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This article presents statistical inference methodology based on maximum likelihoods for delay differential equation models in the
univariate setting. Maximum likelihood inference is obtained for single and multiple unknown delay parameters as well as other
parameters of interest that govern the trajectories of the delay differential equation models. The maximum likelihood estimator
is obtained based on adaptive grid and Newton-Raphson algorithms. Our methodology estimates correctly the delay parameters
as well as other unknown parameters (such as the initial starting values) of the dynamical system based on simulation data. We
also develop methodology to compute the information matrix and confidence intervals for all unknown parameters based on the
likelihood inferential framework. We present three illustrative examples related to biological systems.The computations have been
carried out with help of mathematical software: MATLAB� 8.0 R2014b.

1. Introduction

Delay differential equations (DDEs) are widely used tomodel
many real life phenomena, especially in science and engineer-
ing. Examples include the modeling of spread of infectious
diseases, modeling of tumor growth and the growth of blood
clots in the brain, population dynamics, traffic monitoring,
and price fluctuations of commodities in economics; see [1–
4]. A univariate delay differential equation model (DDEM)
with multiple delays equates the real valued observations, 𝑦𝑖,
as noisy realizations from an underlying DDE:

𝑦𝑖 = 𝑥 (𝑡𝑖) + 𝜖𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛, (1)

where 𝜖𝑖’s are errors assumed to arise from a noise distribu-
tion with zero mean and unknown standard deviation 𝜎 > 0.
In (1), 𝑥(𝑡𝑖) is the solution, 𝑥(𝑡), of the DDE

𝑥̇ (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑧1 (𝑡) , 𝑧2 (𝑡) , . . . , 𝑧𝑚 (𝑡) , 𝜃) (2)

evaluated at the 𝑛 time points, 𝑡𝑖, 𝑖 = 0, 1, . . . , 𝑛; in (2),𝑧𝑗(𝑡) = 𝑥(𝑡 − 𝜏𝑗), 𝑗 = 1, 2, . . . , 𝑚, is the 𝑗th delay term with

delay parameter 𝜏𝑗 > 0, and 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑝) is a vector
of other parameters of interest that govern the trajectories of
the underlying DDE in (2). Equations (1) and (2) constitute
a univariate DDEM in the most general form. In a DDEM,
the parameters 𝜃𝑟 and 𝜏𝑗 are often unknown and have to be
estimated based on observations 𝑦𝑖, 𝑖 = 0, 1, . . . , 𝑛.

Not many methods appear in the statistical literature on
parameter estimation and inference for DDEMs. Among the
statistical approaches that have been suggested, many involve
restrictions on the form of DDEMs that are being investi-
gated. When such restrictions are relaxed, high computa-
tional costs and challenges arise. Typically, further inferential
procedures such as obtaining standard errors and confidence
intervals associated with parameter estimates involve further
computational costs and challenges. We give a brief review of
these works and approaches that have been reported in the
literature in the following paragraph.

Ellner et al. [5] estimate the derivative of a univari-
ate DDEM, which is assumed to be in an additive form,
using nonparametric smoothing. Subsequently, they infer
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the constant (single) delay parameter, 𝜏, based on fitting
a generalized additive model. Ellner’s technique, although
it unifies previous works, can thus be applied to DDEMs
which satisfy the assumed additive form only. Wood [6]
developed spline based model fitting techniques in the case
when the DDEMs are partially specified. The spline based
method involves high computational costs as cross-validation
is used to select the smoothing coefficients associated with
the penalty term as well as the unknown parameter estimates.
A penalized semiparametric method is proposed by Wang
andCao [7] which involvesmaximizing an objective function
consisting of two terms: a likelihood term and a penalty term
which measures the discrepancy between an estimate of the
derivative, 𝑥̇(𝑡), and the right hand side of the DDEM in (1).
The selection of smoothing coefficients is done, similar to [6],
via cross-validation, whereas standard errors of parameter
estimates are obtained by bootstrapping. It follows that the
method of [7], like [6], involves high computational costs.
Further, Wang and Cao consider only univariate DDEMs
with a single delay parameter. An estimation method based
on Least Squares Support Vector Machines (LS-SVMs) for
approximating constant as well as time-varying parameters
in deterministic parameter-affine DDEMs is presented by
Mehrkanoon et al. [8]. We note that Mehrkanoon performs
parameter estimation only; no standard errors of estimates
or confidence intervals are reported. Further, only single
delays (either constant or time varying) are considered in
[8].

In this paper, we consider parameter estimation and
inference for univariate DDEMs with multiple delays based
on the maximum likelihood. The method of maximum
likelihood, as advocated by Fisher in his important papers
[9, 10], has become one of the most significant tools for
estimation and inference available to statisticians. Maximum
likelihood estimators (MLEs) are well defined once a distri-
butional model is specified for the observations. MLEs have
well-behaved and well-understood properties: Huber [11]
presents general conditions whereby the MLE is consistent
for the true value of the unknown parameters for large
sample sizes. Wald [12] and Akaike [13] observed that the
maximum likelihood estimator is a natural estimator for
the parameters when the true distribution is unknown. The
large sample theory and distributional properties of MLEs
can be used to perform subsequent inference procedures
such as obtaining standard errors and confidence intervals
and performing tests of hypotheses at minimal additional
computational costs. MLEs are also the basic estimators that
are used in subsequent statistical inferential procedures such
as model selection using Akaike Information Criteria (AIC),
Bayes Information Criteria (BIC), and other model selection
criteria. Model selection is an important issue in DDEMs,
such as for partially specified DDEMs in [6], where several
models can be elicited for an observed physical process, but
one model needs to be selected among many which fits the
observed data and is simple enough to understand (Occam’s
razor principle).

MLE can be developed for a large variety of estimation
situations and is asymptotically efficient, which means that
for large samples it produces the most precise estimates

compared to non-MLE based methods (such as [8]). These
are the reasons why we preferred using MLE over all other
estimators for DDEMs in this paper.

The remainder of this paper is organized as follows: we
define univariate DDEMs in Section 2. In Section 3, the MLE
approach for DDEMs is outlined and the MLE is obtained
computationally using an adaptive grid procedure followed
by a gradient descent algorithm. We also develop algorithms
for obtaining the information matrix and construct standard
errors and confidence intervals for the unknown parameters.
Three examples of univariate DDEMs related to biological
systems are presented, and the numerical solutions and
results based on the proposed methodology are provided
based on simulation in Section 4.

2. General Model Formulation

Recall the DDEM defined by (1) and (2). The observation𝑦𝑖 ∈ 𝑅 is obtained at the 𝑖th sampled time point, 𝑡𝑖, with𝑇0 = 𝑡0 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑇1, where 𝑦𝑖 = 𝑥(𝑡𝑖) + 𝜖𝑖,𝑖 = 0, 1, 2, . . . , 𝑛. In the remainder of this paper, the errors
are assumed to be independent and identically distributed
according to a normalwithmean zero andunknown standard
deviation 𝜎 > 0, that is, 𝜖𝑖 ∼ 𝑁(0, 𝜎2). The underlying
dynamical system 𝑥(𝑡), 𝑡 ∈ [𝑇0, 𝑇1] ⊂ 𝑅, is expressed
implicitly in terms of the DDE. The general form of DDE
with multiple delays for 𝑥(𝑡) ∈ 𝑅 is given by (2) as 𝑥̇(𝑡) =𝑓(𝑡, 𝑥(𝑡), 𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑚(𝑡), 𝜃), where 𝑧𝑗(𝑡) = {𝑥(𝑡 − 𝜏𝑗) :𝑡 − 𝜏𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑚}, 𝑓(𝑡, 𝑥(𝑡), 𝑧1(𝑡), 𝑧2(𝑡), . . . , 𝑧𝑚(𝑡), 𝜃)
is 1-dimensional function, and 𝑥̇(𝑡) denotes the first derivative
of 𝑥(𝑡) with respect to time 𝑡. The quantities 𝜃 ∈ 𝑅𝑝 and 𝜏 =(𝜏1, 𝜏2, . . . , 𝜏𝑚) are unknown parameters of the DDEM,where
𝜃 is a vector of unknown parameters of dimension𝑝 and 𝜏 is a
vector of time delays of dimension𝑚.The complete trajectory
of the function 𝑥(𝑡) on [𝑇0, 𝑇1]will be determined by (2), and
initial condition function 𝜑 : [𝑡0 −max(𝜏1, 𝜏2, . . . , 𝜏𝑚), 𝑡0] →𝑅, where 𝜑(𝑡) = 𝑎 for all 𝑡 ∈ [𝑡0 − max(𝜏1, 𝜏2, . . . , 𝜏𝑚), 𝑡0], is
also unknown in addition to the unknown parameters 𝜃 and
𝜏. For given values of 𝜃, 𝜏, and 𝑎, we note that the solution𝑥(𝑡), 𝑥(𝑡) = 𝑥(𝑡, 𝜃, 𝜏, 𝑎), is a function of 𝜃, 𝜏, and 𝑎; thus,
we make it an explicit function of the unknown quantities 𝜃,
𝜏, and 𝑎 based on the 𝑥(𝑡, 𝜃, 𝜏, 𝑎) notation. The observations𝑦0, 𝑦1, . . . , 𝑦𝑛 are collected at the (𝑛 + 1) sampled time points𝑇0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑇1, based on the observational
model (1). Our goal is to estimate 𝜃, 𝜏, and 𝑎 based on the
observations 𝑦0, 𝑦1, . . . , 𝑦𝑛.Here, note that 𝑎 is also unknown
and thus appears as a nuisance parameter since properties
of the dynamical system are governed by 𝜃 and 𝜏 and not𝑎.
3. The Maximum Likelihood Estimation
Approach for DDEMs

