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Copyright © 2017 Xiangming Yao et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The online operationmanagement and the offline policy evaluation in complex transit networks require an effective dynamic traffic
assignment (DTA) method that can capture the temporal-spatial nature of traffic flows. The objective of this work is to propose a
simulation-based dynamic passenger assignment framework and models for such applications in the context of schedule-based
rail transit systems. In the simulation framework, travellers are regarded as individual agents who are able to obtain complete
information on the current traffic conditions. A combined route selection model integrated with pretrip route selection and entrip
route switch is established for achieving the dynamic network flow equilibrium status. The train agent is operated strictly with the
timetable and its capacity limitation is considered. A continuous time-driven simulator based on the proposed framework and
models is developed, whose performance is illustrated through a large-scale network of Beijing subway. The results indicate that
more than 0.8million individual passengers and thousands of trains can be simulated simultaneously at a speed ten times faster than
real time. This study provides an efficient approach to analyze the dynamic demand-supply relationship for large schedule-based
transit networks.

1. Introduction

Urban rail transit has developed rapidly in China during
the last ten years. By the end of 2015, there were 26 cities
operating the rail transit with a total length of 3,618 km [1].
With the travel demand growing radically, some intractable
issues emerge for the operation management, such as the
recurrent congestion in peak hours and the train schedule
construction for the travel demand under extremely unbal-
anced conditions. It has been conjectured that the devel-
opment of Dynamic Traffic Management Systems (DTMS)
can be a feasible approach for addressing these prominent
problems. However, assessing the benefits and influences
of such systems are difficult as these strategies are highly
dependent on the travel behavior of individual passenger in
response to travel information and control actions. Hence, it
is necessary to develop useful methods and tools for assessing
the DTM policies and control strategies.

Dynamic traffic assignment (DTA) models are regarded
as a valuable tool to evaluate the DTM performance for

its capabilities in capturing the dynamic nature of traffic
flows and describing the formation and propagation of traffic
congestions. DTA models can be divided into two cate-
gories: the mathematic-based DTA models and simulation-
based DTA models. Mathematic-based DTA models, such
as optimization programmes [2], variational inequalities [3],
and optimal control [4], have solid theory foundations and
perfect analyzability. However, few of them are implemented
in real-world traffic networks because of their limitations
in computation efficiency and complex parameter require-
ments. Simulation-based DTA models are considered more
suitable for real-world applications [5, 6]. There have been
several DTA simulators developed and applied to road
networks, such as DYNAMIT (https://its.mit.edu/software/
dynamit) and DYNASMART (http://mctrans.ce.ufl.edu/fea-
tured/dynasmart/). Unfortunately, the previous models and
tools are mainly developed for road traffic networks. The
traffic flow characteristics in transit system aremuch different
within road traffic, where the passenger flows are highly
nonlinear. Hence, DTA models in road traffic systems are
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not suitable for transit system.The DTA tools for the specific
schedule-based rail transit networks are underdeveloped.

In the sphere of transit assignment, the DTA models
also can be divided into two categories, the frequency-
based models and the schedule- or timetable-based models
[7]. Frequency-based approaches consider services in terms
of sets of lines, where the run scheduled times are not
considered explicitly, while the schedule-based approach
refers to services in terms of runs, using the real vehicle
arrival/departure time to obtain attributes that can be explic-
itly considered in the run choice. With the development
of transit modelling, the DTA approaches have gradually
changed from frequency-based models to schedule-based
models. The capacity limitation of vehicles is a critical point
that should be considered in transit systems, because pas-
sengers can only travel through sections by trains that have
strict capacity constraints. However, previous approaches,
whether frequency- or schedule-based, have mainly focused
on line capacities not vehicle capacities [8].The “fail-to-board
probabilities” is usually used to describe the approximate
congestion conditions of vehicles [9, 10]. In this work,
the train is seen as an individual agent and its capacity
constraints can be strictly described by limiting the number
of boarding passengers. Therefore, queuing processes for
passengers waiting on platforms can be captured. For the
schedule-based transit assignment models, the space-time
or diachronic graph is usually used to represent the transit
services network, which contains the service, demand, and
access/egress subgraphs [11–14]. However, this kind of space-
time network is extremely complex when transit lines and
transit services (train runs) are large. It is difficult to find a
shortest path quickly in the networks. In order to enhance
the computation efficiency of the DTA models, a two-stage
path choice process is constructed in this work. First, search
the 𝑘 shortest paths for each OD pair without considering
the passenger flows and train services. This process seeks
to establish the interrelationship between links and ODs.
Second, update the cost of each route with the simulation
clock advancing by considering the real-time passenger flows
and services. When passengers enter the transit system, they
can choose the “best” path immediately through the current
traffic conditions.The two-stage path choice process has high
efficiency because the speed for updating route cost is much
quicker than searching a new route.

This work aims to propose an efficient and practi-
cal simulation-based DTA framework and models for the
schedule-based rail transit network. The characteristics of
the proposed approaches include (1) describing the travel
behavior at the level of individual passengers and presenting
the detail travel processes for passengers travelling through
the network, such as walking within the station, waiting,
transferring, boarding, and alighting; (2) integrating the
pretrip and enroute path choice behavior together, which not
only allows describing the route selection processes in normal
conditions but also enables to capture the enroute switch
behavior under exceptional conditions; (3) the capacitywhich
is considered by the accurate train load capacity instead of the
line capacity and the train runs which can adapt to different
types of timetable; (4) the simulation models having high

computational efficiency for large scale (large number of
passengers and trains) rail transit networks.

