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The structural vibration of the main beam of a crane causes fatigue damage and discomfort to the driver. The swing of the payload
has an effect on positioning precision, especially for a ladle crane, and this directly affects production safety. To study the influence
of system parameters on the vibration of a crane’s main beam and the angle of the payload, a system consisting of the main beam,
trolley, payload, and cabinwas constructed. A rigid-flexible coupling dynamicmodel of amoving trolleywith a hanging payload that
moves on the flexible main beam with a concentrated cabin mass is established, and the direct integration method is used to solve
the nonlinear differential equations of system vibration, which are obtained through Lagrange’s equation. Then, the time domain
responses of the flexible main beam, payload angle, and cabin vibration are obtained. The influences of the trolley running speed,
quality of the payload, and quality and position of the cabin on the vibration of the main beam and payload angle are analyzed.
The results indicate that the amplitude of the main beam is directly proportional to the quality of the trolley, payload, and cab; the
position of the cabin is closer to the mid-span; the amplitude of the main beam is larger; the structural damping has some influence
on the vibration of the main beam; and the swing angle of the payload is related to the maximum running speed of the trolley,
acceleration time, and length of the wire rope. In order to reduce the vibration of the main beam and cabin, the connection stiffness
of the cabin should be ensured during installation.

1. Introduction

The ladle crane is a type of overhead crane and carries out
onerouswork under extremely hostile environments. Itsmech-
anism and structure can withstand the strong impact vibra-
tion of the trolley on the main beam. Many scholars have
simplified the vibration system model to the moving load
beam coupling system and have carried out a significant
amount of research on the dynamic response of beams under
moving mass.

Michaltsos et al. [1] dealt with the linear dynamic response
of a simply supported uniform beam under a moving load of
constant magnitude and velocity by including the effect of its
mass. By using a series solution for the dynamic deflection
in terms of normal modes, the individual and coupling effect
of moving load mass, its velocity, and other parameters were
fully assessed.

Şimşek [2] investigated the dynamic characteristics of the
main beam when the moving mass was running on a sim-
ply supported beam, established the equilibrium equations

of the system by using Lagrange’s equations, and discussed
the effects of shear deformation, various material distribu-
tions, velocity of the moving mass, inertia, Coriolis and the
centripetal effects of moving mass on the dynamic displace-
ments, and the stresses of the beam, in detail. Kiani et al. [3]
investigated the maximum deflection and bending moment
of the beams under various boundary conditions due to a
moving mass by employing Hamilton’s principle and using
Euler–Bernoulli, Timoshenko, and third-order beam theo-
ries.

A comprehensive parametric investigation on the effects
of movingmass weight and velocity on the dynamic behavior
of a simply supported Euler–Bernoulli was carried out by
Nikkhoo et al. [4], by employing the eigenfunction expansion
method. They introduced a concept of critical velocity in
terms of beam fundamental period, mid-span, and moving
mass weight, in which the effect of convective accelerations
in moving mass formulation was not negligible for masses
moving with velocities greater than this critical one.
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Esmailzadeh and Ghorashi [5] analyzed the dynamic be-
havior of beams with simply supported boundary conditions,
which carried either uniform partially distributed moving
masses or forces, and evaluated the critical speeds of themov-
ing load, by considering themaximumdeflection for themid-
span of the beam. Moreover, they verified that the length of
the distributed moving mass affects the dynamic response
considerably.

Lee [6] investigated the dynamic response of a Timo-
shenko beam,which is acted upon by amovingmass, by using
the Lagrange approach and the assumed mode method. He
verified the results of the model by comparing them with the
results of an equivalent moving load for the mid-span deflec-
tion of a simply supported beam for a small number of mov-
ingmassweights and velocities as well as for different slender-
ness ratios of the base beam. Lou et al. [7] presented a finite
element formulation of the Timoshenko beam subjected to
a moving mass. Their results were in good agreement with
those obtained by using the assumedmodemethod employed
by Lee [6]. Many scholars have applied the model of mass
moving on the beam to engineering practice. Lou et al. [8]
and Cheng et al. [9] established a bridge-track-vehicle model
in order to analyze the vibration of railway bridges under a
moving train by taking into account the response of the track
structure. The above-mentioned studies have only investi-
gated the dynamic characteristics of the simply supported
beam under a moving mass, or the quality of moving mass,
running speed, acceleration, or other factors. There is no
model of moving mass that accounts for swing quality.

Thedynamic response of cranes has been studied bymany
scholars. Niu et al. [10] presented a general mathematical
modeling approach for electric crane system dynamics dur-
ing operation, which could be used to analyze the dynamic
responses of electromagnetism, mechanism, and structure,
during the operation of electric cranes.Wu et al. [11–14] estab-
lished a mathematical model of the horizontal and vertical
vibrations of a crane structure under the trolley running and
lifting processes by using finite element theory and calculated
the vibration response of the main beam. The correctness
of the theoretical solution was verified by experimental
verification, and the parameters were modified. Oguamanam
et al. [15, 16] established an Euler–Bernoulli equation in
order to investigate the vibration response of a fixed crane
beam. Zrnić et al. [17] constructed multi-degree-of-freedom
vibration models for crane structures in order to analyze the
effects of wire rope length, damping ratio, and tilt angle of
the sling load on structural vibration. Xin et al. [18] con-
structed a nine-degree-of-freedom mathematical model of a
“human–crane–rail” system and an annoyance ratemodel for
use in the optimization of the structural parameters of over-
head traveling cranes and used the particle swarm optimiza-
tion algorithm to optimize the structural design of overhead
cranes. Some scholars predicted crane fatigue life by analyz-
ing dynamics of vibration system [19, 20].

Although the dynamic characteristics of the main beam
and the swing angle of the crane have been studied; these two-
aspects have not been discussed simultaneously. The models
reported in the literature contain only the main beam,
trolley, and crane quality, without considering factors such as

cabin quality, position, and structural damping of the main
beam, which also affect the vibration of the main beam. The
vibration time response of the cabin can be used to analyze
the vibration of the human body during operation and
thereby reduce the possibility of occupational disease.There-
fore, this paper considers these factors in order to establish
a dynamic model of the ladle crane vibration system. Based
on the principle of energy conservation, the system vibration
equation was established through Lagrange’s equation. In
combination with a direct integral method for solving the
approximate solution of nonlinear vibration, the influence of
factors such as the quality (trolley, payload, and cabin), trolley
running speed, length of wire rope, position and connection
stiffness of cabin on the vibration of the main beam, and
the influence of the swing of payload was analyzed. In this
study, the vibration acceleration and amplitude time domain
responses of the cabin were obtained, which provide a theo-
retical reference for the optimization of crane design.