The likelihood of the DDEM for parameters 𝜃, 𝜏, and 𝑎, given
observations 𝑦0, 𝑦1, . . . , 𝑦𝑛, is

𝐿 (𝜃, 𝜏, 𝑎 | y) = 𝑛∏
𝑖=0

𝑝 (𝑦𝑖 | 𝜃, 𝜏, 𝑎) , (3)
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where y = (𝑦0, 𝑦1, . . . , 𝑦𝑛) is the collection of all (𝑛 + 1)
observations on y with density

𝑝 (𝑦𝑖 | 𝜃, 𝜏, 𝑎) = 1√2𝜋𝜎2 𝑒−(1/2𝜎
2)(𝑦𝑖−𝑥(𝑡𝑖 ,𝜃,𝜏,𝑎))

2 , (4)

based on the normality assumption on 𝜖𝑖’s in (1). The above
expression for the likelihood can be simplified to

𝐿 (𝜃, 𝜏, 𝑎 | y) = 𝑛∏
𝑖=0

( 1√2𝜋𝜎2 𝑒−(1/2𝜎
2)(𝑦𝑖−𝑥(𝑡𝑖 ,𝜃,𝜏,𝑎))

2)

= (2𝜋𝜎2)−(𝑛+1)/2 𝑒−(1/2𝜎2) ∑𝑛𝑖=0(𝑦𝑖−𝑥(𝑡𝑖 ,𝜃,𝜏,𝑎))2 .
(5)

We assume for the moment that 𝜎 > 0 is fixed and known;
the case when 𝜎 > 0 is unknown is dealt with later. Thus,
the above likelihood is taken to be a function of (𝜃, 𝜏, 𝑎) for
now. The usual practice for statistical inference is to use the
natural logarithm of the likelihood function, namely, the log-
likelihood function, which is given by

𝑙 (𝜃, 𝜏, 𝑎 | y) = 𝑛∑
𝑖=0

ln𝑝 (𝑦𝑖 | 𝜃, 𝜏, 𝑎)

= −(𝑛 + 1)2 ln (2𝜋𝜎2)

− 12𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎))2 .

(6)

Expressions of the log-likelihood 𝑙 are often simpler than the
likelihood function, 𝐿, since they are easier to differentiate
and the results are more stable computationally.

Since ln(𝑥) is a monotonically increasing function of 𝑥,
it follows that the maximization of (3) and (6) is equivalent
in that the same optimized parameter is found. We denote
the MLE of (𝜃, 𝜏, 𝑎) as (𝜃̂, 𝜏̂, 𝑎̂). The MLE (𝜃̂, 𝜏̂, 𝑎̂) is a point
estimate such that

(𝜃̂, 𝜏̂, 𝑎̂) = argmax
𝜃,𝜏,𝑎

{𝑙 (𝜃, 𝜏, 𝑎)} (7)

and can be viewed as a random vector depending on the
distribution of data, y = (𝑦0, 𝑦1, . . . , 𝑦𝑛). We now consider
the case when 𝜎2 is unknown. The MLE of 𝜎2 is denoted by𝜎̂2. After finding (𝜃̂, 𝜏̂, 𝑎̂) as in (7), the log-likelihood equation
in (6) is maximized as a function of 𝜎2.The resulting estimate
is available in closed form and is given by

𝜎̂2 = 1𝑛 + 1
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃̂, 𝜏̂, 𝑎̂))2 . (8)

3.1. A Two-Stage Numerical Procedure for Finding the MLE.
To find theMLE numerically, we develop a two-stage numer-
ical procedure consisting of an adaptive grid procedure, then
followed by a gradient descent algorithm. Two stages are
needed as we wish to utilize the advantages of each algorithm

while avoiding the drawbacks of the other in each stage. Grid
algorithms are able to find the global maximum of a function
over a grid space. First, it evaluates values of the function on
the grid space and then finds the grid value that corresponds
to the maximum. Provided the grid space is refined enough,
the grid value corresponding to this maximum will be close
to the domain value that actually corresponds to the global
maximum. So by gridding, we are able to ensure that we are
close to the global maximum. The adaptive grid algorithm
enhances the original gridding algorithm so thatwewillmove
closer and closer to the global maximum. However, the main
drawback of any grid (and adaptive grid) algorithm is its
slowness in convergence.

On the other hand, gradient descent algorithms can
converge to maxima of a function sufficiently quickly. The
main drawback of gradient descent algorithms is that it will
find the nearest local maximum from the starting point.
So, if the original starting point is not close to the global
maximum, a gradient descent algorithm will not guarantee
that the global maximum is found since it might get “stuck”
at a local maximum only.

The function tomaximize in our case is the log-likelihood
in (6) and the domain value corresponding to this maximum
is the MLE. Thus, our two-step method uses adaptive grid
in the first stage to ensure that we are close to the MLE and
then switches to the quasi-Newton algorithm to ensure rapid
convergence to the MLE.

3.1.1. Grid Procedure. To find 𝜃̂ and 𝜏̂ as in (7), the value with
largest (log) likelihood should be chosen.This can be done by
an adaptive grid procedure. The gridding is carried out for 𝜃
and 𝜏, and for each pair of (𝜃, 𝜏) in the grid space, a Newton-
Raphson numerical procedure is used to find the maximum
value of 𝑎 defined as

𝑎̂ = 𝑎̂ (𝜃, 𝜏) = argmax
𝑎

{𝑙 (𝜃, 𝜏, 𝑎)} . (9)

We use the grid space Θ = {(𝜃𝑟, 𝜏𝑠), 𝑟 = 1, 2, . . . , 𝑅, 𝑠 =1, 2, . . . , 𝑆}, which covers 𝑅𝑆 values of (𝜃𝑟, 𝜏𝑠). For every fixed
value of 𝜃𝑟 and 𝜏𝑠 in Θ, we find the MLE of 𝑎, 𝑎̂(𝜃, 𝜏),
given by maximizing the log-likelihood above. Since 𝑎̂(𝜃, 𝜏)
satisfies

𝜕𝑙 (𝜃, 𝜏, 𝑎̂ (𝜃, 𝜏))𝜕𝑎 = 0, (10)

the numerical problem is solved by using Newton-Raphson
method:

𝑎ℎ+1 (𝜃, 𝜏) = 𝑎ℎ (𝜃, 𝜏) − (𝜕𝑙 (𝜃, 𝜏, 𝑎ℎ (𝜃, 𝜏)) /𝜕𝑎)(𝜕2𝑙 (𝜃, 𝜏, 𝑎ℎ (𝜃, 𝜏)) /𝜕𝑎2) , (11)

where

𝜕𝑙 (𝜃, 𝜏, 𝑎)𝜕𝑎 = 1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)) 𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕𝑎 , (12)
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𝜕2𝑙 (𝜃, 𝜏, 𝑎)𝜕𝑎2
= 1𝜎2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)) 𝜕2𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕𝑎2
− 1𝜎2

𝑛∑
𝑖=0

( 𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕𝑎 ) 2 ;
(13)

in (12) and (13), 𝜕𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎)/𝜕𝑎 and 𝜕2𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎)/𝜕𝑎2
are, respectively, the first and second partial derivative of𝑥(𝑡, 𝜃, 𝜏, 𝑎) with respect to 𝑎 and then evaluated at 𝑡 = 𝑡𝑖 for𝑖 = 0, 1, 2, . . . , 𝑛. As seen from (12) and (13), we need to
calculate 𝜕𝑥/𝜕𝑎 and 𝜕2𝑥/𝜕𝑎2 at each 𝑡 = 𝑡𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛.
This is done recursively as follows.

The first derivative process of 𝜕𝑥/𝜕𝑎 is obtained by
differentiating (2) with respect to 𝑎. Differentiating (2) with
respect to 𝑎, where 𝜃 and 𝑎 are independent of each other,
gives

𝜕𝑥̇𝜕𝑎 = 𝜕𝑓𝜕𝑥 𝜕𝑥𝜕𝑎 +
𝑚∑
𝑗=1

𝜕𝑓𝜕𝑧𝑗
𝜕𝑧𝑗𝜕𝑎 (14)

which implies that the first derivative process 𝜕𝑥/𝜕𝑎 satisfies
another DDE which is given by (14).