The remainder of the paper is organized as follows.
The simulation-based modelling framework for DTA in
the schedule-based transit network is given first. Following
are the major models under the simulation framework,
mainly including passenger generation, route selection, and
network-loadingmodels.Then,model implementation in the
Beijing subway networks are presented in Section 4. Finally,
Section 5 presents the conclusion and future works.

2. Modelling Framework

Generally, any simulation-based DTA systems consist of two
critical components: a route selectionmodule and a network-
loading module [16]. The route selection module describes
the principle for travellers choosing their route and then
determines themacroscopical flow status on the network.The
network-loadingmodule attempts to represent the temporal-
spatial evolution of traffic flows on the network after the
routes of passengers are determined. Figure 1 presents the
simulation-based DTA framework and model structure for
a schedule-based transit network, where the major parts are
highlighted.

In the simulation framework, travellers are regarded as
individual agents who can obtain the current traffic condi-
tions on the network and always select the best path. Trains
are operated strictly with the preset timetable, which allows
considering the strict arrival/departure time. The simulation
processes for obtaining the macroscopical network flow
status are to describe the whole travel procedures of all indi-
vidual passengers in microscopic view, such as egress/access,
waiting for the train, and transferring through passageways.
The detailed introduction of these two critical components
is provided in the next section. Additionally, the network
structure and the travel demand generation that produces
the input for DTA models are important and will also be
introduced in Section 3.

2.1. Route Selection Module. There are several types of route
choice models for different applications, such as equilibrium-
based or information-based, pretrip or enroute, and within-
day or day-to-day. Detail descriptions of passenger choice
models can infer to the review of Szeto and Wong [17]. In
this work, the within-day dynamic user equilibrium (DUE) is
used to describe the principle for traveller route choice, which
can be seen as follows: when travelling, travellers should
always select their “best” path at each decision point, and the
cost of used routes is no larger than the unused routes. In a rail
transit network, passengers usually have no secondary route
when they are at the enroute decision points (transfer sta-
tions) because of the low connectivity of the network. Hence,
the pretrip user equilibrium principle can be suitable in
normal conditions. However, passengers should change their
routes in some special conditions, such as switching their
routes when they cannot go to the end for incidents. In order
to enhance the capability of models in describing the passen-
gers routing behavior under different situations, a combined
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Figure 1: Simulation-based DTA framework and model structure for a schedule-based transit system.

route selection method which integrated the pretrip and
enroute models is used in this work. The pretrip route selec-
tion model which follows the dynamic user equilibrium is
established under normal conditions. Moreover, the enroute
path switchmodel based on a bounded rational rule is applied
for special situations.This combined model is consistent well
with the path selection behaviors of rail transit passengers.

Though the rail transit network has low connectivity,
there may also exist alternative route in an OD pair. The𝑘-shortest paths are used to describe the discrepancy in
route choice behavior of different passengers. How to find
the “best” route immediately for each traveller is of great
influence on the computation efficiency of a simulation
system. For a large-scale network, it is almost impossible to
search the routes online. A two-stage path choice process is
established in this work, which contains (1) initial 𝑘-shortest
paths search and (2) the real-time route cost update. The
process of initial 𝑘-shortest paths search is to establish the
interconnections between links and OD paths, and the route
cost updating procedure aims to describe the real-time traffic
conditions on the network. The route cost will be refreshed
in a small preset time interval (such as two minutes). When
a passenger enters the station, he/she can choose the “best”
path quickly by considering the approximate real-time traffic
conditions. Hence, the flow state of the network is not a
rigorous but an approximate user equilibrium status.

2.2. Network-Loading Module. Once the traveller’s route is
determined, the network-loading module is to simulate the
movement of travellers through the network, with the output
of dynamic flow distributions of nodes (stations/platforms)
and sections (trains). In this work, the continues-time-driven
simulation approach is utilized to simulate the processes
of all passengers moving on the network. The network-
loading module contains three major components: (1) pas-
senger walking within the station, such as access, egress, and
transfer; (2) train movement operation; and (3) interactions

between passengers and trains on platforms. The detailed
description of these components will be presented in Sec-
tion 3.

3. Traffic Simulation Modelling

3.1. Network and Train Schedule. The rail transit network is
represented by a directed graph 𝐺 = (𝑁,𝐴, 𝐿), where 𝑁
is the node set, 𝐴 is the link set, and 𝐿 is the set of transit
lines. The nodes consist of two types: source and sink nodes
(entrance and exit gates) for passenger arriving and leaving,
and transit nodes (platforms) for train stopping. A station
is composed of several interconnected nodes including the
source/sink nodes and the transit nodes. According to the
connected node type, the links connecting two neighbouring
nodes are divided into two types.The first one is the walk link
for passenger walking and transferring and the second one is
the transit link for a train running between two stations. A
transit line is a fixed path along which vehicles periodically
run, corresponding to the train route. Note that more than
one transit line may exist on a physical line, such as for
long and short train routes. Figure 2 presents the topology
structure for rail transit networks.