2. Crane Vibration System Modeling

2.1. Description of Vibration System. The ladle floating crane
includes a frame, trolley movement organization, cabin, and
suspension system, and the ladle crane system vibration
dynamics model is established according to the size and
structural characteristics, based on the following assump-
tions:

(1) Themain beam is regarded as a flexible body, and only
the vibration in the vertical direction is considered. If
all the damping in the elastic body is viscous damping,
the damping of the beam has very little influence on
the vibration of the structure [21]; the damping ratio
is usually 0.1%–0.7%.

(2) The cabin is simplified as a lumped mass, and only
the vertical vibration is considered. The connection
between the cabin and the main beam is simplified as
a spring and damping model with greater stiffness.

(3) According to the characteristics of the ladle crane, the
rope is regarded as rigid without quality [22].

(4) The payload of the crane is reduced to a swinging
mass, which is suspended in mass blocks by a non-
mass rigid rope, which moves with the mass in the
plane.

(5) The deflection of main beam is considered as linear,
while the nonlinear effect of main beam deflection
in the dynamic response analysis of the ladle crane is
ignored.

The design method of the main beam consists of the
allowable stressmethod and limit statemethod.The allowable
stress method assumes that the deflection of the main beam
is linear; however, the limit state method takes into consid-
eration the nonlinear deflection of the main beam, while the
fatigue analysis and the calculation of the crane beam struc-
ture’s dynamic characteristics by these two methods have
been reported in the literature [23, 24], where it was found
that the results were basically the same with the exception
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of jib crane. Therefore, the nonlinear deflection of the beam
had little effect on the dynamic response analysis of ladle
cranes. In addition, after the completion of design andmanu-
facturing, the beam of the bridge crane was formed on the
precambering curve; therefore, the crane beam vibration
amplitude was relatively small. Thus, this study adopted the
mentioned hypothesis (5).

A schematic of the problem is depicted in Figure 1. The
beam is simply supported and is assumed to be adequately
modeled by using the Euler–Bernoulli beam theory. Only
the bending stiffness was calculated, and the shear stiffness
and torsion stiffness of the beam were not considered. The
properties of the beam are Young’s modulus 𝐸, volume den-
sity 𝜌, cross-sectional area 𝐴, length 𝑙𝑏, and second moment
of area 𝐼. 𝑚𝑐 is the quality of the trolley, 𝑚𝑝 is the quality
of the payload, 𝑚𝑏 is the quality of unit length for the main
beam, 𝑙𝑝 is the length of the wire rope, 𝑘𝑑 is the connection
stiffness between the cabin and the main beam, 𝑐𝑑 is the
damping between the cabin and the main beam, 𝑚𝑑 is the
quality of the cabin, 𝑥𝑑 is the mounting position coordinates
of the cabin, 𝑔 is the gravitational acceleration, 𝑉𝑚 is the
maximum running speed of the trolley, 𝜉𝑖 is the 𝑖th modal
damping ratio of the main beam structure, 𝑥𝑠 is the extreme
left position of the trolley, 𝑥𝑒 is the extreme right position of
the trolley, and 𝜃𝑥 is the swinging angle of the payload.
2.2. Dynamic Equations of the Vibration System. The trolley
runs at the maximum speed 𝑉𝑚 on the main beam, and the
elastic displacement curve of 𝑥 atmoment 𝑡 in the𝑍 direction
of the main beam can be expressed as follows:

𝑤 (𝑥, 𝑡) = 𝑁∑
1

𝜙𝑖 (𝑥) 𝑞𝑖 (𝑡) , (1)

where 𝜙𝑖(𝑥) = sin(𝑖𝜋𝑥/𝑙𝑏) is the 𝑖th modal of the simply sup-
ported beam, and 𝑞𝑖(𝑡) and𝑁 are the generalized coordinates
and coordinate numbers of the elastic displacement of the
main beam, respectively.

The coordinate vectors can be defined according to the
simplified physical model shown in Figure 1. Therefore, the
position vector of an elemental mass of beam rb, the position
vector of carriage rc, the position vector of the payload rp, and
the position vector of crane cabin rd can be expressed as

rb = 𝑥 ⋅ i + 𝑤 (𝑥, 𝑡) ⋅ k,
rc = 𝑥𝑐 ⋅ i + 𝑤 (𝑥𝑐, 𝑡) ⋅ k,
rp = (𝑥𝑐 + 𝑙𝑝 sin 𝜃𝑥) ⋅ i + (𝑤 (𝑥𝑐, 𝑡) + 𝑙𝑝 cos 𝜃𝑥) ⋅ k,
rd = 𝑥𝑑 ⋅ i + (𝑧𝑑 − 𝑤 (𝑥𝑑, 𝑡)) ⋅ k.

(2)

If the total kinetic energy of the system is 𝑇, the energy in
the two main beams is 𝑇𝑏, the kinetic energy of the moving
trolley is 𝑇𝑐, and the kinetic energy of payload is 𝑇𝑝, then the
kinetic energy of each part of the system can be expressed as

𝑇𝑏 = 14𝑚𝑏𝑙𝑏 𝑁∑
𝑖=1

𝑞̇𝑖2,
𝑇𝑐 = 12𝑚𝑐{{{𝑥̇𝑐2
+ [𝑥̇𝑐 𝑁∑

𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞̇𝑖]2}}} ,
𝑇𝑝 = 12𝑚𝑝{{{[𝑥̇𝑐

𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞̇𝑖]2 + 𝑥̇𝑐2
+ 𝑙𝑝2𝜃̇𝑥2 + 2𝑙𝑝𝑥̇𝑐𝜃̇𝑥 cos 𝜃𝑥
− 2𝑙𝑝𝜃̇𝑥 sin 𝜃𝑥 [𝑥̇𝑐 𝑁∑

𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞̇𝑖]}}} ,
𝑇𝑑 = 12𝑚𝑑{{{[

𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̇𝑖 (𝑡)]2 − 2𝑧̇𝑑 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̇𝑖 (𝑡)
+ 𝑧̇𝑑2}}} .