Similarly, the second derivative process 𝜕2𝑥/𝜕𝑎2 is
obtained by differentiating (14) with respect to 𝑎, to obtain
𝜕2𝑥̇𝜕𝑎2 = 𝜕

2𝑓𝜕𝑥2 (𝜕𝑥𝜕𝑎)
2 + 𝑚∑
𝑗=1,𝑘=1

𝜕2𝑓𝜕𝑧𝑗𝜕𝑧𝑘 (
𝜕𝑧𝑗𝜕𝑎 )(𝜕𝑧𝑘𝜕𝑎 )

+ 2 𝑚∑
𝑗=1

𝜕2𝑓𝜕𝑥𝜕𝑧𝑗
𝜕𝑥𝜕𝑎
𝜕𝑧𝑗𝜕𝑎 + 𝜕

2𝑥𝜕𝑎2 𝜕𝑓𝜕𝑥 +
𝑚∑
𝑗=1

𝜕2𝑧𝑗𝜕𝑎2 𝜕𝑓𝜕𝑧𝑗
(15)

which implies that 𝜕2𝑥/𝜕𝑎2 satisfies a DDEM depending on𝜕𝑥/𝜕𝑎. The above two DDEs can be solved numerically based
on initial conditions that are specified below.

To obtain the initial conditions of the first and second
derivative process, we note that

𝑥 (𝑡) = 𝑎 for 𝑡 ∈ (−∞, 𝑡0] . (16)

Thus, 𝜕𝑥/𝜕𝑎 = 1 and 𝜕2𝑥/𝜕𝑎2 = 0 for 𝑡 ∈ (−∞, 𝑡0].
Subsequently, we can get the value of 𝜕𝑙(𝜃, 𝜏, 𝑎)/𝜕𝑎 and𝜕2𝑙(𝜃, 𝜏, 𝑎)/𝜕𝑎2 numerically at every value of 𝑡𝑖 bynumerically
solving the DDEs using (12) and (13). We divide each [𝑡𝑖−1, 𝑡𝑖]
into𝑀 equal segments. Here,𝑀 is a natural number.

The grid algorithm operates on the grid space of (𝜃, 𝜏),
and the Newton-Raphson procedure is nested within the
adaptive grid algorithm. Thus, for every grid value pair(𝜃𝑟, 𝜏𝑠), the Newton-Raphson uses these values of (𝜃, 𝜏) to
find “𝑎” via (11). On convergence of the Newton-Raphson
method, we obtain theMLE of 𝑎, 𝑎̂(𝜃𝑟, 𝜏𝑠), for each point grid(𝜃𝑟, 𝜏𝑠) in Θ. The log-likelihood 𝑙(𝜃, 𝜏, 𝑎) is calculated based
on (6) using 𝑥𝑖 = 𝑥(𝑡𝑖, 𝜃𝑟, 𝜏𝑠, 𝑎̂(𝜃𝑟, 𝜏𝑠)). Then the point based
maximum is found by finding themaximum 𝑙(𝜃𝑟, 𝜏𝑠, 𝑎̂(𝜃𝑟, 𝜏𝑠))

as a function of (𝜃𝑟, 𝜏𝑠). We define theMLE which is obtained
from the gridding algorithm as

(𝜃̂𝐺, 𝜏̂𝐺) = argmax
𝑟,𝑠

𝑙 (𝜃𝑟, 𝜏𝑠) . (17)

3.1.2. The Adaptive Grid Procedure. The adaptive grid (AG)
algorithm is a repeated application of the generic grid
procedure over increasingly finer intervals for (𝜃, 𝜏). The AG
algorithm is as follows:

(1) Choose an initial grid spaceΘ(0) consisting of the grid
points (𝜃𝑟(0), 𝜏𝑠(0)), 𝑟 = 1, 2, . . . , 𝑅 and 𝑠 = 1, 2, . . . , 𝑆.

(2) Maximize 𝑙(𝜃𝑟, 𝜏𝑠, 𝑎̂(𝜃𝑟, 𝜏𝑠)) with respect to 𝑟 and 𝑠 as
described in the grid procedure above.

(3) Obtain (𝜃̂𝐺(0), 𝜏̂𝐺(0)) as in (17).

(4) Refine the grid: suppose (𝜃𝑟0 (0), 𝜏𝑠0 (0)) ≡ (𝜃̂𝐺(0), 𝜏̂𝐺(0))
as in #(3). The new grid space Θ(1) has lower and
upper 𝜃-grid points given by (𝜃𝑟0−1(0), 𝜃𝑟0+1(0)). The
corresponding lower and upper 𝜏-grid points are(𝜏𝑠0−1(0), 𝜏𝑠0+1(0)). If either the lower or upper bounds
are not found, then the original grip space is enlarged
so that the MLE occurs in the interior of Θ(0).

(5) Repeat steps #(2)–#(4) to obtain (𝜃̂𝐺(1), 𝜏̂𝐺(1)) based
on the generic grid procedure. Repeat to generate
the sequence (𝜃̂𝐺(𝑘), 𝜏̂𝐺(𝑘)), 𝑘 = 0, 1, 2, . . .. Stop at 𝑘∗
when ‖(𝜃̂𝐺(𝑘∗), 𝜏̂𝐺(𝑘∗)) − (𝜃̂𝐺(𝑘∗−1), 𝜏̂𝐺(𝑘∗−1))‖ < 𝛿, a
prespecified threshold.

(6) The final MLE based on the adaptive grid technique
is

(𝜃̂0,MLE, 𝜏̂0,MLE) = (𝜃̂𝐺(𝑘∗), 𝜏̂𝐺(𝑘∗)) . (18)

Remark 1. In step #(1), the initial grid space Θ(0) is chosen
to be a large domain that is likely to contain the MLE. In
our simulation experiments, since the true values of (𝜃, 𝜏) are
known, the domain is selected around these true values. In
practice, we need to carry out an exhaustive search within
the upper and lower bounds of 𝜃 and 𝜏. If the parameters
are positive, say, as is usually the case, the lower bounds can
be taken to be zero. Next, we can consider a large positive
numbers, say 𝐵 and 𝐶, and construct the grid in [0, 𝐵]𝑝 ×[0, 𝐶]𝑚 consisting of 𝐻 equidistant marginal grind points.
The value of 𝐻 need not be too large since we only aim
to explore the log-likelihood profile. The log-likelihood can
be evaluated at these grid points and plotted to visualize
properties of the resulting surface. Depending on this plot,
we can choose either to fix or increase 𝐵 and 𝐶 until we are
certain that the MLE is within the selected domain.

After obtaining the first-step approximation to the MLE
by the adaptive grid procedure above, we use the MATLAB
function fminunc to obtain the finalMLE byminimizing the
negative log-likelihood function viewed as a function of the
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unknown parameter vector Γ = (Γ1, Γ2, . . . , Γ𝐽) = (𝜃, 𝜏).We
have 𝐽 = 𝑝 + 𝑚, and the final step MLE is defined as

ΓMLE = argmin
Γ

[−𝑙0 (Γ)] , (19)

where 𝑙0(Γ) = 𝑙0((𝜃, 𝜏)) = 𝑙(𝜃, 𝜏, 𝑎̂(𝜃, 𝜏)) with 𝑎̂(𝜃, 𝜏)
defined in (9).We require to input the gradient vector for this
MATLAB function which is given by

∇𝑙0 (Γ) =
[[[[[[[[[[[
[

𝜕𝑙0 (Γ)𝜕Γ1𝜕𝑙0 (Γ)𝜕Γ2...
𝜕𝑙0 (Γ)𝜕Γ𝑗

]]]]]]]]]]]
]

. (20)

The explicit expression of each entry of ∇𝑙0(Γ) is provided
in Appendix A. The MATLAB function fminunc uses, as an
option, a quasi-Newton procedure that does not require the
calculation of second derivatives and hence saves computa-
tional time.