Let 𝑙 in 𝐿 be a transit line where𝑁𝑙 is a set of transit nodes
and 𝐴 𝑙 is a set of links, 𝑙 = (𝑁𝑙, 𝐴 𝑙). Denote 𝑛𝑙,𝑖 and 𝑎𝑙,𝑗 as the𝑖th transit node and 𝑗th transit link in the transit line 𝑙, 𝑎𝑚𝑙,𝑖 is
the arrival time for vehicle𝑚 at 𝑖th transit node (station), and𝑑𝑚𝑙,𝑖 is the departure time for vehicle𝑚 at 𝑖th transit node.The
timetable 𝑇𝑙,𝑚 for vehicle 𝑚 running on transit line 𝑙 can be
represented by groups of arrival time 𝑎𝑚𝑙,𝑖 and departure time𝑑𝑚𝑙,𝑖,𝑇𝑙,𝑚 = {(𝑎𝑚𝑙,𝑖 , 𝑑𝑚𝑙,𝑖)}.The dwell time 𝑡𝑚𝑙,𝑖 for vehicle𝑚 is given
as (1). The relationship among arrival time, departure time,
and link running time is shown in (2). Table 1 provides an
example of a train schedule (timetable).

𝑡𝑚𝑙,𝑖 = 𝑑𝑚𝑙,𝑖 − 𝑎𝑚𝑙,𝑖 (1)
𝑎𝑚𝑙,𝑖+1 = 𝑑𝑚𝑙,𝑖 + ℎ𝑙,𝑗, (2)
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Figure 2: Topology structure for a rail transit network.

Table 1: An example of a train schedule.

Train ID Transit line Transit stop Arrival time Departure time Formation
(trains)

Capacity
(passengers/train)

1 001 1 0103 06:00:00 06:01:00 6 240
1 001 1 0104 06:02:30 06:03:30 6 240
1 001 1 0105 06:04:40 06:05:20 6 240... ... ... ... ... ... ...

where ℎ𝑙,𝑗 is the time for a vehicle running through link 𝑗 and
link 𝑗 connects nodes 𝑛𝑙,𝑖 and 𝑛𝑙,𝑖+1.
3.2. Individual Passenger Generation. There are two types of
traffic demand information which can be used as input for
generating individual passengers in the DTA simulation sys-
tem. The first one is the time-dependent origin-destination
(OD) matrixes that are usually for online traffic management
applications. The method of dynamic OD estimation and
prediction can be inferred to the works of Yao et al. [18, 19].
The second one is the automatic fare collection (AFC) data
that is primarily for offline policy evaluations.The generation
processes in the simulation system should be as consistent
as possible with the actual passenger flow characteristics
in arrival time and spatial distributions. When a passenger
is generated, the origin station, destination station, and
departure time (arrival station time) should be produced.

3.2.1. Generation from Time-Dependent O-D Tables. Let𝑁 be
the set of source and sink nodes, 𝑁 ⊆ 𝑁, 𝑉𝑡𝑟𝑠 is the travel
demand from station 𝑟 to 𝑠 during time interval 𝑡, and 𝑇OD
is the time duration of the OD table. The OD table in time
interval 𝑡 can be described as [𝑉𝑡𝑟𝑠]𝑁×𝑁, 𝑟 ∈ 𝑁, 𝑠 ∈ 𝑁.
Suppose that passengers arrive uniformly if the time span𝑇OD
is very short, for example, no more than five minutes. Then

the passenger arriving rate 𝜇𝑡𝑟 of source node 𝑟 (belonging to
station 𝑟) in time interval 𝑡 can be calculated as

𝜇𝑡𝑟 =
𝑁∑
𝑠

𝑉𝑡𝑟𝑠𝑇OD
. (3)

The number of passengers arriving at node 𝑟 during a
simulation time step is

𝑓𝑟 = [Δ𝑡 × 𝜇𝑡𝑟] , (4)

where Δ𝑡 represents the time step of the simulation clock and[] represents the down rounding computation.
However, while the simulation time step is very small

(such as 1 second), there may not be a single passenger
arriving at the station in a simulation step. Referring to
other related simulation works [20], we assume that the
time intervals between two consecutive passengers follow the
negative exponential distributions. Hence, the probability of
a passenger arriving in time 𝑡󸀠 is as follows:

𝑝 (𝑡󸀠 − 𝑡󸀠󸀠) = 𝑢𝑡𝑟𝑒−(𝑡󸀠−𝑡󸀠󸀠)𝑢𝑡𝑟 , (5)

where 𝑡󸀠󸀠 represents the arrival time of the previous passenger.
When a passenger is generated at station 𝑟, his/her

destination can be determined from the trip distribution
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Table 2: Data structure of AFC record information.

Fields Description
AFC ID The trade ID in the AFC system
TRIP ORIGIN LOCATION The trip origin station
CURRENT LOCATION The trip destination station

ENTER TIME The ticket check-in time (departure
time)

DEAL TIME The ticket check-out time (arrival
time)

fractions calculated from the O-D tables. The probability of
selecting node 𝑠 as the destination station is

𝑝 (𝑠) = 𝑉𝑡𝑟𝑠
∑𝑁𝑠 𝑉𝑡𝑟𝑠

. (6)

3.2.2. Generation from Automatic Fare Transaction Records.
The AFC system has been used widely in public transport
and records accurate trip information for each passenger,
including origin and destination stations, check-in and
check-out times, and card type. The AFC data provides
a new and massive data source for traffic planning and
management. When the AFC records are used as the input
for the simulation system, the passenger agents can be
generated accurately whose arrival patterns follow the nature
of the actual travel demand. Unfortunately, it can only be
used to analyze the historical traffic status or evaluate the
traffic policies corresponding to offline applications. Table 2
presents the data structure of the AFC record information
used for generating passengers.