(3)

In the coupled systemmodel, the system potential energy
includes the elastic strain energy of beams 𝑈𝑏 and the elastic
potential energy of the spring between the cab and beam 𝑈𝑑.
In the process of movement, the work done by external forces
(the gravity of cart, trolley, and payload)𝑊 will also change
the system potential.

The total potential energy for the system is

𝑈 = 𝑈𝑏 + 𝑈𝑑 −𝑊. (4)

According to the principle of elastic mechanics, the main
beam elastic strain energy is

𝑈𝑏 = 12𝐸𝐼𝑦 ∫𝑙𝑏0 [𝜕2𝑤 (𝑥, 𝑡)𝜕𝑥2 ]2 𝑑𝑥
= 12𝐸𝐼𝑦 ∫𝑙𝑏0 [ 𝑁∑𝑖=1𝜙󸀠󸀠𝑖 (𝑥) 𝑞𝑖 (𝑡)]

2 𝑑𝑥
= 𝐸𝐼𝑦𝜋44𝑙𝑏3 ⋅ 𝑁∑𝑖=1𝑖4𝑞𝑖2 (𝑡) .

(5)

The elastic potential energy of the spring between the cab
and beam is

𝑈𝑑 = 12𝑘𝑑 [𝑧𝑑 − 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞𝑖 (𝑡)]2 . (6)
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Figure 1: Physical model of crane vibration system.

The work done by external forces (the gravity of cart,
trolley, and payload) is

𝑊 = (𝑚𝑐 + 𝑚𝑝) 𝑔 ⋅ 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑚𝑝𝑔𝑙𝑝 cos 𝜃𝑥
+ 𝑚𝑑𝑔𝑧𝑑. (7)

Equations (5), (6), and (7) are substituted into (4), and the
potential energy 𝑈 in the system is expressed as

𝑈 = 𝐸𝐼𝑦𝜋44𝑙𝑏3 ⋅ 𝑁∑𝑖=1𝑖4𝑞𝑖2 (𝑡) − (𝑚𝑐 + 𝑚𝑝) 𝑔
⋅ 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) − 𝑚𝑝𝑔𝑙𝑝 cos 𝜃𝑥 − 𝑚𝑑𝑔𝑧𝑑
+ 12𝑘𝑑 [𝑧𝑑 − 𝑁∑

𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞𝑖 (𝑡)]2 .
(8)

The dissipated energy 𝐷 in the system can be expressed
as

𝐷 = 12 𝑁∑
𝑖=1

𝑐𝑖𝑞̇𝑖2 (𝑡) + 12𝑐𝑑(𝑧̇𝑑 − 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̇𝑖 (𝑡))2 . (9)

The main beam damping 𝑐𝑖 in (9) can be obtained by
(10) and (11). The 𝑖th modal circular frequency of a simply
supported beam with cross-section is

𝜔𝑖 = 𝑖2𝜋2𝑙𝑏2 √ 𝐸𝐼𝑚𝑏 . (10)

Thus, the structural damping of the 𝑖th modal can be
expressed as 𝑐𝑖 = 2𝜉𝑖𝑚𝑏𝜔𝑖, (11)

where 𝜉𝑖 is the damping ratio of 𝑖th modal.

Lagrange’s equations of nonconservative systems are
expressed as follows:

𝑑𝑑𝑡 ( 𝜕𝑇𝜕𝑦̇𝑖) − 𝜕𝑇𝜕𝑦𝑖 + 𝜕𝑈𝜕𝑦𝑖 + 𝜕𝐷𝜕𝑦̇𝑖 = 𝐹𝑖 (𝑖 = 1, 2, . . . , 𝑛) , (12)

where 𝑇 is the kinetic energy of the system,𝑈 is the potential
energy of the system, 𝐷 is the energy dissipation function of
the system, 𝜕𝐷/𝜕𝑦̇𝑖 is the damping force caused by the energy
dissipation function 𝐷, 𝐹𝑖 is the generalized excitation force
of external action, 𝑦𝑖 is the generalized coordinate, and 𝑦̇𝑖 is
the generalized velocity.

According to (12), the differential equations for the
motion of the system can be derived as follows:

12𝑚𝑏𝑙𝑏𝑞̈𝑗 + (𝑚𝑐 + 𝑚𝑝) ⋅ 𝜙𝑗 (𝑥𝑐) 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞̈𝑖
+ 𝑚𝑑𝜙𝑗 (𝑥𝑑) 𝑁∑

𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̈𝑖 + 2 (𝑚𝑐 + 𝑚𝑝) ⋅ 𝜙𝑗 (𝑥𝑐)
⋅ 𝑥̇𝑐 𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞̇𝑖 + 2𝜉𝑗𝑚𝑏𝑙𝑏𝜔𝑗𝑞̇𝑗 + 𝑐𝑑𝜙𝑖 (𝑥𝑑)
⋅ 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̇𝑖 (𝑡) + (𝑚𝑐 + 𝑚𝑝) ⋅ 𝜙𝑗 (𝑥𝑐)
⋅ (𝑥̈𝑐 𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑥̇𝑐2 𝑁∑
𝑖=1

𝜙󸀠󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡))
+ 𝑘𝑑𝜙𝑗 (𝑥𝑑) 𝑁∑

𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞𝑖 (𝑡) + 𝐸𝐼𝑦𝜋4𝑗42𝑙𝑏3 𝑞𝑗 − (𝑚𝑐
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+ 𝑚𝑝) 𝑔𝜙𝑗 (𝑥𝑐) − 𝑘𝑑𝑧𝑑𝜙𝑗 (𝑥𝑑) − 𝑚𝑝 ⋅ 𝑙𝑝𝜙𝑗 (𝑥𝑐)
⋅ (𝜃̈𝑥 sin 𝜃𝑥 + 𝜃̇𝑥2 cos 𝜃𝑥) − 𝑚𝑑𝜙𝑗 (𝑥𝑑) 𝑧̈𝑑
− 𝑐𝑑𝜙𝑗 (𝑥𝑑) 𝑧̇𝑑 = 0,

(13)

𝑙𝑝𝜃̈𝑥 − [(𝑥̇𝑐 𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞̇𝑖 + 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑐) 𝑞̈𝑖)
+ 𝑥̈𝑐 𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡)
+ 𝑥̇𝑐(𝑥̇𝑐 𝑁∑