3.2. Statistical Inference Based on MLEs

3.2.1. Information Matrix. Now we incorporate 𝜎2 into the
estimation procedure as well. Once (𝜃̂MLE, 𝜏̂MLE, 𝑎̂MLE) is
obtained by the above two-stage procedure, the MLE of 𝜎2
is obtained analytically as

𝜎̂2MLE = 1(𝑛 + 1)
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃̂MLE, 𝜏̂MLE, 𝑎̂MLE))2 . (21)

Let Γ = (Γ1, Γ2, . . . , Γ𝐾) = (𝜃, 𝜏, 𝑎, 𝜎2) denote the 𝐾 × 1 vector
of all unknown parameters (including 𝜎2) where𝐾 = 𝐽 + 2 =𝑝 +𝑚 + 2. Subsequent inference based on the MLEs requires
the computation of the Fisher information [14, 15].The Fisher
information matrix 𝐼(Γ) is given by the 𝐾 × 𝐾 symmetric
matrix whose (𝑢, V)th element is the covariance between 𝑢th
and Vth first partial derivatives of the log-likelihood:

𝐼 (Γ)(𝑢,V) = Cov [𝜕𝑙 (Γ | y)𝜕Γ𝑢 , 𝜕𝑙 (Γ | y)𝜕ΓV ] . (22)

Based on the expected values of the secondpartial derivatives,
the Fisher information matrix in (22) is equivalent to

𝐼 (Γ)(𝑢,V) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕ΓV ] , 1 ≤ 𝑢, V ≤ 𝐾. (23)

The observed Fisher information matrix is simply 𝐼(Γ̂MLE),
the informationmatrix evaluated at the maximum likelihood
estimate, Γ̂MLE, of Γ. Further, its inverse evaluated at theMLE
is an estimate of the asymptotic covariance matrix for Γ̂MLE
which is given by

COV (Γ̂MLE) = [𝐼 (Γ̂MLE)]−1 . (24)

Since the log-likelihood function is given by

𝑙 (𝜃, 𝜏, 𝑎, 𝜎2 | y) = −(𝑛 + 1)2 ln (2𝜋𝜎2)
− 12𝜎2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎))2 ,
(25)

the first-order partial derivative of 𝑙(𝜃, 𝜏, 𝑎, 𝜎2 | y) with
respect to each element of Γ is given by

𝜕𝑙 (𝜃, 𝜏, 𝑎, 𝜎2 | y)
𝜕Γ𝑢

= 1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)) (𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢 )
(26)

for 1 ≤ 𝑢 ≤ 𝐾. The second-order partial derivative is

𝜕2𝑙 (𝜃, 𝜏, 𝑎, 𝜎2 | y)
𝜕Γ𝑢𝜕ΓV

= 1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)) (𝜕2𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢𝜕ΓV )

− 𝑛∑
𝑖=0

(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢 )(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕ΓV )] ,

(27)

for 1 ≤ 𝑢, V ≤ 𝐾,
𝜕2𝑙𝜕Γ𝑢𝜕𝜎2
= −1
(𝜎2)2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)) (𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢 )
(28)

for 1 ≤ 𝑢 ≤ 𝐾, and
𝜕2𝑙

𝜕 (𝜎2)2
= 12𝜎4 [(𝑛 + 1) − 2𝜎2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎))2] .
(29)

Taking expectations on both sides of the above equations and
from (23), we get

𝐼 (Γ)(𝑢,V) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕ΓV ]
= 1𝜎2

𝑛∑
𝑖=0

(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢 )(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕ΓV ) ,
(30)

for 1 ≤ 𝑢, V ≤ 𝐾,
𝐼 (Γ)(𝑢,𝜎2) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕𝜎2 ] = 0 (31)
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for 1 ≤ 𝑢 ≤ 𝐾, and
𝐼 (Γ)(𝜎2 ,𝜎2) = −𝐸[𝜕2𝑙 (Γ | y)𝜕 (𝜎2)2 ] =

𝑛 + 12𝜎4 . (32)

We compute each element (𝑢, V) of the matrix in (23)
for DDEMs with single and multiple delays; the explicit
expressions are given in Appendices A and B.

3.2.2. Confidence Intervals. A confidence interval for an
unknown parameter gives the range of values most likely to
cover the true value of the parameter with high probability.
The standard form of a confidence interval is

estimate + / −margin of error. (33)

To construct a level C confidence interval for any element of
Γ = (Γ1, Γ2, . . . , Γ𝐾) = (𝜃, 𝜏, 𝑎, 𝜎2), say, Γ𝑢, for 1 ≤ 𝑢 ≤ 𝐾,
we need to find an estimate of the margin of error. First,
the estimated standard error of the maximum likelihood
estimate, Γ̂𝑢,MLE, of Γ𝑢 is given by

SE (Γ̂𝑢,MLE) =√COV (Γ̂MLE)(𝑢,𝑢), (34)

where COV(Γ̂MLE) is the covariance matrix as given in (24).
The explicit terms of the covariance matrix can be obtained
by substituting (30) into (24). The confidence interval for Γ𝑢
is

Γ̂𝑢,MLE ± 𝑧𝛼/2SE (Γ̂𝑢,MLE) , (35)

where 𝑧𝛼/2 = norminv(1 − 𝛼/2), 𝛼 = 0.05, is the desired
significance level and 𝑧𝛼/2SE(Γ̂𝑢,MLE) is the margin of error.
We can find confidence intervals for all components of
Γ = (Γ1, Γ2, . . . , Γ𝐾) = (𝜃, 𝜏, 𝑎, 𝜎2) in this way. In some
cases, the estimated confidence interval in (35) may include
some negative values which is unreasonable for a parameter
that is known to be positive. In this case, we perform a
logarithmic transformation of the parameter, construct the
confidence interval for the log-transformed parameter, and
then transform the confidence interval back to the original
parameter space.The confidence interval for Γ𝑢 based on this
log-transformation procedure is

exp(log (Γ̂𝑢,MLE) ± 𝑧𝛼/2SE (Γ̂𝑢,MLE)
Γ̂𝑢,MLE

) . (36)

4. Examples

We present three examples of DDEMS in the univariate case:
we consider two models with a single delay and a third one
with two delays.

4.1. Example 1. We consider the exponential delay differen-
tial equation model (EDDEM) with a single delay (i.e., 𝑝 =1, 𝑚 = 1) which is the solution to the DDE

𝑥̇ (𝑡) = 𝜃𝑥 (𝑡 − 𝜏) . (37)

The EDDEM in (37) is a model for ideal population growth
under infinite resources and no deaths, such as a protozoan
or bacterial culture dividing under constant environmental
conditions. The delay parameter 𝜏 can be taken to represent
the gestation period or maturity period, that is, the time
taken for individuals to be ready for division.The parameter 𝜃
represents the growth rate of the population. We numerically
solve the DDE in (37) using the MATLAB function dde23

with fixed parameters (𝜃, 𝜏, 𝑎, 𝜎2) values at (0.5, 1, 5, 0.01).
Sampled observations from theDDEMas in (1)were obtained
at discrete time intervals of width ℎ = 0.1 starting from𝑡0 = 0. The endpoint considered is 𝑡𝑛 = 10 corresponding
to 𝑛 + 1 = 101. The aim is to estimate 𝜃, 𝜏, 𝑎, and 𝜎2 based on𝑦0, 𝑦1, . . . , 𝑦𝑛. Figure 1(a) illustrates the different behaviour of𝑥(𝑡) based on different parameter specifications. Figure 1(b)
shows the underlying trajectories of the solution 𝑥(𝑡) from
the DDE model (37) and the (𝑛 + 1) sampled observations.

The initial grid space for the adaptive grid procedure was
taken to beΘ(0) = {(𝜃𝑟, 𝜏𝑠) : 𝜃𝑟 = 𝜃0 + 𝑟ℎ, 𝜏𝑠 = 𝜏0 + 𝑠ℎ, 𝑟 = 1,2, . . . , 𝑅; 𝑠 = 1, 2, . . . , 𝑆} with (𝜃0, 𝜏0) = (0.1, 0.6), ℎ = 0.1,𝑅 = 𝑆 = 9; see the remark that is given towards the end of
this section regarding the selection of Θ(0) for this example
as well as for the rest. The stopping criteria threshold 𝛿 was
chosen to be 0.0001. The adaptive grid and Newton-Raphson
procedures were run; the results are given in Tables 1 and 2.
Recall that𝑀 is the number of subdivisions of each interval[𝑡𝑖−1, 𝑡𝑖] needed for calculating the quantities 𝜕𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎)/𝜕𝑎 and 𝜕2𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎)/𝜕𝑎2; see Section 3.1.1. As𝑀 increases,
the MLE estimates become more accurate but at the cost of
increased computational time. We note that, for𝑀 = 50 or𝑀 = 100, satisfactory results are already achieved in terms
of closeness to the true parameter values of (𝜃, 𝜏, 𝑎, 𝜎2) =(0.5, 1, 5, 0.01). Subsequently, 𝑀 = 100 is considered for
finding themaximumof the log-likelihood function, for find-
ing the information matrix and computing the confidence
intervals of the parameters.