3.3. Route Selection. For the particular structure of the rail
transit network, passengers can only change their route at
transfer stations, and usually they are unable to choose
a secondary route once they start their trip. Hence, in
this work, a combined route selection procedure is used
to achieve the dynamic network equilibrium conditions:
passengers follow the predetermined equilibrium principles
under normal circumstances, and a bounded rational rule is
adopted for passenger route changes under emergencies. The
advantages of the combined route selectionmodel are (1) high
computational efficiency, (2) conformance to the route choice
behavior for rail transit travellers, and (3) ability to capture
the behavior change under special conditions.

3.3.1. Equilibrium-Based Pretrip Path Choice. Assume that all
travellers can obtain all of the information on the current
traffic conditions and each traveller will select the best
(usually the lowest cost) path. The travel pattern of pretrip
dynamic equilibrium is defined as follows: for all travellers
who leave their origin at any time in any O-D pair, the costs
of any used routes are equal andminimal and smaller or equal
to the cost of unused routes. The route cost is represented by
a generalized cost function which is composed of four parts:
(1) access and egress walk time; (2) on-board time; (3) waiting
time; and (4) transfer time.

The walk time contains access and egress walk time,
which is calculated by the distance corresponding to the walk
link and the average walking speed of travellers. The total
walk time𝑊walk can be represented as

𝑊walk = 𝑤in
walk + 𝑤out

walk, (7)

where 𝑤in
walk represents the access walk time and 𝑤out

walk is the
egress walk time.

Normally, the on-board time for passengers travelling
through sections is constant, which can be fixedwith the train
schedules.Define𝑊in as the total on-board time of passengers
travelling through all sections within a route. The waiting
time includes three components: (1) waiting time at the origin
station; (2) waiting time at the transfer station if a transfer is
required; and (3) the delay waiting time due to overloaded
trains. The average waiting time at an origin/transfer station
is equal to half of the train headway time corresponding to
travel line. However, the rail transit system has strict capacity
restraints; some passengers cannot board the first train that
arrives because it is overloaded. This delayed waiting time
should be considered if there is no sufficient capacity. Assume
that passengers who fail to board the first arriving train will
wait for the next train. Thus, the total waiting time 𝑊wait can
be represented as

𝑊wait = 𝑤ori
wait + 𝛿 ⋅ 𝑤trans

wait + 𝛼 ⋅ 𝑤delay
wait , (8)

where 𝑤ori
wait represents the waiting time at the origin station;𝑤trans

wait is the waiting time at the transfer station; 𝛿 = 1 if there
is transfer, otherwise, 𝛿 = 0; and 𝑎 is the weighted factor for
delay waiting time 𝑤delay

wait .
When a passenger is unable to board the first train,

he/she needs to wait the headway time for the next train.The
delay time changes greatly for different stations and should
be frequently updated with the simulation clock. The delay
waiting time is formulated as

𝑤delay
wait = ℎ𝑙 (𝑝󸀠 ∗ (3/2) + 𝑝󸀠󸀠 ∗ (1/2)

𝑝󸀠 + 𝑝󸀠󸀠 − 1
2) , (9)

where 𝑝󸀠 is the number of passengers who are delayed; 𝑝󸀠󸀠
represents the numbers of passengers who are able to board
the first train; and ℎ𝑙 is the headway time of the transit line 𝑙.

Define 𝐾𝑟𝑠 as a set of the 𝑘 shortest routes in the O-D
pair (𝑟, 𝑠), 𝑘𝑟𝑠 represents a route, and 𝑘𝑟𝑠 ∈ 𝐾𝑟𝑠; 𝑊𝑘

𝑟𝑠

is the
generalized cost of route 𝑘𝑟𝑠.The time-dependent generalized
cost 𝑊𝑘

𝑟𝑠

of route 𝑘𝑟𝑠 during time step 𝑡 can be formulated as
follows:

𝑊𝑘
𝑟𝑠
(𝑡) = 𝜇𝑧 ⋅ 𝑊𝑘𝑟𝑠walk + 𝜇𝑎 ⋅ 𝑊𝑘𝑟𝑠in + 𝜇𝑏 ⋅ 𝑊𝑘𝑟𝑠wait (𝑡)

+ 𝛿 ⋅ 𝜇𝑡 ⋅ 𝑊𝑘𝑟𝑠transfer,
(10)

where 𝜇𝑧, 𝜇𝑎, 𝜇𝑏, and 𝜇𝑡 are the weighted factors for the
cost corresponding to different travel processes and 𝑊𝑘𝑟𝑠transfer
represents the total transfer walk time in route 𝑘𝑟𝑠. These
weighted factors can be estimated by the maximum likeli-
hood method through travel surveys.
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There is no doubt that passengers are unable to know
the exact cost of each route but merely estimate the cost
based on their experiences and make trade-off decisions.The
deviation between the practical travel time and the perceived
time makes a difference in route choice. In this work, the
Multinomial Logit (MNL) model which has been a popular
method for the probabilistic choice is used to describe the
uncertainty in the route selection. Suppose the deviations
follow the Gumbel distributions. Then the probability for a
passenger selecting the route 𝑘𝑟𝑠 during simulation time 𝑡 can
be described as

𝑝 (𝑘𝑟𝑠) = exp [𝑊𝑘
𝑟𝑠
(𝑡) /𝑊min

𝑘
𝑟𝑠

(𝑡)]
∑𝐾𝑟𝑠
𝑘
𝑟𝑠

exp [𝑊𝑘
𝑟𝑠
(𝑡) /𝑊min

𝑘
𝑟𝑠

(𝑡)] , (11)

where𝑊min
𝑘
𝑟𝑠

(𝑡) represents theminimum cost of all alternative
paths in the O-D pair (𝑟, 𝑠).

