is needed [36–39]. Moreover, the
physical realization of theoretical chaotic models is relevant
in many engineering applications [40–42]. In this section, we
design and implement an electronic circuit to illustrate the

feasibility of system (1). The electronic circuit diagram for
system (1) is depicted in Figure 8.

The circuit diagram of Figure 8 consists of operational
amplifiers associated with resistors and capacitors exploited
to implement the basic operations such as integration, addi-
tion, and subtraction. The nonlinear term of the model is
implemented by absolute-value circuit of Figure 8(b). The
bias is provided by a 15 Volts DC symmetry source. By
applying Kirchhoff ’s laws into the circuit of Figure 8, we
obtain the following state equations:

𝑑𝑉𝑥𝑑𝑡 = 󵄨󵄨󵄨󵄨󵄨𝑉𝑦󵄨󵄨󵄨󵄨󵄨𝑅𝑎𝐶 + 𝑉𝑧𝑅𝑏𝐶𝑑𝑉𝑦𝑑𝑡 = 𝑉𝐷𝐶𝑅𝐶 + 𝑉𝑧𝑅𝐶𝑑𝑉𝑧𝑑𝑡 = − 𝑉𝑥𝑅𝑐𝐶 − 𝑉𝑧𝑅𝐶,
(4)
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Figure 4: Phase portrait observed in (a) 𝑥-𝑦 plane, (b) 𝑥-𝑧 plane, (c) 𝑦-𝑧 plane, and (d) 𝑥-𝑦-𝑧 space for 𝑎 = 6.8, 𝑏 = 4, and 𝑐 = 1 and initial
conditions (𝑥(0), 𝑦(0), 𝑧(0)) = (0, 0, 0).
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Figure 5: Variable chaotic attractor when varying the control parameter 𝑘𝑥: black color for 𝑘𝑥 = 0, blue color for 𝑘𝑥 = −2, and red color for𝑘𝑥 = 2.
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Figure 6: Average values of three variables (𝑥, 𝑦, 𝑧) for 𝑘𝑥 ∈ [−3, 3].
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Figure 7: Controllable chaotic attractors in (a) 𝑥-𝑦 plane and (b) 𝑥-𝑧 plane when varying the control parameter 𝑘𝑥𝑦𝑧: black color for 𝑘𝑥𝑦𝑧 = 1,
blue color for 𝑘𝑥𝑦𝑧 = 2, and red color for 𝑘𝑥𝑦𝑧 = 0.5.
where𝑉𝑥,𝑉𝑦, and𝑉𝑧 are the output voltages of the operational
amplifiers OP 1, OP 2, and OP 3, respectively. In order to
compare system (4) with theoretical model (1), the following
settings of variables and parameters,𝑉𝑥 = 𝑥×1𝑉,𝑉𝑦 = 𝑦×1𝑉,𝑉𝑧 = 𝑧 × 1𝑉, 𝑡 = 𝜏𝑅𝐶, 𝑎 = 𝑅/𝑅𝑎, 𝑏 = 𝑅/𝑅𝑏, and 𝑐 = 𝑅/𝑅𝑐, are
adopted. With the following values of parameters, 𝑎 = 6.8,𝑏 = 4, and 𝑐 = 1 (for which system (1) displays chaotic
behavior), the values of circuit components are selected as
follows: 𝐶 = 10 nF, 𝑅 = 10 kΩ, 𝑅𝑎 = 1.47 kΩ, 𝑅𝑏 = 2.5 kΩ,
and 𝑅𝑐 = 10 kΩ.

As shown in Figure 9, the circuit has been implemented
and experimental measurements have been recorded. Details
of the real circuit are presented in Figure 10.The experimental
phase portraits of the circuit in (𝑉𝑥, 𝑉𝑦), (𝑉𝑥, 𝑉𝑧), and (𝑉𝑦, 𝑉𝑧)
planes obtained with an oscilloscope are shown in Figure 11.

From Figure 11, one can see that the experimental chaotic
phase portraits agree with those obtained from the numerical
simulations. This means that the proposed electronic circuit
emulates well the dynamics of theoretical model (1).

4. Synchronization for the System with
Unknown Parameters

It is well known that, in practical situations, some or all of the
system parameters cannot be exactly known in advance. Also,
most parameters values are characterized by uncertainties
related to the modeling errors or experimental conditions
(temperature, external electric and magnetic fields, etc.) that
can destroy or even break the synchronization [43–45].
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Figure 8: Electronic circuit design of system (1) (a) and the circuit realization of the absolute value function (b).