𝑖=1

𝜙󸀠󸀠𝑖 (𝑥𝑐) 𝑞𝑖 (𝑡) + 𝑁∑
𝑖=1

𝜙󸀠𝑖 (𝑥𝑐) 𝑞̇𝑖 (𝑡))] sin 𝜃𝑥
+ 𝑔 sin 𝜃𝑥 + 𝑥̈𝑐 cos 𝜃𝑥 = 0,

(14)

𝑚𝑑 [𝑧̈𝑑 − 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̈𝑖 (𝑡)] + 𝑘𝑑𝑧𝑑
− 𝑘𝑑 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞𝑖 (𝑡) − 𝑚𝑑𝑔 + 𝑐𝑑𝑧̇𝑑
− 𝑐𝑑 𝑁∑
𝑖=1

𝜙𝑖 (𝑥𝑑) 𝑞̇𝑖 (𝑡) = 0.
(15)

For a generic linear dynamic structural system, the equa-
tion of motion (see (13)) can be expressed in the following
form:

Mq̈ (𝑡) + Cq̇ (𝑡) + Kq (𝑡) = F (𝑡) . (16)

In (16), M, C, and K are mass, damping, and stiffness
matrices of the system; q̈(𝑡), q̇(𝑡), and q(𝑡) are the accel-
eration, velocity, and displacement vectors; and F(𝑡) is a
time-dependent loading vector. More details are included in
Appendix.

2.3. Solving Method of Dynamic Response. The time domain
response of the dynamic system can be obtained by using the
direct integration method for a linear dynamic system with
constant coefficients [18]. The Newmark method [25–27] is
a typical implicit solution approach to structural dynamics
problems and has the advantages of good convergence,
precision, and stability. Not only is the method condition
stable, but its stability condition is also easily satisfied.

The vibration equations of the system ((13)–(15)) consti-
tute an𝑁+2-dimensional two-order nonlinear time-varying
differential equation system, which cannot obtain the exact
solution directly.Therefore, a direct integrationmethod and a
matrix iterationmethod are used in this paper to approximate
the vibration response of the system.

It is assumed that the acceleration varies linearly within
the interval (𝑡, 𝑡 + Δ𝑡), and that the Newmark scheme can be
given in the following form:

q̈𝑡+𝜏 = q̈𝑡 + 1Δ𝑡 (q̈𝑡+Δ𝑡 − q̈𝑡) 𝜏 0 ≤ 𝜏 ≤ Δ𝑡,
q̇𝑡+Δ𝑡 = q̇𝑡 + [(1 − 𝛾) q̈𝑡 + 𝛾q̈𝑡+Δ𝑡] Δ𝑡,
q𝑡+Δ𝑡 = q𝑡 + q̇𝑡Δ𝑡 + [(12 − 𝛽) q̈𝑡 + 𝛽q̈𝑡+Δ𝑡]Δ𝑡2,

(17)

where 𝛾 and 𝛽 are parameters determined by the stability and
integration accuracy, respectively.TheNewmark family of the
method is unconditionally stable if𝛾 ≥ 12 ,𝛽 ≥ 14 (12 + 𝛾) . (18)

For any time-step, if (17) are substituted into (16), the
system equation can be obtained as

K̃𝑡+Δ𝑡q𝑡+Δ𝑡 = F̃𝑡+Δ𝑡. (19)

In (16), the equivalent stiffness K̃𝑡+Δ𝑡 and equivalent load
F̃𝑡+Δ𝑡 can be expressed in the following form:

K̃𝑡+Δ𝑡 = K𝑡+Δ𝑡 + 𝑎0M𝑡+Δ𝑡 + 𝑎1C𝑡+Δ𝑡,
F̃𝑡+Δ𝑡 = F𝑡+Δ𝑡 +M (𝑎0q𝑡 + 𝑎2q̇𝑡 + 𝑎3q̈𝑡)+ C (𝑎1q𝑡 + 𝑎4q̇𝑡 + 𝑎5q̈𝑡) .

(20)

In (20), 𝑎0 = 1/𝛽Δ𝑡2; 𝑎1 = 𝛾/𝛽Δ𝑡; 𝑎2 = 1/𝛽Δ𝑡; 𝑎3 =1/2𝛽−1; 𝑎4 = 𝛾/𝛽−1; 𝑎5 = (Δ𝑡/2)(𝛾/𝛽−2). In this study, the
parameters 𝛾 = 1/2 and𝛽 = 1/4were chosen for all examples.

3. Procedure of Solution

The procedures for calculating the dynamic responses of
the main beam and a swinging object undergoing a moving
trolley (𝑚𝑐) are as follows:

(1) The initial values of the vibration responses of the
main beam q̈0, q̇0, and q0 are taken as 0 in the
calculation process, similar to the initial values of the
payload swing angles 𝜃̈𝑥0, 𝜃̇𝑥0, and 𝜃𝑥0, and the initial
values of the cabin vibration response 𝑧̈𝑑0, 𝑧̇𝑑0, and𝑧𝑑0. The dynamic response q̈Δt, q̇Δt, and qΔt of (16) at
moment Δ𝑡 is calculated by (17)–(20).

(2) The results obtained in step (1) are substituted into
(14) and (15).The payload swing angle responses 𝜃̈𝑥Δ𝑡,𝜃̇𝑥Δ𝑡, and 𝜃𝑥Δ𝑡 are calculated according to (17)–(20).
The cabin vibration response 𝑧̈𝑑Δ𝑡, 𝑧̇𝑑Δ𝑡, and 𝑧𝑑Δ𝑡 is the
same.

(3) The results obtained by step (2) are substituted into
step (1) in order to calculate the vibration response of
the main beam at the next Δ𝑡moment, and then step(2) is repeated in order to iteratively calculate steps (1)
and (2), until a preset stop time is reached.
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Table 1: Initial values of system parameters.

Parameter Value𝑚𝑐 20000 kg𝑚𝑝 20000 kg𝜌 7820 kg/m3𝐸 2.06 × 1011 N/m2𝐼 0.0093m4𝑥𝑠 2.25m𝑙𝑏 28.5m𝑙𝑝 5.7m𝜉𝑖 0.001𝑔 9.81N/kg𝐴 0.128m2𝑥𝑒 2.25m𝑘𝑑 108 N/m𝑐𝑑 105N/m⋅s𝑥𝑑 5m𝑚𝑑 2000 kg𝑉max 72m/min𝜃𝑥 0 rad

(4) Determine whether the calculation results q̈(𝑡), 𝜃̈𝑥(𝑡),
and 𝑧̈𝑑(𝑡) are convergent. If not, return to step (2) for
further analysis and calculation.