To improve the simulation efficiency, the initial 𝑘 shortest
paths of all O-D pairs will be searched and stored in the
initialization procedure without considering passenger flows.
The route cost will be updated in a preset short time interval
(such as two minutes) with the simulation clock running.
Therefore, passengers could choose the best path when they
start at the origin station, according to the approximate real-
time traffic conditions.

3.3.2. Rule-Based Enroute Path Switch. Because of unex-
pected events such as incidents and disturbances, the cost
of the originally selected route could significantly change
after the passenger leaves the origin station. The influenced
passengers must switch their routes or cancel their trips, as
shown in Figure 3. Hence, the behavior change of passen-
gers in response to special conditions should be added to
the simulation framework. Based on the bounded rational
model proposed by Mahmassani [21], a modified model is
constructed to describe the switch rule. If the gains from a
route change satisfy and suffice for a specific value, passengers
should switch their routes; if the cost of an alternative
route exceeds the highest expected value, passengers will
cancel their trip and choose other travel modes; otherwise,
passengers should keep on waiting for the traffic recover.The
switching rule is formulated as
𝛿

=
{{{{{{{{{

1, if TTC (𝑘) − TTA (𝑘) > max (TTC (𝑘) ⋅ 𝛾, 𝑆min)
−1, if TTA (𝑘) > 𝜆 ⋅ TTC󸀠 (𝑘)
0, otherwise,

(12)

where 𝛿 represents an indicator variable equal to 1 when a
passenger switches from the current route to the alternate, −1
when the passenger cancels the rail transit travel, and 0 if the
current path is maintained. TTC(𝑘) is the current travel cost
of the original route from decision node 𝑘 to the destination,
and TTC󸀠(𝑘) represents the historical travel cost of the origi-
nal route from decision node 𝑘 to the destination; TTA(𝑘) is
the travel cost of the alternative route from the decision node
to the destination; 𝛾 and𝜆 are the relative difference threshold
values; in this work, 𝛾 = 0.3 and 𝜆 = 2.0; and 𝑆min is the
absolute minimum travel cost advantage needed for a route
switch. The values of 𝛾 and 𝜆 can be estimated from traffic
survey and disparate for different transit systems.

From the example shown in Figure 3, it can be found that
the event locations are important for a passenger behavior
change. In case 1, passengers at decision node 𝑘 can switch
to the alternative route if the travel cost satisfies the condition
in (12). However, passengers have to cancel their travel in case
2. Note that although the train movement in our framework
is operated strictly by the timetable, the influence of special
events can also be evaluated by inputting different train
schedules under the same travel demand.

3.4. Network Loading. The function of network loading is
to move the individual passengers through the network,
producing the output of the time-varying node and link
flows. Compared to the network-loading processes for an
urban road network, the differences for rail transit include
the following: (1) travellers can onlymove through sections by
train, (2) the travel time for transit links (sections) does not
change for congestion, and (3) the passenger boarding and
alighting interaction is complex; travellers may fail to get on a
train that has reached its capacity. For a rail transit system, the
network-loading processes contain three major components:
passenger walking within the station, train movement con-
trol, and the interaction of passenger boarding and alighting.

3.4.1. Queue-Based Model for Passenger Walking andWaiting.
There are several microscopic models for simulating the
pedestrian walk behavior in a station, such as the cellular
automata model [22] and the social force model [23]. How-
ever, these models require high computational resources and
are not suitable for large-scale network simulation. To offer
a computationally efficient traffic simulator, this work uses
a simplified queue-based model to describe the walking and
waiting behavior for passengers within stations.

Define a walk link (access or egress) as a route for
passengers walking from the gate to the platform or back and
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Figure 4: Passenger queues for passenger walking within a station.

transfer link as a route from one platform to another. Then,
a station can be represented by interconnected walk links,
transfer links, platform nodes, and gate nodes. To capture the
passenger flow congestion, virtual stack queues related to the
walk links were constructed and named entrance queues and
exit queues, as shown in Figure 4. The stack queue has no
storage capacity limitation. Here, the pass capacity of the link
is used to capture the queuing processes of passengers. The
pass capacity of a walk link is set to be the minimum pass
capacity of all key points within the route, such as gates and
downstairs, which can be calculated by referring to the station
design handbook. A more realistic queue with spatial storage
capacity is constructed for the platform node, which attempts
to capture the passenger waiting process for trains. The
storage capacity can be fixed by the width and length of the
platforms and the congestion passenger density. The connec-
tion between physical spatial queues and virtual stack queues
can be further reviewed in the work of Hurdle and Son [24].