The Fisher information matrix as ℎ = 0.1 and𝑀 = 100
for EDDEM is

𝐼 (Γ) = 109 × [[[[[
[

1.0887 0.0404 0.0459 0
0.0404 0.0015 0.0017 0
0.0459 0.0017 0.0020 0
0 0 0 0.0006

]]]]]
]
, (38)

and variance of Γ̂ at the MLE is given by

Var (Γ̂)

= 10−4 × [[[[[
[

0.0004 −0.0129 0.0015 0
−0.0129 4.3309 −3.5029 0
0.0015 −3.5029 3.0445 0
0 0 0 0.0170

]]]]]
]
. (39)

The 95% confidence intervals for parameters (𝜃, 𝜏, 𝑎, 𝜎2) in
EDDE with single delay are shown, respectively, in Table 3.
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(a) Numerical solution of the EDDEM (37) using the fixed parameter
values in [0, 100] by step size ℎ = 0.1 with 𝜃 = 0.5 and 𝜏 = 1 or 𝜏 = 1.5

 

x
Y

2 4 6 8 100
t

0
20
40
60
80

100
120
140
160
180

x,
 Y

(b) Numerical solution of the EDDEM (37) using the estimated parameter
values.The stars are the simulated noisy data from (1) at 𝑛+1 = 101 equally
spaced time points in [0, 10] by step size ℎ = 0.1 with 𝜃 = 0.5 and 𝜏 = 1

Figure 1

Table 1: Table showing values of Max.Val(𝑙), 𝑎̂(𝜃̂, 𝜏̂), (𝜃̂, 𝜏̂), and 𝜎̂2 for the EDDEM by using the adaptive grid procedure. Here, the number
of equally spaced time points in [0, 10] is 𝑛 + 1 = 101 with ℎ = 0.1.
𝑀 Max.Val(𝑙) 𝑎̂ (𝜃̂, 𝜏̂) (𝜃̂, 𝜏̂) 𝜎̂2
10 −0.5817 5.0181 (0.5000, 1.0000) 0.0114
20 −0.5037 5.0091 (0.5000, 1.0000) 0.0099
30 −0.4880 5.0061 (0.5000, 1.0000) 0.0096
40 −0.4821 5.0046 (0.5000, 1.0000) 0.0095
50 −0.4792 5.0037 (0.5000, 1.0000) 0.0094
100 −0.4748 5.0019 (0.5000, 1.0000) 0.0093
1000 −0.4724 5.0002 (0.5000, 1.0000) 0.0093

Table 2: Table showing value of Max.Val(𝑙), ∇𝑙(Γ), and (𝜃̂MLE, 𝜏̂MLE) for the EDDEM with ℎ = 0.1.
𝑀 Max.Val(𝑙) ∇𝑙 (Γ) (𝜃̂0,MLE, 𝜏̂0,MLE) (𝜃̂MLE, 𝜏̂MLE)
100 0.4715 10−2 × [

[
0.0006
−0.1001]]

(0.5000, 1.000) (0.5001645, 1.0000017)

Table 3: Table showing the 95% confidence intervals for parameters 𝜃, 𝜏, 𝑎, and 𝜎2 in EDDEM.

𝑀 (𝜃𝐿, 𝜃𝑈) (𝜏𝐿, 𝜏𝑈) (𝑎𝐿, 𝑎𝑈) (𝜎2𝐿, 𝜎2𝑈)
100 (0.4996, 0.5004) (0.9592, 1.0408) (4.9677, 5.0361) (0.0068, 0.0119)

4.2. Example 2. A delay differential equation in population
ecology given by

𝑥̇ (𝑡) = 𝜃𝑥 (𝑡) (1 − 𝑥 (𝑡 − 𝜏)𝐾 ) (40)

is known as Hutchinson’s equation [16], where 𝑥 is the
population at that instant, 𝜃 is the intrinsic growth rate, and𝐾
is the carrying capacity of the population. Both 𝜃 and 𝐾 are
positive constants and 𝜏 is a positive constant delay param-
eter.

Define 𝜃1 = 𝜃 and 𝜃2 = 𝜃/𝐾; then (40) can be rewritten
as

𝑥̇ (𝑡) = 𝜃1𝑥 (𝑡) − 𝜃2𝑥 (𝑡) 𝑥 (𝑡 − 𝜏) . (41)

The observations 𝑦0, 𝑦1, . . . , 𝑦𝑛 are collected at the (𝑛 + 1)
sampled time points 𝑇0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛= 𝑇1, based
on the observational model (1), and the aim is to estimate𝜃1, 𝜃2, 𝜏, 𝑎, and 𝜎2 based on the observations 𝑦0, 𝑦1, . . . , 𝑦𝑛.
The DDE in (41) is solved numerically by using the MAT-
LAB function dde23 with fixed parameters (𝜃1, 𝜃2, 𝜏, 𝑎, 𝜎2)
values. Figure 2(a) shows the underlying trajectories (mean
function) of the solution 𝑥(𝑡) from the DDE model (41).
Figure 2(a) illustrates the different behaviour of 𝑥(𝑡) based
on different parameter specificationswhich reflect both stable
and unstable solutions. Subsequently, we fix the parameter
specification at (𝜃1, 𝜃2, 𝜏, 𝑎, 𝜎2) = (0.5, 0.7, 2.5, 0.5, 0.0001).
Sampled observations from theDDEMas in (1)were obtained
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(b) Numerical solution of the DLDEM with two delays (41) using the
estimated parameter values. The stars are the simulated noisy data by
adding noises to the DLDE solutions at 𝑛 + 1 = 101 equally spaced time
points in [0, 10] by step size ℎ = 0.1 with 𝜃1 = 0.5, 𝜃2 = 0.7, and 𝜏 = 2.5

Figure 2

Table 4: Table showing values of Max.Val(𝑙), 𝑎̂(𝜃̂1, 𝜃̂2, 𝜏̂), (𝜃̂1, 𝜃̂2, 𝜏̂), and 𝜎̂2 for the DLDEMwith single delay by using an adaptive grid. Here,
the number of equally spaced time points in [0, 10] is 𝑛 + 1 = 101 with ℎ = 0.1.
𝑀 Max.Val(𝑙) 𝑎̂ (𝜃1, 𝜃2, 𝜏) (𝜃̂1, 𝜃̂2, 𝜏̂) 𝜎̂2
10 −0.0049 0.5008 (0.5, 0.7, 2.5) 0.000095
20 −0.0048 0.5005 (0.5, 0.7, 2.5) 0.000095
30 −0.0048 0.5005 (0.5, 0.7, 2.5) 0.000095
40 −0.0048 0.5004 (0.5, 0.7, 2.5) 0.000095
50 −0.0048 0.5004 (0.5, 0.7, 2.5) 0.000095
100 −0.0048 0.5003 (0.5, 0.7, 2.5) 0.000095
1000 −0.0048 0.5003 (0.5, 0.7, 2.5) 0.000095

Table 5: Table showing value of Max.Val(𝑙), ∇𝑙(Γ), and (𝜃̂MLE, 𝜏̂MLE) for the DLDEM with single delay with ℎ = 0.1.
𝑀 Max.Val(𝑙) ∇𝑙 (Γ) (𝜃̂10,MLE, 𝜃̂20,MLE, 𝜏̂0,MLE) (𝜃̂1MLE, 𝜃̂2MLE, 𝜏̂MLE)
100 0.0048 10−5 × [[[[

[

−0.4019
−0.2653
0.9364

]]]]
]

(0.5, 0.7, 2.5) (0.5007149, 0.7006367, 2.5004988)

at discrete time intervals of width ℎ = 0.1 starting from𝑡0 = 0. The endpoint considered is 𝑡𝑛 = 10 corresponding
to 𝑛 = 100 where the number of sampled time points are(𝑛 + 1). Figure 2(b) shows the underlying trajectory of the
solution𝑥(𝑡) from theDDEmodel (41) and the (𝑛+1) sampled
observations for the time range selected.

The initial grid space for the adaptive grid procedure was
taken to beΘ(0) = {(𝜃1𝑢, 𝜃2V, 𝜏𝑟) : 𝜃1𝑢 = 𝜃10 +𝑢ℎ, 𝜃2V = 𝜃20 +
Vℎ, 𝜏𝑟 = 𝜏0 + 𝑟ℎ} with (𝜃10, 𝜃20, 𝜏0) = (0.4, 0.6, 2.4), ℎ = 0.1
and 𝑈 = 𝑉 = 𝑅 = 3. The stopping criteria threshold 𝛿 was
chosen to be 0.0001. The adaptive grid and Newton-Raphson
procedures were run; the results are given in Tables 4 and 5.
As in the previous example, as 𝑀 increases, the 𝑎̂(𝜃1, 𝜃2, 𝜏)
becomes more accurate and very close to be the true value𝑎(𝜃1, 𝜃2, 𝜏) = 0.5 but at the cost of increased computational
time.

The Fisher information matrix as ℎ = 0.1 and𝑀 = 100
for DLDEM with single delay is

𝐼 (Γ) = 106

×
[[[[[[[[
[

3.7030 −2.2042 −0.1819 −0.5757 0
−2.2042 1.4665 0.2069 0.3285 0
−0.1819 0.2069 0.0774 0.0059 0
−0.5757 0.3285 0.0059 0.3164 0
0 0 0 0 5.6613 × 103

]]]]]]]]
]
, (42)

and variance of Γ̂ by using MLE is given by

Var (Γ̂) = 10−3

×
[[[[[[[[
[

0.0241 0.0463 −0.0669 −0.0030 0
0.0463 0.0907 −0.1330 −0.0075 0
−0.0669 −0.1330 0.2102 0.0125 0
−0.0030 −0.0075 0.0125 0.0052 0
0 0 0 0 1.7664 × 10−7

]]]]]]]]
]
. (43)
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Table 6: Table showing the 95% confidence intervals for parameters 𝜃1, 𝜃2, 𝜏, 𝑎, and 𝜎2 in DLDE with single delay.