The Newmark method used in this study should be
unconditionally convergent, when calculating the numerical
solution of system vibration [25, 26].Therefore, it is necessary
to determine the convergence of the calculation results
through the time domain response of the vibration of the
main beam. In engineering practice, when the trolley is run-
ning close to the mid-span, the vertical central displacement
of the main beam is larger, and when the mid-span distance
is greater, the vertical central displacement of the main beam
is smaller. If the calculation results align with this situation,
the result of the calculation converges [5, 14].

4. Numerical Results and Discussion

This study considered a 100/40 t and 28.5m ladle crane made
by Taiyuan Heavy Industry Limited Company as an example.
During the service period of the crane, the rails were
defective due to the influence of the foundation's differential
settlement. In addition, there were vibrations of the human
body and damage of equipment.The initial parameters of the
crane vibration system are shown in Table 1.

4.1. System Model Validation

4.1.1. Beam Subjected to Moving Mass. To further confirm
the reliability of the presented formulae and the developed
computer programs, a pinned-pinned beam subjected to a
moving mass 𝑚 = 70 kg and constant speed of 𝑉𝑚𝑥 =3.34m/s was also investigated. The length of the beam was𝐿𝑏 = 10m and the cross-sectional area was 𝐴 = 9.0024 ×10−4m2, and second moment of area was 𝐼 = 1.04 × 10−6m4.
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Figure 2: Calculation results of central displacement position de-
flection compared to references [5, 14].

The mass density was 𝜌 = 7820 kg/m3 and Young’s modulus
was 𝐸 = 2.068 × 1011N/m2. The above information of the
beam was almost the same as references [5, 14].

Figure 2 shows the time histories for the vertical cen-
tral displacements of the pinned-pinned beam. In [14], the
influence of the moving mass on the midpoint shape of the
simply supported beam was solved by using finite element
theory. Additionally, in reference [5], the dynamic response
of the middle point of the main beam was solved under a
modal assumption. However, in this study, the time domain
response of the midpoint vibration of the main beam was
solved by combining the modal hypothesis with the energy
conservation of the system. As can be seen from Figure 2,
three calculation results were consistent with the underlying
trend. Since the differences between the last three curves were
small, the formulations and computer programs developed
in this study should be available for calculating the dynamic
responses of a structure due to a moving load.

4.1.2. Swing Angle Verification. The payload swing is affected
by the carriage traverse acceleration and the length of the
wire rope. The reliability of the presented formulae and the
developed computer programs were further confirmed with
regard to the swing angle. A pinned-pinned beam was sub-
jected to amovingmass of𝑚𝑐 = 97.9 kg and a payload quality
of 𝑚𝑝 = 97.9 kg. The beam had a length of 𝑙𝑏 = 6m cross-
sectional area of 𝐴 = 2.04 × 10−2m2, and second moment
of area 𝐼 = 2.13 × 10−7m4. The mass density was 𝜌 =8000 kg/m3 and Young’s modulus was 𝐸 = 2.11 × 1011N/m2.
In practice, the carriage starts with an initial velocity of zero
and accelerates to a particular speed, which could be held
constant for some time before decelerating to rest. In all cases,
the terminal times of the intervals were 𝑡1 = 15 s, 𝑡2 = 45 s,
and 𝑡3 = 60 s, the speed during the constant speed phase was𝑉 = 0.1333m/s, and the deceleration phase occurred over the
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Figure 3: Consistency comparison of calculated results to [16].

last meter of the motion. The initial displacements for each
swing angle were 𝜃𝑥(0) = −0.01 (rad).

The quality of the cabin, the connection stiffness, and
damping were all set to zero. By ignoring the structural
damping effect, the factors were considered to be consistent
with those reported in [16]. From Figure 3, it can be seen
that the results of this study are similar to those reported in
[16], which proves the validity of the calculation principle and
procedure.

4.2. Dynamic Response of Crane Main Beam and Payload
Swing Angles. The main beam on the side of the cabin was
selected as the object of analysis. Therefore, the effect of
trolley on the main beam was half of the trolley’s quality,
and only half of the wire rope was applied to the main
beam. According to the system vibration equationmodel, the
factors affecting the dynamic response of the crane’s main
beam are related not only to the cross-section properties and
dimension parameters of the main beam, but also to the
quality of the trolley, running speed, and quality and position
of the cabin. This study uses these aspects to carry out an
analysis on the vibration of themain beam and payload swing
angle response.

4.2.1. The Effect of Trolley Quality and Running Speed on
Dynamic Response. In comparison to other cranes, the ladle
crane lifting steel ladle is a high-risk item. Running too
fast may directly lead to an excessively large swing angle,
which greatly reduces the safety of the production process.
Therefore, the trolley of the ladle crane is run slower than that
of other cranes by up to approximately 80/min. In fact, for the
trolley running speed patterns shown in Figure 4, the time for
trolley acceleration and deceleration was set to 5 s. The track
of the trolley runs from the limit position on one side to the
limit position on the other side.Themaximum running speed
of the trolley was 𝑉3𝑚 = 1.2m/s. This ensured the safety of
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Figure 4: Three speed patterns for the moving system-trolley.
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Figure 5: Influence of trolley speed on center deflection of main
beam.

the trolley during the operation. The responses in Figure 4
are based on the three operating patterns of the trolley.

Figure 5 shows the vertical central displacement response
of the crane’s main beam vibration for the three speed
patterns of the trolley. When the trolley was running near
the center of the main beam, the amplitude of the central dis-
placement was the largest. The maximum running speeds of
the trolley were 0.4m/s, 0.8m/s, and 1.2m/s, while the max-
imum vertical central displacements were 3.7mm, 3.8mm,
and 3.9mm, respectively. Therefore, the faster the maximum
speed of trolley in this range, the greater the vertical central
displacement. However, the change was not obvious.
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Figure 6: Influence of trolley running speed on swing angle of pay-
load.