Newell’s simplifiedmodel based on cumulative inflow and
outflow counts is used to capture the passenger congestion
formation and dissipation procedures in queues [15], which
is illustrated in Figure 5. Entering the station process can
be used as an example to describe the passenger queuing
procedure. For a passenger 𝑝 added to the entrance queue,
his/her arrival time is 𝑡𝑎(𝑝), and the departure time will be𝑡󸀠(𝑝), 𝑡󸀠(𝑝) = 𝑡𝑎(𝑝) + FFWT under free flow conditions. The
free flow walk time (FFWT) can be computed by the link dis-
tance and average walking speed. When the simulation clock
advances to 𝑡󸀠(𝑝), if the outflow capacity (platform storage
capacity) is available and passenger 𝑝 is at the end of the
entrance queue, this passenger canmove to the platformwait-
ing queue for trains; otherwise, this passengermust stay in the
entrance queue and wait for available outflow capacity. The
congestion delay time (CDT) for passenger is 𝑡𝑑(𝑝) − 𝑡󸀠(𝑝).

Define 𝑀 as the number of entrance queues in a station;𝑚 as the index of entrance queues, 𝑚 ∈ 𝑀; 𝐶pass
𝑚 as the unit

pass capacity of queue 𝑚 during a simulation interval; 𝐶store

as the storage capacity of the platform; 𝑞𝑝,𝑡 as the number

Cumulative 
flow counts

Time

Passenger p FFWT CDT

A

V

D

ta(p) t󳰀(p) td(p)

Figure 5: Illustration of cumulative passenger arrival (𝐴), departure
curve (𝐷), and cumulative passenger count in the queue (𝑉) [15].

of passengers on platform in time 𝑡; 𝑞𝑚,𝑡 as the number of
passengers ready to depart from queue𝑚 at time 𝑡; and 𝑞trans𝑚,𝑡
as the transfer flow from the entrance queue to thewait queue.
Based on these definitions, the calculation procedure for a
passenger entering the station is shown in Algorithm 1.

The egressing and transferring processes are similar to the
entering procedures. Additionally, the number of boarding
passengers determines the outflows of the wait queue on the
platform. Then, the status of the wait queue changes in a dis-
crete nonlinear way, which will be described in next section.

3.4.2. Train Movement Control. According to the report
from Beijing Mass Transit Railway Operation Corporation
Limited, the average punctuality rate of trains is more than
99.7%. It is reasonable to assume that trains run strictly with
the scheduled timetables. The train is generated at the first
station of the transit line. Suppose that a train runs on transit
line 𝑙. The section 𝑎𝑙,𝑗 of transit line 𝑙 connects the nodes 𝑛𝑙,𝑖
and 𝑛𝑙,𝑖+1, 𝑛𝑙,𝑖 = (𝑥𝑖𝑛, 𝑦𝑖𝑛) and 𝑛𝑙,𝑖+1 = (𝑥𝑖+1𝑛 , 𝑦𝑖+1𝑛 ), where (𝑥, 𝑦)
represents the node location. Figure 6 shows the schematic
diagram for updating the train position. The train location
can be calculated as follows:

𝑥𝑡 = 𝑥𝑡−1 + 𝑥𝑖+1𝑙 − 𝑥𝑖𝑙ℎ𝑙,𝑗 Δ𝑡

𝑦𝑡 = 𝑦𝑡−1 + 𝑦𝑖+1𝑙 − 𝑦𝑖𝑙ℎ𝑙,𝑗 Δ𝑡,
(13)

where (𝑥𝑡, 𝑦𝑡) represents the train position in time 𝑡 and Δ𝑡
and ℎ𝑙,𝑗 have same meanings as before.

The train position within a transit link can be computed
by the coordinate transition from the corresponding start
and end node locations. If a train stops at a platform for
passengers to board and alight, the train position will not
be updated until it departs. The train movement may be
disturbed for emergencies, such as incidents and congestion,
which means the train operating processes should be con-
trolled dynamically. However, controlling the train operating
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Figure 6: Schematic diagram for train position calculation.

For simulation time 𝑡
For each entrance queue𝑚 = 1 to𝑀
Step 1. Calculate 𝑞𝑚,𝑡 by checking the time 𝑡 with the expected departure time 𝑡󸀠 for each passenger in the entrance
queue
Step 2. Calculate transfer flow 𝑞trans𝑚,𝑡 , 𝑞trans𝑚,𝑡 = min{𝑞𝑚,𝑡, 𝐶pass

𝑚 , 𝐶store − 𝑞𝑝,𝑡−1}
Step 3. Transfer passengers from the entrance queue to the wait queue𝑞𝑝,𝑡 = 𝑞𝑝,𝑡−1 + 𝑞trans𝑚,𝑡

End
End

Algorithm 1: Calculation algorithm for a passenger entering the station.

processes from the microscopic view is complicated and
challenging. Future works are in progress to incorporate the
dynamic train control process based on the moving block
train control system into our framework.

3.4.3. Boarding and Alighting Interaction. Figure 7 presents
the interaction flowchart of passenger boarding and alighting
when a train arrives. The interaction follows the principle of
“first-alight-then-board.” Assume that the preset dwell time
is sufficient for passenger boarding and alighting and the
passengers who fail to board the first train will wait for the
next train.

When a train arrives at a station, all of the passengers
on the train should decide whether to continue riding or
alight, according to their O-D and preselected route. For each
passenger, if the stop is (a) the destination station or (b) the
transfer station, the passenger should alight from the train.
After passenger alighting has finished, the passengers waiting
on the platform should determine whether or not to board.
Because different transit lines may share the same station, it
is important for passengers to board the correct train. Passen-
gers who can board the train should satisfy the following:

(i) The next stop of the train is the same as the next stop
for the passenger to make sure the train is going the
correct direction.