Figure 9: Implemented circuit was measured by using an oscilloscope.

Therefore, it is essential to consider the synchronization
problem of chaotic systems in the presence of unknown
system parameters. In this section, we design an adaptive
control scheme [43] to synchronize two identical structures
of system (1) with unknown parameters.

4.1. Design of the Slave System. We will assume that all the
state variables and parameters of the master system (1) are
accessible to measurements and those of slave system are
unknown. Based on the concept of adaptive method, the
following theorem is formulated.
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Figure 10: Real circuit implemented by using electronic components.
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Figure 11: Experimental phase portraits of the real circuit in (a) (𝑉𝑥, 𝑉𝑦) plane, (b) (𝑉𝑥, 𝑉𝑧) plane, and (c) (𝑉𝑦, 𝑉𝑧) plane with 𝑅𝑎 = 1.47 kΩ,𝑅𝑏 = 2.5 kΩ, and 𝑅𝑐 = 10 kΩ.
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Theorem 1. Let system (1) be the master system rewritten in
the following form:

𝑋̇𝑚 = 𝑓 (𝑋𝑚) + 𝐹 (𝑋𝑚) 𝜃, (5)

where 𝑋𝑚 (𝑥𝑚, 𝑦𝑚, 𝑧𝑚)𝑇 ,
𝑓 (𝑋𝑚) = (0, 1 + 𝑧𝑚, −𝑧𝑚)𝑇 ,

𝐹 (𝑋𝑚) = (
󵄨󵄨󵄨󵄨𝑦𝑚󵄨󵄨󵄨󵄨 𝑧𝑚 00 0 00 0 −𝑥𝑚),

𝜃 = (𝑎, 𝑏, 𝑐)𝑇 ;

(6)

then the slave system

𝑋̇𝑠 = 𝑓 (𝑋𝑠) + 𝐹 (𝑋𝑠) 𝜃 (𝑡) + 𝑢 (7)

can synchronize with the master system (5), with the control
function 𝑢 designed as

𝑢
= − {𝑒 + 𝑓 (𝑋𝑠) − 𝑓 (𝑋𝑚) + [𝐹 (𝑋𝑠) − 𝐹 (𝑋𝑚)] 𝜃 (𝑡)} (8)

and the update law of the estimations of the unknown param-
eters determined by ̇̂𝜃 (𝑡) = −𝐹𝑇 (𝑋𝑚) 𝑒, (9)

where 𝑒 = 𝑋𝑠−𝑋𝑚 is the error system and 𝜃 = (𝑎, 𝑏̂, 𝑐)𝑇 are the
estimations of the corresponding parameters of the slave system
(7).

Proof. The error dynamical system can be expressed as

̇𝑒 = 𝑋̇𝑠 − 𝑋̇𝑚 = −𝑒 + 𝐹 (𝑋𝑚) (𝜃 (𝑡) − 𝜃) . (10)

Choose the storage Lyapunov function as

𝑉 (𝑒, 𝜃 (𝑡)) = 12𝑒𝑇𝑒 + 12 (𝜃 (𝑡) − 𝜃)𝑇 (𝜃 (𝑡) − 𝜃) . (11)

Then, the time derivative of 𝑉(𝑒, 𝜃(𝑡)) along the trajectory is
𝑉̇ = 12 ( ̇𝑒𝑇𝑒 + 𝑒𝑇 ̇𝑒) + 12 {( ̇̂𝜃 (𝑡))𝑇 (𝜃 (𝑡) − 𝜃)

+ (𝜃 (𝑡) − 𝜃)𝑇 ̇̂𝜃 (𝑡)} = 12 {−𝑒𝑇𝑒
+ (𝜃 (𝑡) − 𝜃)𝑇 𝐹𝑇 (𝑋𝑚) 𝑒 − 𝑒𝑇𝑒
+ 𝑒𝑇𝐹 (𝑋𝑚) (𝜃 (𝑡) − 𝜃)} + 12 {( ̇̂𝜃 (𝑡))𝑇 (𝜃 (𝑡) − 𝜃)
+ (𝜃 (𝑡) − 𝜃)𝑇 ̇̂𝜃 (𝑡)} = −𝑒𝑇𝑒.