Figure 6 shows the time domain response of the payload
swing angle at different running speeds of the trolley. In
the pattern of speed 𝑉3𝑚, the swing angle first increased
and then reduced in the 0–5 s acceleration phase. In the
5–20 s uniform running phase, the payload presented a
reciprocating periodic swing.The swing period of the payload
was 𝑇 = 2𝜋√𝑙𝑝/𝑔. By substituting the initial parameters,
the period was calculated as 4.7894 s, which is the same
as that of the uniform running phase, thus proving that
the results are correct. In 20–25 s, the deceleration phase,
payload, and swing angle first increased and then decreased.
This is due to the slowdown in the uniform motion effect to
increase the amplitude of the payload. The swing amplitude
of the acceleration phase was 2.75∘, while the amplitude of
the deceleration phase was 3.15∘. The swing amplitude of
the deceleration phase was slightly larger than that of the
acceleration phase. This is because the payload still had a
swing speed at the end of the uniform motion, and the
direction of the velocity coincided with the direction of the
deceleration run.

When the maximum running speed of the trolley was
0.4m/s, 0.8m/s, and 1.2m/s, the maximum swing angle in
the acceleration phase was 0.17 rad, 0.32 rad, and 0.49 rad,
respectively, and the deceleration phase was 0.18 rad, 0.38 rad,
and 0.55 rad, respectively, as shown in Figure 6. Since the
maximum speed of the trolley was faster, the amplitude of
the payload increased significantly. This is because at the
same acceleration or deceleration time (5 s), the faster the
acceleration, the greater the swing angle of the payload.
By changing the quality of the trolley and payload or the
cabin stiffness value, the calculated results remain essentially
unchanged. Thus, the swing angle of payload is related to the
speed and acceleration of the trolley, regardless of the trolley
quality and payload, or the cabin stiffness value.

It can be seen from Figure 7 that the trend of central
displacement of the main beam for different trolley qualities
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Figure 7: Influence of trolley quality on central displacement ofmain
beam.
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Figure 8: Influence of payload quality on central displacement of
main beam.

remains essentially unchanged. For trolley qualities of 10 t,
20 t, and 30 t, the maximum deflection was 2.7mm, 3.6mm,
and 4.4mm, respectively. With the increase in trolley quality,
there was a corresponding increase in vertical central dis-
placement.

4.2.2. Influence of Payload Quality and Rope Length on Crane
Dynamic Response. As shown in Figure 8, with the increase
in payload quality, the deflection of central displacement
of main beam increases, and the nonlinearity of vibration
becomes more and more obvious.

As can be seen from Figure 9, the results are in agreement
with the different lengths of the wire rope. Therefore, the
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Figure 9: Influence of length of wire rope on central displacement
of main beam.
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Figure 10: Influence of wire rope length on swing angle.

length of the wire rope has little effect on the vibration of
central displacement of the main beam. This is because the
swing angle was very small, as was the change in energy of
the wire rope length. The quality of the payload in the swing
model plays a major role in the deformation of the main
beam.

According to the swing period of the payload 𝑇 =2𝜋√𝑙𝑝/𝑔, the length of the wire rope affects the swing period
of the payload. As can be seen in Figure 10, the payload swing
angles of different rope lengths differ slightly in the 0–5 s
acceleration phase; the amplitude of swing angle increases
with the rope length in the 5–60 s uniform running phase;
there is no necessary linear relationship between the swing
amplitude and rope length in the 60–65 s deceleration phase.
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Figure 11: Influence of cabin quality on central displacement ofmain
beam.

The main reason for these phenomena is that rope length
determines the swing period of the payload. In this example
project, the acceleration and deceleration times of the trolley
were designed as 5 s, while the swing period of the payload
was 4.79 s, 5.35, 6.18 s, and 7.57 s. In the acceleration phase,
when the incentive effect of the trolley on the payload
disappeared, the initial position of the payload swing was
very different. Therefore, there was a big difference between
the swing amplitude in the uniform running phase. Similarly,
due to the differences in the starting phase angle and the
period in the deceleration phase, there was no linear change
in the swing amplitude. In the design of the crane, it is
necessary to investigate the swing period of the payload and
the acceleration time of the trolley, so that the payload of the
swing angle can be fundamentally reduced. The angle of the
payload can be reduced by controlling the length of the wire
rope.

4.2.3. Influence of Associated Parameters of Cabin on Dynamic
Response of Crane. In this model, the cabin is reduced to a
lumped mass. The quality of the cabin has some influence on
the deformation of the main beam (see Figure 11).The ampli-
tude of the vertical direction of the main beam increases as
the quality of the cabin becomes heavier. However, the quality
of the cabin was very light, in comparison to the quality of the
main beam and trolley; therefore, the impact on the vibra-
tion of the main beam was smaller.

The cabin position is usually designed to be the cross end
of the main beam of the crane, which reduces the effect of the
vertical direction of the main beam. This helps to improve
the comfort of the driver during operation and reduces the
possibility of occupational diseases.The position of the cabin
can be changed within a small range in the design process.
The closer the cabin is to the mid-span, the larger the ampli-
tude in the vertical direction, and the higher the sensitivity
(see Figure 12).
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Figure 12: Influence of cabin position on central displacement of
main beam.
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Figure 13: Influence of connection stiffness on central displacement
of main beam.

The influence of the connection stiffness on the central
displacement of the main beam is shown in Figure 13. When
the values of connection stiffness are 𝑘𝑑 = 107 and 𝑘𝑑 = 108,
the nonlinearity of the mid-span vibration is not obvious;
however, when the values of connection stiffness are 𝑘𝑑 = 109
and 𝑘𝑑 = 1010, it is obvious that the amplitude is inversely
proportional to the connection stiffness. When the connec-
tion stiffness is small, the vibration of the cabin is strong
and has a great influence on the vibration of the main beam.
Therefore, in the installation of the cabin, it should be kept
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Figure 14: Influence of structural damping on the central displace-
ment of main beam.

close to the main beam, and the space for activity should be
avoided.

4.2.4. Structural Damping of Simply Supported Beam. As
has been reported in the literature, although the structural
damping of themain beam is small, it has a subtle effect on the
vibration of the crane’smain beam system.These subtle effects
may cause problems in the crane design process. As can be
seen in Figure 14, when 𝜉 = 0.001, the vibration is nonlinear
and the maximum amplitude is 3.8mm. The vibration of the
trolley, when it runs to the end of the main beam, is still
nonlinear. When 𝜉 = 0.007, the fluctuation of the vibration
is reduced and the maximum amplitude is 3.55mm. The
damping dissipates some energy, which reduces the vibration
energy.