𝑀 (𝜃1𝐿, 𝜃1𝑈) (𝜃2𝐿, 𝜃2𝑈) (𝜏𝐿, 𝜏𝑈) (𝑎𝐿, 𝑎𝑈) (𝜎2𝐿, 𝜎2𝑈)100 (0.4904, 0.5096) (0.6813, 0.7187) (2.4716, 2.5284) (0.4959, 0.5048) (0.00007, 0.00012)
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(a) Numerical solution of the DLDEM with two delays (45) using the fixed
parameter values in [0, 100] by step size ℎ = 0.1 with 𝜃1 = 0.5, 𝜃2 = 0.7, and
𝜃3 = 0.12. The steady state is stable when 𝜏1 = 2 and 𝜏2 = 5 and becomes
unstable when 𝜏1 = 3.15 and 𝜏2 = 6
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(b) Numerical solution of the DLDEM with two delays (45) using the
estimated parameter values.The stars are the simulated noisy data by adding
noises to the DLDE solutions at 𝑛 + 1 = 101 equally spaced time points in
[0, 10] by step size ℎ = 0.1 with 𝜃1 = 0.5, 𝜃2 = 0.7, 𝜃3 = 0.12, 𝜏1 = 2, and
𝜏2 = 5

Figure 3

The 95% confidence intervals for parameters (𝜃1, 𝜃2, 𝜏, 𝑎, 𝜎2)
in DLDE with single delay are shown in Table 6.

4.3. Example 3. The delayed logistic differential equation
model (DLDEM) with two delays proposed by Braddock and
van den Driessche [17] is the solution to the DDE

𝑥̇ (𝑡) = 𝜃𝑥 (𝑡) (1 − 𝑥 (𝑡 − 𝜏1)𝑘1 − 𝑥 (𝑡 − 𝜏2)𝑘2 ) , (44)

where 𝜃, 𝑘1, 𝑘2, 𝜏1, and 𝜏2 are positive constants. DDEs with
two delays appear in many applications such as epidemio-
logical models [18], physiological models [19], neurological
models [20], and medical models [21]. In such equations
[22, 23], very rich dynamics have been observed. Denoting𝜃1 = 𝜃, 𝜃2 = 𝜃/𝑘1, 𝜃3 = 𝜃/𝑘2, 𝑧1(𝑡) = 𝑥(𝑡 − 𝜏1), and𝑧2(𝑡) = 𝑥(𝑡 − 𝜏2), we obtain

𝑥̇ (𝑡) = 𝜃1𝑥 (𝑡) − 𝜃2𝑧1 (𝑡) 𝑥 (𝑡) − 𝜃3𝑧2 (𝑡) 𝑥 (𝑡) . (45)

By using theMATLAB function dde23with fixed parameters(𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2, 𝑎, 𝜎2) values, we obtain the trajectories of

the solution 𝑥(𝑡). As in Example 2, we note the different
characteristics of the solution depending on the parameter
specifications as shown in Figure 3(a). Subsequently, the
parameters are fixed at (0.5, 0.7, 0.12, 2, 5, 0.5, (0.001)2) and
observations 𝑦0, 𝑦1, . . . , 𝑦𝑛 are collected at the (𝑛+1) sampled
time points 𝑇0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑇1, based on the
observational model (1) at discrete time intervals of widthℎ = 0.1 starting from 𝑡0 = 0. The endpoint considered is𝑡𝑛 = 10 corresponding to 𝑛 + 1 = 101. Figure 3(b) shows
the underlying trajectories of the solution 𝑥(𝑡) from the DDE
model (41) and the (𝑛 + 1)sampled observations.

The initial grid space for the adaptive grid procedure is
taken to be Θ(0) = {(𝜃1𝑢, 𝜃2V, 𝜃3𝑤, 𝜏1𝑟, 𝜏2𝑠) : 𝜃1𝑢 = 𝜃10 +𝑢ℎ, 𝜃2V = 𝜃20 + Vℎ, 𝜃3𝑤 = 𝜃30 + 𝑤ℎ, 𝜏1𝑟 = 𝜏10 + 𝑟ℎ, 𝜏2𝑠 =𝜏20 + 𝑠ℎ} with (𝜃10, 𝜃20, 𝜃30, 𝜏10, 𝜏20) = (0.4, 0.6, 0.02, 1.9,4.9), ℎ = 0.1 and 𝑈 = 𝑉 = 𝑊 = 𝑅 = 𝑆 = 3. The stopping
criteria threshold 𝛿 was chosen to be 0.0001. The adaptive
grid and Newton-Raphson procedures were run; the results
are given in Tables 7 and 8.

The Fisher information matrix as ℎ = 0.1 for DLDEM
with two delays at𝑀 = 100 is

𝐼 (Γ) =108 ×

[[[[[[[[[[[[[[
[

1.5952 −0.9359 −0.8343 −0.2912 −0.0098 −0.2324 0
−0.9359 0.5630 0.4973 0.1809 0.0074 0.1328 0
−0.8343 0.4973 0.4432 0.1619 0.0063 0.1121 0
−0.2912 0.1809 0.1619 0.0711 0.0033 0.0408 0
−0.0098 0.0074 0.0063 0.0033 0.0003 0.0001 0
−0.2324 0.1328 0.1121 0.0408 0.0001 0.1519 0
0 0 0 0 0 0 305361

]]]]]]]]]]]]]]
]

, (46)
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Table 7: Table showing value of Max.Val(𝑙), 𝑎̂(𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2), (𝜃̂1, 𝜃̂2, 𝜃̂3, 𝜏̂1, 𝜏̂2), and 𝜎̂2 in DLDEMwith two delays by using an adaptive grid
for (𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2) = (0.5, 0.7, 0.12, 2, 5) and 𝑛 + 1 = 101 equally spaced time points in [0, 10] at ℎ = 0.1.
𝑀 Max.Val(𝑙) 𝑎̂(𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2) (𝜃̂1, 𝜃̂2, 𝜃̂3, 𝜏̂1, 𝜏̂2) 𝜎̂2
10 −6.4697 × 10−5 0.5007 (0.5, 0.7, 0.12, 2, 5) 1.2686 × 10−6
20 −6.5220 × 10−5 0.5006 (0.5, 0.7, 0.12, 2, 5) 1.2788 × 10−6
30 −6.5478 × 10−5 0.5005 (0.5, 0.7, 0.12, 2, 5) 1.2839 × 10−6
40 −6.5622 × 10−5 0.5005 (0.5, 0.7, 0.12, 2, 5) 1.2867 × 10−6
50 −6.5714 × 10−5 0.5005 (0.5, 0.7, 0.12, 2, 5) 1.2885 × 10−6
100 −6.5910 × 10−5 0.5005 (0.5, 0.7, 0.12, 2, 5) 1.2923 × 10−6
1000 −6.6098 × 10−5 0.5004 (0.5, 0.7, 0.12, 2, 5) 1.2960 × 10−6

Table 8: Table showing value of Max.Val(𝑙), ∇𝑙(Γ), and (𝜃̂1MLE, 𝜃̂2MLE, 𝜃̂3MLE, 𝜏̂1MLE, 𝜏̂2MLE) for DLDEM with two delays with ℎ = 0.1.
𝑀 Max.Val(𝑙) ∇𝑙 (Γ) (𝜃̂10,MLE, 𝜃̂20,MLE, 𝜃̂30,MLE, 𝜏̂10,MLE, 𝜏̂20,MLE) (𝜃̂1MLE, 𝜃̂2MLE, 𝜃̂3MLE, 𝜏̂1MLE, 𝜏̂2MLE)

100 6.4697 × 10−5 10−4 ×
[[[[[[[[[[
[

0.1600
−0.1495
−0.1815
−0.2596
−0.0146

]]]]]]]]]]
]

(0.5, 0.7, 0.12, 2, 5) (0.5001029, 0.6999608, 0.1199824,
2.0000706, 5.0000044)

and variance of Γ̂ by using MLE is given by

Var (Γ̂) = 10−3 ×

[[[[[[[[[[[[[[
[

0.0642 0.0331 0.0983 −0.0161 −0.6515 0.0014 0
0.0331 0.0215 0.0457 −0.0063 −0.3586 0.0002 0
0.0983 0.0457 0.1569 −0.0275 −0.9709 0.0027 0
−0.0161 −0.0063 −0.0275 0.0066 0.1444 −0.0007 0
−0.6515 −0.3586 −0.9709 0.1444 6.8315 −0.0102 0
0.0014 0.0002 0.0027 −0.0007 −0.0102 0.0002 0
0 0 0 0 0 0 3.3000 × 10−11

]]]]]]]]]]]]]]
]

. (47)

The 95% confidence intervals for parameters (𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2,𝑎, 𝜎2) in DLDE with two delays are shown in Table 9.