(ii) The trainwill stop at the target stations for passengers,
which represents the destination station or enroute
transfer stations.

(iii) The train has sufficient capacity for the boarding
passengers.

Suppose a train numbered 𝑚 arrives at the station 𝑖.
Define 𝐶𝑚 as the train loading capacity, 𝑃𝑖−1𝑚 as the number
of passengers on the train when the train departs from the
previous station 𝑛𝑖−1, 𝐼𝑚𝑖 as the number of passengers waiting
on the platform, and𝑂𝑚𝑖 as the number of passengers needing
to alight. Using these definitions, the number of passengers
who can board is

𝐼󸀠𝑚𝑖 = min {𝐶𝑚 − (𝑃𝑖−1𝑚 − 𝑂𝑚𝑖 ) , 𝐼𝑚𝑖 } , (14)

where 𝐼󸀠𝑚𝑖 represents the number of passengers who can
board. If 𝐼󸀠𝑚𝑖 < 𝐼𝑚𝑖 , some passengers should wait for the next
train, and the delayed passengers 𝑆𝑚𝑖 are

𝑆𝑚𝑖 = 𝐼𝑚𝑖 − 𝐼󸀠𝑚𝑖 . (15)

4. Model Implementation

4.1. Simulator Description. A simulator based on the pro-
posed models was developed in the C# programming lan-
guage using object-oriented and continuous time-driven
approaches. The tool was executed on an Intel PC under
Windows 7 with a 3.8GHz CPU and 4G RAM. Figure 8
shows the main interface of the simulator.

The Beijing rail transit, one of the busiest transit systems
in the world, is applied to test the models and simulator. It
consists of 344 stations and 18 lines with a total length of 631
kilometres in 2016. The ridership is approximately 10 million
trips (each transfer is counted as an additional trip) and 7,539
trains operate daily. The minimum train headway time in
peak hours reaches 103 seconds [25].
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Figure 7: Interaction flowchart for passenger boarding and alighting.

Train ID

Figure 8: Main interface of the simulation system.

The headway and dwell times are measured in seconds
in the operation of rail transit. Hence, the time step of the
simulation clock is set to be 1 second and the triggering time
for iteration is 100 milliseconds, which is ten times faster
than the real time. Test results show that (1) the traffic flow
status for a large-scale transit network can be simulated with
high efficiency and only 120 minutes is needed to simulate
a whole day (from 5:00 to 24:00) and (2) more than 1,000
trains and 0.8 million individual passengers can be simulated
simultaneously. The main capabilities of the tool include the
following:

(i) Modelling the complex routing behavior integrated
with the pretrip route selection and enroute switch
processes for rail transit travellers.

(ii) Modelling the train movement for different types of
train schedules, such as long and short train routes
and a variable number of train units.

(iii) Representing dynamics of network flows at multiple
levels (network, line, station, section, train, and plat-
form) and for any time span.

(iv) Tracking the target passengers for behavior changes
under special conditions.
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Table 3: Information of parameters.

Parameter Value Description
𝜇𝑧 0.21 Weight for egress/access walk time
𝜇𝑎 0.14 Weight for on-board time
𝜇𝑏 0.28 Weight for wait-for-train time
𝜇𝑡 0.37 Weight for transfer walk time
SUM 1.00

(v) Outputting statistical results of passenger flows in any
preset time span, such as train load volume, station
access, and egress and transfer flows.

4.2. Model Verification. A weekday (Wednesday) in April
2016 is used as the analysis day. The simulation time is
from 5:00 to 24:00, and the AFC records from the Beijing
Municipal Commission of Transport are utilized as the traffic
demand inputs, with a total of 5,425,015 trips (without
considering transfers). Because the real train running records
cannot be obtained, the scheduled timetable is applied for
train operations. A travel survey is taken to estimate the
value of parameters in the MNL route choice model, which
is shown in Table 3.

There are two indicators used to quantify the model
accuracy. The first one is the average relative deviation ARD𝑡
between the simulated travel time and the actual travel
time for each passenger, as shown in (16). The other one is
the average relative deviation ARD𝑞 between the simulated
section flows and the flows from the official revenue clearance
centre, which is calculated by (17).

ARD𝑡 =
𝑃∑
𝑝=1

󵄨󵄨󵄨󵄨󵄨𝑡𝑝 − 𝑡󸀠𝑝󵄨󵄨󵄨󵄨󵄨 /𝑡󸀠𝑝𝑃 ∗ 100%, (16)

where 𝑡𝑝means the simulated travel time for passenger 𝑝; 𝑡󸀠𝑝
is the practical travel time from the AFC record; and 𝑃 is the
number of tested passengers.

ARD𝑞 (𝑡) = 𝐾∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑞𝑘 (𝑡) − 𝑞󸀠𝑘 (𝑡)󵄨󵄨󵄨󵄨󵄨 /𝑞󸀠𝑘 (𝑡)𝐾 ∗ 100%, (17)

where 𝑞𝑘(𝑡) represents the simulated section flow for section𝑘 during time interval 𝑡; 𝑞󸀠𝑘(𝑡) is the assignment section flow
from the revenue clearance centre; and 𝐾 is the number of
sections.

Figure 9 presents the ARD𝑡 distributions from 80,000
randomly selected travellers. We can observe that the devi-
ation for most of the passengers is about 5%∼25%. The main
reasons for deviation are the random variable influence in
the MNL-based model that causes the wrong route choice
and the different walking speed for passengers when they
go through the passageways. However, the weighted average
relative deviation is about 17%, which are still acceptable for
a real-world application.