(12)

So 𝑉̇ is negative semidefinite, and since 𝑉 is positive definite,
it follows that 𝑒 ∈ 𝐿∞ and 𝜃 ∈ 𝐿∞. Thus ̇𝑒 ∈ 𝐿∞, and,
according to (10), it can be obtained that

∫𝑡
0
‖𝑒‖2 𝑑𝑡 = ∫𝑡

0
𝑒𝑇𝑒 𝑑𝑡 ≤ −1𝑙 ∫𝑡

0
𝑉̇𝑑𝑡

= 1𝑙 [𝑉 (0) − 𝑉 (𝑡)] ≤ 1𝑙 𝑉 (0) . (13)

Since 𝑉(0) ≤ ∞ and 𝑒 ∈ 𝐿2, according to Barbalat’s
lemma, we have ‖𝑒(𝑡)‖ → 0 as 𝑡 → ∞; that is, the
error dynamical system (10) will be stabilized at the zero
equilibrium asymptotically. Thus, according to the Lya-
punov stability theorem, the adaptive synchronization with
unknown parameters between the drive system (5) and the
response system (7) is achieved under the controller defined
in (8) and parameters update law determined by (9). This
completes the proof.

4.2. Numerical Verifications. For numerical verification, the
master system is defined as in (5) with parameters 𝑎, 𝑏, and 𝑐.
According to Theorem 1, the slave system is described as
follows:

𝑥̇𝑠 = 𝑎 󵄨󵄨󵄨󵄨𝑦𝑚󵄨󵄨󵄨󵄨 + 𝑏̂𝑧𝑚 − (𝑥𝑠 − 𝑥𝑚) ,̇𝑦𝑠 = 1 + 𝑧𝑚 − (𝑦𝑠 − 𝑦𝑚) ,𝑧̇𝑠 = −𝑐𝑥𝑚 − 𝑧𝑚 − (𝑧𝑠 − 𝑧𝑚) ,
(14)

where ̇̂𝑎 = − 󵄨󵄨󵄨󵄨𝑦𝑚󵄨󵄨󵄨󵄨 (𝑥𝑠 − 𝑥𝑚) ,̇̂𝑏 = −𝑧𝑚 (𝑦𝑠 − 𝑦𝑚) ,̇̂𝑐 = 𝑥𝑚 (𝑧𝑠 − 𝑧𝑚) .
(15)

The numerical computations are obtained using the stan-
dard fourth-order Runge-Kutta integration algorithm with a
time step Δ𝑡 = 0.001; initial conditions on parameters are
being selected randomly as follows: 𝑎(0) = 1.20, 𝑏̂(0) = 0.80,
and 𝑐(0) = 0.25. The master system’s parameters are chosen
as 𝑎 = 6.8, 𝑏 = 4, and 𝑐 = 1 in order to ensure the chaotic
behavior.The synchronization errors and the graph of param-
eters estimations are shown in Figures 12 and 13, respec-
tively.

Numerical simulations (see Figures 12 and 13) show that
the adaptive synchronization between master system (5)
and slave system (7) with unknown parameters is achieved
successfully and the error signals approach asymptotically
zero. Obviously, these results may be exploited in engineer-
ing applications such as communication, image processing,
physics, and mechatronics.

5. Conclusions

By using an absolute nonlinearity, we have introduced a
six-term system with chaos. Dynamics of the system with
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Figure 12: Error dynamics showing transition to synchronized states of the system and its observer. (a) 𝑒𝑥 = 𝑥𝑠 − 𝑥𝑚, (b) 𝑒𝑦 = 𝑦𝑠 − 𝑦𝑚, and
(c) 𝑒𝑧 = 𝑧𝑠 − 𝑧𝑚. The initial conditions are chosen randomly as 𝑥𝑚(0) = 0.01, 𝑦𝑚(0) = 0.02, and 𝑧𝑚(0) = 0.03 and 𝑥𝑠(0) = 0.8, 𝑦𝑠(0) = 0.4,
and 𝑧𝑠(0) = 0.5, respectively, for the drive and response systems. The master system parameters are 𝑎 = 6.8, 𝑏 = 4, and 𝑐 = 1 to ensure the
chaotic behavior.
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Figure 13: Graphs of estimation of unknown parameters of slave system. (a) 𝑎, (b) 𝑏̂, and (c) 𝑐. The initial conditions are selected randomly
as 𝑎(0) = 1.2, 𝑏̂(0) = 0.8, and 𝑐(0) = 0.25.
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only one absolute nonlinearity have been investigated. One
interesting finding is that the 𝑥 variable can be adjusted with
a control parameter. In addition, it is simple to implement this
chaotic system because we do not need any analog multiplier.
Adaptive synchronization between such two chaotic systems
has been reported and these results should be exploited
further for practical applications.
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