Remark 2. As mentioned earlier, the adaptive grid procedure
in the first stage of our two-step procedure needs to select a
sufficiently large domain that is likely to contain the MLE.
The MLE should be close to the true parameter values
that generated the data as standard MLE theory [11–13]
dictates. This has also been established in the three examples
considered. Hence, since the true value of (𝜃, 𝜏) is known in
our simulation examples, we selected the initial domain of
the grid procedure to contain these true values in its interior.
Thus, the notation (𝜃0, 𝜏0) denotes the lower bound of the
parameters which is used for the grid procedure. The gridΘ(0) = {(𝜃𝑟, 𝜏𝑠) : 𝜃𝑟 = 𝜃0 + 𝑟ℎ, 𝜏𝑠 = 𝜏0 + 𝑠ℎ, 𝑟 =1, 2, . . . , 𝑅; 𝑠 = 1, 2, . . . , 𝑆} is ensured to contain the true
parameter values based on selection of 𝑅, 𝑆, and ℎ in all the

examples. Other than this consideration, the true values that
were used in the simulation were selected rather arbitrarily,
only chosen so as to be representative parameter values that
exhibit the typical nature of trajectories of the underlying
DDEs as shown in the figures.

5. Conclusion

In this paper, we presented the method of maximum likeli-
hood for estimating parameters in delayed differential equa-
tions. As examples we considered the exponential differential
equation model, delayed logistic differential equation model
with single delay, and delayed logistic differential equation
model with two delays; then we estimated the unknown
parameters in these models. Two-step approach using an
adaptive grid followed by a gradient descent procedure is
proposed. Our methodology estimates the delay parameter
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Table 9: Table showing the 95% confidence intervals for parameters𝜃1, 𝜃2, 𝜃3, 𝜏1, 𝜏2, 𝑎, and 𝜎2 in DLDE with two delays.

M 100
(𝜃1𝐿, 𝜃1𝑈) (0.4843, 0.5157)
(𝜃2𝐿, 𝜃2𝑈) (0.6909, 0.7091)
(𝜃3𝐿, 𝜃3𝑈) (0.0955, 0.1445)
(𝜏1𝐿, 𝜏1𝑈) (1.9950, 2.0050)
(𝜏2𝐿, 𝜏2𝑈) (4.8380, 5.1620)
(𝑎𝐿, 𝑎𝑈) (0.4996, 0.5013)
(𝜎2𝐿, 𝜎2𝑈) (0.0000009, 0.0000016)

as well as the initial starting value of the dynamical system
correctly based on simulation data. Confidence intervals
and information matrix by using maximum likelihood are
obtained and are found to contain the true values of the
parameter based on simulation data.

In this paper, we took the initial value function of the
DDE as an unknown constant “𝑎”. However, it is possible to
extend the constant initial value assumption to amore general
linear or nonlinear function, say 𝜑(𝑥), for 𝑥 ∈ [−𝜏, 0]. Two
complications arise here. First, we need additional unknown
parameters to represent 𝜑(𝑥); for example, if 𝜑(𝑥) = 𝑎 + 𝑏𝑥
is chosen to be linear, we have to estimate parameter 𝑏 in
addition to 𝑎. Higher order functions offer greater flexibility
inmodeling the initial function but at the expense of estimat-
ing extra parameters and slowing down the computational
procedure. A second issue that follows the first is the selection
of a “best” initial value function—either constant, linear,
quadratic, or others. Thus, further research is required to
address this concern and we hope to report some results in
this direction in the future.

Appendix

A. Quasi-Newton Procedure

As input to the quasi-Newton procedure, we require to
compute the gradient vector, ∇𝑙0(Γ), as given in (20), which
consists of the partial derivatives of the log-likelihood func-
tion with respect to the entries of Γ. Recall that the DDEM
has multiple delays parameters given by 𝜏 = (𝜏1, 𝜏2, . . . , 𝜏𝑚),
evolution parameters given by 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑝), and
unknown initial condition 𝑎. Based on the log-likelihood

𝑙 (𝜃, 𝜏, 𝑎) = − 12𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎))2 , (A.1)

recall that we define 𝑙(𝜃, 𝜏, 𝑎̂(𝜃, 𝜏)) as
𝑙 (𝜃, 𝜏, 𝑎̂ (𝜃, 𝜏))
= − 12𝜎2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎̂ (𝜃, 𝜏)))2 .
(A.2)

Denoting 𝑙0(𝜃, 𝜏) ≡ 𝑙(𝜃, 𝜏, 𝑎̂(𝜃, 𝜏)) and 𝑥𝑖 = 𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎̂(𝜃, 𝜏)),
the first-order partial derivatives are as follows:

𝜕𝑙0𝜕𝜃𝑢 =
1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) [ 𝜕𝑥𝑖𝜕𝜃𝑢 +
𝜕𝑥𝑖𝜕𝑎 𝜕𝑎̂𝜕𝜃𝑢 ] ,

𝜕𝑙0𝜕𝜏V =
1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) [𝜕𝑥𝑖𝜕𝜏V +
𝜕𝑥𝑖𝜕𝑎 𝜕𝑎̂𝜕𝜏V ] .

(A.3)

The above equations involve derivatives of 𝑥𝑖 with respect
to the parameters. Each derivative expression of 𝜕𝑥𝑖/𝜕𝜃𝑢,𝜕𝑥𝑖/𝜕𝜏V, and 𝜕𝑥𝑖/𝜕𝑎 for 𝑖 = 0, 1, 2, . . . , 𝑛 can be numerically
obtained from respective DDEs which are derived from the
initial model in (2) by differentiating it with respect to the
quantity of interest. In the case of 𝜕𝑥𝑖/𝜕𝜃𝑢, differentiating (2)
with respect to 𝜃𝑢 gives a new DDE for 𝜕𝑥/𝜕𝜃𝑢:

̇( 𝜕𝑥𝜕𝜃𝑢) =
𝜕𝑓𝜕𝑥 𝜕𝑥𝜕𝜃𝑢 +

𝑚∑
𝑗=1

𝜕𝑓𝜕𝑧𝑗
𝜕𝑧𝑗𝜕𝜃𝑢 +

𝜕𝑓𝜕𝜃𝑢 , (A.4)

where ̇(𝜕𝑥/𝜕𝜃𝑢) is the derivative of 𝜕𝑥/𝜕𝜃𝑢 with respect to 𝑡
and 𝜕𝑧𝑗/𝜕𝜃𝑢 is the delayed version of 𝜕𝑥/𝜕𝜃𝑢; that is,

𝜕𝑧𝑗𝜕𝜃𝑢 (𝑡) =
𝜕𝑥𝜕𝜃𝑢 (𝑡 − 𝜏𝑗) . (A.5)

The initial condition for the DDE in (A.4) is 𝜕𝑥/𝜕𝜃𝑢 = 0 since
the derivative of the initial value 𝑎 with respect to 𝜃𝑢 is 0.
Based on this initial condition, the above DDE model can be
numerically solved and the values of 𝜕𝑥𝑖/𝜕𝜃𝑢 can be obtained
from 𝜕𝑥(𝑡)/𝜕𝜃𝑢 for each 𝑡 = 𝑡𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛.

In a similar way, each value of 𝜕𝑥𝑖/𝜕𝜏V can be determined
by differentiating (2) with respect to 𝜏V. The new DDE for𝜕𝑥/𝜕𝜏V is

̇( 𝜕𝑥𝜕𝜏V) =
𝜕𝑓𝜕𝑥 𝜕𝑥𝜕𝜏V +

𝑚∑
𝑗=1

𝜕𝑓𝜕𝑧𝑗 [
𝜕𝑥 (𝑡 − 𝜏𝑗)𝜕𝜏V − 𝑓 (𝑡 − 𝜏V,

𝑥 (𝑡 − 𝜏V) , 𝑧1 (𝑡 − 𝜏V) , 𝑧2 (𝑡 − 𝜏V) , . . . , 𝑧𝑚 (𝑡 − 𝜏V) ,
𝜃)] ,

(A.6)

where ̇(𝜕𝑥/𝜕𝜏V) is the derivative of 𝜕𝑥/𝜕𝜏V with respect to 𝑡
and 𝜕𝑧𝑗/𝜕𝜏V is the delayed version of 𝜕𝑥/𝜕𝜏V; that is,

𝜕𝑧𝑗𝜕𝜏V (𝑡) =
𝜕𝑥 (𝑡 − 𝜏𝑗)𝜕𝜏V − 𝑓 (𝑡 − 𝜏V, 𝑥 (𝑡 − 𝜏V) ,

𝑧1 (𝑡 − 𝜏V) , 𝑧2 (𝑡 − 𝜏V) , . . . , 𝑧𝑚 (𝑡 − 𝜏V) , 𝜃) .
(A.7)