4.3. Dynamic ResponseAnalysis of Cabin. Thevibration of the
cabin can reflect the comfort of the driver during operation.
In the model, the connection stiffness of the cabin is a direct
cause of vibration. Figures 15–17 show the vibration response
under different values of connection stiffness. As can be seen
from Figure 15, the stronger the connection stiffness of the
cabin, the smaller the vibration amplitude of the cabin.When𝑘𝑑 = 1010, the vibration amplitude of the cabin is basically
zero. In addition, when 𝑘𝑑 = 107, the amplitude of the vibra-
tion of the cabin fluctuates violently; the nonlinearity is
obvious and the maximum amplitude is 7.7mm. When the
values of connection stiffness are 𝑘𝑑 = 109 and 𝑘𝑑 = 1010,
the relative displacement of the cabin and the main beam is
basically zero, andwhen 𝑘𝑑 = 107, it is 5.2mm (see Figure 16).
As can be seen in Figure 17, the stronger the cabin connection
stiffness, the slower the acceleration of the cabin. In summary,
in order to reduce the vibration intensity of the cabin and to
improve the operating comfort of the driver, the cabin must
be well fixed at the end of the main beam.
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Figure 15: Vertical displacement of cabin under different values of
connection stiffness.
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Figure 16: Relative displacement between beam and cabin under
different values of connection stiffness.

4.4. Influence of Nonlinear Analysis on the Main Beam and
Cabin. Nonlinearity is a common phenomenon in nature,
and linearity is a special case of nonlinearity. The nonlinear
theory for interpreting the physical phenomena of crane
system vibration has universal significance. The nonlinear
vibration equations of the rigid-flexible coupling vibration
system of cranes obtained in Section 2 include the nonlinear
elements of the system. The motivation force F(𝑡) in the
Appendix is related not only to the mass of trolley and hoist-
ing but also to the swing angle and vibration of the cabin,
which indicates nonlinear characteristics that are more com-
plex. In this section, the dynamic response effect of the crane
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Figure 17: Vibration acceleration of cabin under different values of
connection stiffness.
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Figure 18: Influence of nonlinear analysis on the main beam.

beam and cabin in a linear system are calculated by ignoring
the nonlinearities in the equation. By comparing the calcu-
lation results of the linear system and nonlinear system, the
influence of nonlinear factors on the vibration of main beam
and cabin can be seen.

For analyzing the influence of nonlinear factors on the
vibration of a crane system, we selected the following para-
meters: trolley mass 𝑚𝑐 = 2000 kg, payload quality 𝑚𝑝 =2000 kg, maximum running speed of trolley 𝑉3𝑚 = 1.2m/s,
and connection stiffness of cabin 𝑘𝑑 = 107N/m.

The vibration time domain responses of the main beam
and cabin, in both linear and nonlinear systems, are shown
in Figures 18 and 19, respectively. As can be seen from the
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Figure 19: Influence of nonlinear analysis on the cabin.

figures, the curve of displacement response of the main beam
and cabin for a nonlinear system is below that for a linear
system.Therefore, nonlinear factors affect the vibration of the
main beam and cabin.Themaximum amplitudes of vibration
of the main beam and cabin in a linear system are 10.1mm
and 5.1mm, respectively, whereas the maximum amplitudes
of vibration of the main beam and cabin in a nonlinear
system are 10.7mm and 5.5mm, respectively. In a nonlinear
system, the vibration responses of the main beam and cabin
are increased by 5.9% and 7.8%, respectively. Ladle cranes are
mainly used for lifting molten steel. When ladle cranes are
fully loaded, the deformation of the main beam will reach
its maximum. These effects of nonlinear factors may directly
cause accidents and result in significant loss of personnel and
property.Therefore, in the analysis and calculation process, it
is very important to consider the nonlinear factors.

5. Conclusion

Based on the principle of systemdynamics, a system vibration
model of the flexible main beam, cabin, trolley, and payload
is established, which can provide a theoretical basis for crane
design. The vibration function of the main beam is obtained
by the mode superposition method, and the system vibration
equation is established by Lagrange’s equation. The dynamic
responses of the main beam and payload are obtained from
the approximate solution of nonlinear system vibration.

The vertical amplitude of the main beam is directly
proportional to the quality of the trolley and payload. In the
acceleration time of 5 s, when the maximum running speed
of the trolley is 0.4m/s, 0.8m/s, and 1.2m/s, the maximum
amplitude of the mid-span of the main beam is not signifi-
cant.The quality of the cabin has little influence on the vibra-
tion of the main beam; however, the influence of the position
is obvious.The closer the cabin is to themain beam, the larger
the amplitude is. At the same time, when the connection stiff-
ness of the cabin is weak, the amplitude fluctuation of the
main beam is high, and the nonlinearity of the vibration is
more obvious. In contrast, structural damping can only
change the vibration amplitude of the main beam and the
speed of energy attenuation within a certain range, which has
little effect on the vibration of the main beam.

For the same acceleration and deceleration times, the
swinging angle of the payload increases with the speed of
the trolley. Since the length of the wire rope affects the swing
period of the payload, the influence of acceleration and decel-
eration times on the payload swing angle is more complex
and requires further research. As the next step, research on
antiswing control, based on the flexibility of the wire rope,
can be considered.