The initial condition for the DDE in (A.6) is 𝜕𝑥/𝜕𝜏V = 0 since,
again, the derivative of the initial value 𝑎 with respect to 𝜏V
is 0. Based on this initial condition, the above DDE model
can be numerically solved and the values of 𝜕𝑥𝑖/𝜕𝜏V can be
obtained from 𝜕𝑥(𝑡)/𝜕𝜏V for each 𝑡 = 𝑡𝑖, 𝑖 = 0, 1, 2, . . . , 𝑛. The
case of 𝜕𝑥𝑖/𝜕𝑎 is similar and has been discussed in the main
text when presenting the Newton-Raphson procedure.
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The expressions in (A.3) also involve 𝜕𝑎̂/𝜕𝜃𝑢 and 𝜕𝑎̂/𝜕𝜏V.
They can be obtained from differentiating the equation
satisfied by 𝑎̂(𝜃, 𝜏) in (10) for every pair (𝜃, 𝜏):

𝜕𝑙 (𝜃, 𝜏, 𝑎̂ (𝜃, 𝜏))𝜕𝑎 = 0 ∀𝜃, 𝜏. (A.8)

Differentiating with respect to 𝜃𝑢, we get
𝜕2𝑙𝜕𝜃𝑢𝜕𝑎 +

𝜕2𝑙𝜕𝑎2 𝜕𝑎̂𝜕𝜃𝑢 = 0; (A.9)

thus

𝜕𝑎̂𝜕𝜃𝑢 = −
𝜕2𝑙/𝜕𝜃𝑢𝜕𝑎𝜕2𝑙/𝜕𝑎2 (A.10)

for 1 ≤ 𝑢 ≤ 𝑝. Similarly, from differentiating (10) with respect
to 𝜏V, we get

𝜕2𝑙𝜕𝜏V𝜕𝑎 +
𝜕2𝑙𝜕𝑎2 𝜕𝑎̂𝜕𝜏V = 0, (A.11)

and hence,

𝜕𝑎̂𝜕𝜏V = −
𝜕2𝑙/𝜕𝜏V𝜕𝑎𝜕2𝑙/𝜕𝑎2 , (A.12)

for 1 ≤ V ≤ 𝑚. We give the explicit expressions for the
second-order derivatives of 𝑙 with respect to its arguments
in Appendix B (as given by (B.6), (B.7), and (B.11) in
Appendix B).

B. Information Matrix

For the DDE in (2) with multiples delays 𝜏 = (𝜏1, 𝜏2, . . . , 𝜏𝑚)
and 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑝), recall that 𝑙(𝜃, 𝜏, 𝑎, 𝜎2) = −((𝑛 + 1)/2) ln(2𝜋𝜎2) − (1/2𝜎2) ∑𝑛𝑖=0(𝑦𝑖 − 𝑥𝑖)2, where 𝑥𝑖 = 𝑥(𝑡𝑖, 𝜃, 𝜏, 𝑎).
The first-order partial derivatives of 𝑙(𝜃, 𝜏, 𝑎, 𝜎2) are as fol-
lows:

𝜕𝑙𝜕𝜃𝑢 =
1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕𝑥𝑖𝜕𝜃𝑢) ,
𝜕𝑙𝜕𝜏V =

1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (𝜕𝑥𝑖𝜕𝜏V) ,
𝜕𝑙𝜕𝑎 = 1𝜎2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (𝜕𝑥𝑖𝜕𝑎 )
(B.1)

for 1 ≤ 𝑢 ≤ 𝑝, 1 ≤ V ≤ 𝑚. As mentioned in
Appendix A, these partial derivatives of 𝑙(𝜃, 𝜏, 𝑎, 𝜎2) can be
evaluated numerically from the derivative expression of 𝜕𝑥𝑖/𝜕𝜃𝑢, 𝜕𝑥𝑖/𝜕𝜏V, and 𝜕𝑥𝑖/𝜕𝑎 for 𝑖 = 0, 1, 2, . . . , 𝑛, since each
of them forms an additional DDE derived from (2) by
differentiating it with respect to the quantity of interest.
Further we have

𝜕𝑙𝜕𝜎2 = − 12𝜎2 [(𝑛 + 1) − 1𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖)2] . (B.2)

Differentiating the above again with respect to the arguments
of 𝑙(𝜃, 𝜏, 𝑎, 𝜎2), the second-order partial derivatives have the
general forms

𝜕2𝑙𝜕𝜃𝑢𝜕𝜃𝑢∗ =
1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕𝜃𝑢𝜕𝜃𝑢∗ )

− 𝑛∑
𝑖=0

( 𝜕𝑥𝑖𝜕𝜃𝑢)(
𝜕𝑥𝑖𝜕𝜃𝑢∗ )] ,

(B.3)

𝜕2𝑙𝜕𝜃𝑢𝜕𝜏V∗ =
1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕𝜃𝑢𝜕𝜏V∗ )

− 𝑛∑
𝑖=0

( 𝜕𝑥𝑖𝜕𝜃𝑢)(
𝜕𝑥𝑖𝜕𝜏V∗ )] ,

(B.4)

𝜕2𝑙𝜕𝜏V𝜕𝜏V∗ =
1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕𝜏V𝜕𝜏V∗ )

− 𝑛∑
𝑖=0

(𝜕𝑥𝑖𝜕𝜏V)(
𝜕𝑥𝑖𝜕𝜏V∗ )] ,

(B.5)

𝜕2𝑙𝜕𝜃𝑢𝜕𝑎 =
1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕𝜃𝑢𝜕𝑎)

− 𝑛∑
𝑖=0

( 𝜕𝑥𝑖𝜕𝜃𝑢)(
𝜕𝑥𝑖𝜕𝑎 )] ,

(B.6)

𝜕2𝑙𝜕𝜏V𝜕𝑎 =
1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕𝜏V𝜕𝑎)

− 𝑛∑
𝑖=0

(𝜕𝑥𝑖𝜕𝜏V)(
𝜕𝑥𝑖𝜕𝑎 )] ,

(B.7)

𝜕2𝑙𝜕𝜃𝑢𝜕𝜎2 =
−1
(𝜎2)2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕𝑥𝑖𝜕𝜃𝑢) , (B.8)

𝜕2𝑙𝜕𝜏V𝜕𝜎2 =
−1
(𝜎2)2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (𝜕𝑥𝑖𝜕𝜏V) , (B.9)

𝜕2𝑙𝜕𝑎𝜕𝜎2 = −1
(𝜎2)2

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (B.10)

𝜕2𝑙𝜕𝑎2 = 1𝜎2 [
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (𝜕2𝑥𝑖𝜕𝑎2 ) −
𝑛∑
𝑖=0

(𝜕𝑥𝑖𝜕𝑎 )
2] , (B.11)

𝜕2𝑙
𝜕 (𝜎2)2 =

1
2 (𝜎2)2 [(𝑛 + 1) −

2𝜎2
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖)2] . (B.12)

Equations (B.6), (B.7), and (B.10) are required for the quasi-
Newton procedure in Appendix A.
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To obtain the information matrix, we need to take the
expectation of the negative of the second-order derivatives of𝑙(𝜃, 𝜏, 𝑎, 𝜎2) = 𝑙(Γ | y) with respect to its arguments:

𝐼 (Γ)(𝑢,V) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕ΓV ] . (B.13)

Taking negative on the LHS of (B.3)–(B.12), followed by
expectation under the sampling distribution of each 𝑦𝑖, we
note that the general terms of the form

𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) ( 𝜕2𝑥𝑖𝜕Γ𝑢𝜕ΓV) (B.14)

or
𝑛∑
𝑖=0

(𝑦𝑖 − 𝑥𝑖) (𝜕2𝑥𝑖𝜕Γ𝑢 ) (B.15)

on the RHS become zero since the expectation of 𝑦𝑖 equals 𝑥𝑖.
Hence we get

𝐼 (Γ)(𝑢,V) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕ΓV ]
= 1𝜎2

𝑛∑
𝑖=0

(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕Γ𝑢 )(𝜕𝑥 (𝑡𝑖, 𝜃, 𝜏, 𝑎)𝜕ΓV )
(B.16)

as in (30) as well as

𝐼 (Γ)(𝑢,𝜎2) = −𝐸[𝜕2𝑙 (Γ | y)𝜕Γ𝑢𝜕𝜎2 ] = 0. (B.17)

Finally, taking expectation in (B.12),

𝐸(− 𝜕2𝑙
𝜕 (𝜎2)2)

= − 1
2 (𝜎2)2 [(𝑛 + 1) −

2𝜎2
𝑛∑
𝑖=0

𝐸 (𝑦𝑖 − 𝑥𝑖)2]
= − 1

2 (𝜎2)2 [(𝑛 + 1) −
2𝜎2 (𝑛 + 1) 𝜎2] = (𝑛 + 1)2 (𝜎2)2 .

(B.18)
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