Appendix

M = [[[[[[[
1 + 𝑃𝑀𝜑11𝑐 + 𝐷𝑀𝜑11𝑑 𝑃𝑀𝜑12𝑐 + 𝐷𝑀𝜑12𝑑 ⋅ ⋅ ⋅ 𝑃𝑀𝜑1𝑁𝑐 + 𝐷𝑀𝜑1𝑁𝑑𝑃𝑀𝜑21𝑐 + 𝐷𝑀𝜑21𝑑 1 + 𝑃𝑀𝜑22𝑐 + 𝐷𝑀𝜑22𝑑 ⋅ ⋅ ⋅ 𝑃𝑀𝜑2𝑁𝑐 + 𝐷𝑀𝜑2𝑁𝑑... ... d

...𝑃𝑀𝜑𝑁𝑁𝑐 + 𝐷𝑀𝜑𝑁𝑁𝑑 𝑃𝑀𝜑𝑁2𝑐 + 𝐷𝑀𝜑𝑁2𝑑 ⋅ ⋅ ⋅ 1 + 𝑃𝑀𝜑𝑁𝑁𝑐 + 𝐷𝑀𝜑𝑁𝑁𝑑
]]]]]]]
,

C = [[[[[[[
2𝑃𝑀𝑥̇𝑐𝜑11𝑐1 + 4𝜉1𝜔1 + 𝐶𝑑𝜑11𝑑 2𝑃𝑀𝑥̇𝑐𝜑12𝑐1 + 𝐶𝑑𝜑12𝑑 ⋅ ⋅ ⋅ 2𝑃𝑀𝑥̇𝑐𝜑1𝑁𝑐1 + 𝐶𝑑𝜑1𝑁𝑑2𝑃𝑀𝑥̇𝑐𝜑21𝑐1 + 𝐶𝑑𝜑21𝑑 2𝑃𝑀𝑥̇𝑐𝜑22𝑐1 + 4𝜉2𝜔2 + 𝐶𝑑𝜑22𝑑 ⋅ ⋅ ⋅ 2𝑃𝑀𝑥̇𝑐𝜑2𝑁𝑐1 + 𝐶𝑑𝜑2𝑁𝑑... ... d

...2𝑃𝑀𝑥̇𝑐𝜑𝑁1𝑐1 + 𝐶𝑑𝜑𝑁1𝑑 2𝑃𝑀𝑥̇𝑐𝜑𝑁2𝑐1 + 𝐶𝑑𝜑𝑁2𝑑 ⋅ ⋅ ⋅ 2𝑃𝑀𝑥̇𝑐𝜑𝑁𝑁𝑐1 + 4𝜉𝑁𝜔𝑁 + 𝐶𝑑𝜑𝑁𝑁𝑑
]]]]]]]
,

K

=
[[[[[[[[[[[[[[

𝑃𝑀𝑥̈𝑐𝜑11𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑11𝑐2 + 𝐾𝑑𝜑11𝑑 + 𝐸𝐼𝑦𝜋4𝑚𝑏𝑙𝑏4 𝑃𝑀𝑥̈𝑐𝜑12𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑12𝑐2 + 𝐾𝑑𝜑12𝑑 ⋅ ⋅ ⋅ 𝑃𝑀𝑥̈𝑐𝜑1𝑁𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑1𝑁𝑐2 + 𝐾𝑑𝜑1𝑁𝑑
𝑃𝑀𝑥̈𝑐𝜑21𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑21𝑐2 + 𝐾𝑑𝜑21𝑑 𝑃𝑀𝑥̈𝑐𝜑22𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑22𝑐2 + 𝐾𝑑𝜑22𝑑 + 𝐸𝐼𝑦𝜋424𝑚𝑏𝑙𝑏4 ⋅ ⋅ ⋅ 𝑃𝑀𝑥̈𝑐𝜑2𝑁𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑2𝑁𝑐2 + 𝐾𝑑𝜑2𝑁𝑑... ... d

...
𝑃𝑀𝑥̈𝑐𝜑𝑁1𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑𝑁1𝑐2 + 𝐾𝑑𝜑𝑁1𝑑 𝑃𝑀𝑥̈𝑐𝜑𝑁2𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑𝑁2𝑐2 + 𝐾𝑑𝜑𝑁2𝑑 ⋅ ⋅ ⋅ 𝑃𝑀𝑥̈𝑐𝜑𝑁𝑁𝑐1 + 𝑃𝑀𝑥̇𝑐2𝜑𝑁𝑁𝑐2 + 𝐾𝑑𝜑𝑁𝑁𝑑 + 𝐸𝐼𝑦𝜋4𝑁4𝑚𝑏𝑙𝑏4

]]]]]]]]]]]]]]
,
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F (𝑡) =((
(

𝜙1 (𝑥𝑐) (𝑃𝑀𝑔 + 𝑅𝑀 (𝜃̈𝑥 sin 𝜃𝑥 + 𝜃̇𝑥2 cos 𝜃𝑥)) + 𝜙1 (𝑥𝑑) (𝐷𝑀𝑧̈𝑑 + 𝐾𝑑𝑧𝑑 + 𝐶𝑑𝑧̇𝑑)𝜙2 (𝑥𝑐) (𝑃𝑀𝑔 + 𝑅𝑀 (𝜃̈𝑥 sin 𝜃𝑥 + 𝜃̇𝑥2 cos 𝜃𝑥)) + 𝜙2 (𝑥𝑑) (𝐷𝑀𝑧̈𝑑 + 𝐾𝑑𝑧𝑑 + 𝐶𝑑𝑧̇𝑑)...𝜙𝑁 (𝑥𝑐) (𝑃𝑀𝑔 + 𝑅𝑀 (𝜃̈𝑥 sin 𝜃𝑥 + 𝜃̇𝑥2 cos 𝜃𝑥)) + 𝜙𝑁 (𝑥𝑑) (𝐷𝑀𝑧̈𝑑 + 𝐾𝑑𝑧𝑑 + 𝐶𝑑𝑧̇𝑑)
))
)

.
(A.1)

In these matrices: 𝑃𝑀 = 2(𝑚𝑐 + 𝑚𝑝)/𝑚𝑏𝑙𝑏; 𝐷𝑀 = 2𝑚𝑑/𝑚𝑏𝑙𝑏;𝑅𝑀 = (2𝑚𝑝 ⋅ 𝑙𝑝)/𝑚𝑏𝑙𝑏; 𝜑𝑚𝑛𝑐1 = 𝜙𝑚(𝑥𝑐)𝜙󸀠𝑛(𝑥𝑐); 𝜑𝑚𝑛𝑐2 =𝜙𝑚(𝑥𝑐)𝜙󸀠󸀠𝑛 (𝑥𝑐)𝐾𝑑 = 2𝑘𝑑/𝑚𝑏𝑙𝑏; 𝐶𝑑 = 2𝑐𝑑/𝑚𝑏𝑙𝑏; 𝜑𝑚𝑛𝑐 =𝜙𝑚(𝑥𝑐)𝜙𝑛(𝑥𝑐); 𝜑𝑚𝑛𝑑 = 𝜙𝑚(𝑥𝑑)𝜙𝑛(𝑥𝑑).
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