Figure 10 provides the time-dependent ARD𝑞 deviations
from 05:00 a.m. to 12:00 a.m. We can find that most of the
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Figure 9: Deviations of travel time for tested passengers.
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Figure 10: Time-dependent deviations of section flows.

deviations are less than 6%. Therefore, it can be concluded
that the proposedmodels have an acceptable accuracy and are
suitable for DTA application in the schedule-based rail transit
networks.

4.3. Simulator Applications. Two case studies are presented
to show the capabilities of the simulator. The first one shows
the descriptive capability for describing the spatial-temporal
passenger flow patterns, and the second one provides the
evaluation capability for the event influence.

4.3.1. Dynamics of Passenger Flows. Thedescriptive capability
for dynamic flow status is the fundamental and core function
of DTA models and simulators. The same traffic demand
input and train schedules used in the model verification are
applied in this case study.The simulation time is from 5:00 to
24:00. Part of time-dependent transport capacities for each
line are given in Table 4.

In Beijing rail transit, the direction for lines is defined
as the up direction is from east to west and from south to
north for straight lines and counterclockwise for the circle
lines; the down direction represents the opposite directions.
Figure 11 shows the dynamic network passenger flow status
during morning peak hours (7:00–9:00), where 𝑅 means
the capacity utilization rates which corresponds to different
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Table 4: Transport capacity for each line from 5:00 a.m. to 12:00 a.m. (passengers/hour).

Line 5:00–6:00 6:00–7:00 7:00–8:00 7:00–8:00 8:00–9:00 9:00–10:00 10:00–11:00 11:00–12:00
Line 1 25920 31680 40320 40320 40320 25920 27360 25920
Line 2 14400 25920 40320 40320 28800 18720 18720 20160
Line 4 23040 30240 43200 30240 30240 23040 21600 21600
Line 5 14400 24480 38880 38880 25920 18720 18720 18720
Line 6 14400 19200 32640 34560 34560 14400 23040 17280
Line 7 7680 21120 28800 28800 26880 14400 17280 21120
Line 8 5760 12960 21600 25920 21600 14400 14400 12960
Line 9 8640 17280 24480 24480 17280 14400 15840 17280
Line 10 7200 24480 37440 33120 34560 18720 18720 18720
Line 13 17280 28800 30240 34560 14400 17280 14400 10080
Line 14 7440 14880 13020 14880 13020 14880 14880 13020
Line 15 4320 11520 17280 17280 15840 11520 11520 11520
Line BT 2880 15840 28800 28800 21600 12960 12960 12960
Line DX 23040 30240 43200 30240 30240 23040 21600 21600
Line FS 7200 12960 14400 12960 11520 11520 11520 11520
Line YZ 8640 14400 14400 14400 14400 8640 8640 8640
Line CP 1440 10080 14400 14400 14400 7200 7200 7200
Line JC 0 2520 4200 4200 5880 5040 5040 5040

R > 1.0

0.8 < R ⩽ 1.0

R ⩽ 0.8

(a) 7:00∼7:30

R > 1.0

0.8 < R ⩽ 1.0

R ⩽ 0.8

(b) 7:30∼8:00

R > 1.0

0.8 < R ⩽ 1.0

R ⩽ 0.8

(c) 8:00∼8:30

R > 1.0

0.8 < R ⩽ 1.0

R ⩽ 0.8

(d) 8:30∼9:00

Figure 11: Dynamic passenger flow status during the morning peak hours (7:00∼9:00).

colours. We can see that the up direction of Line 1 and
the down direction of Lines 5 and 6 and BT are the most
congested lines in the Beijing subway during the morning
peak hours. To maintain safe transit operations, a forced
inflow control measure is widely used in the Beijing rail
transit, which limits the number of passengers entering the

stations. Most of the controlled stations are located on these
congested lines.

A significant amount of passenger flow information for
different levels can be output by the simulator, such as plat-
form, train, line, and network. Figure 12 shows the passenger
density on the down direction platform of the Tiantongyuan



12 Discrete Dynamics in Nature and Society

Time

6:
00

:0
0

6:
15

:0
0

6:
30

:0
0

6:
45

:0
0

7:
00

:0
0

7:
15

:0
0

7:
30

:0
0

7:
45

:0
0

8:
00

:0
0

8:
15

:0
0

8:
30

:0
0

8:
45

:0
0

9:
00

:0
0

9:
15

:0
0

9:
30

:0
0

9:
45

:0
0

10
:0
0:
00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
as
se
n
ge

r
d
en

si
ty

(p
/m

2
)

Figure 12: Passenger flow density on the down direction platform
of the TTY station.
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Figure 13: Time-varying section flows in the up direction of Line 1.

(TTY) station every 30 seconds. The TTY station is one of
the most congested stations on Line 5. We can find that
the maximum passenger density is as high as 3.0 passengers
per square metres, which almost reaches the maximum safe
density for platforms. The platform passenger density can
be used to support train schedule regulation decisions and
transport capacity allocations.

Figure 13 presents the time-varying section flows in the
up direction of Line 1.Themaximum section flow of the lines
is the key parameter for calculating the train headway time.
We can see that the pivotal sections of Line 1 are sections 6
to 11; nearly 120,000 passengers travel across these sections in
the morning.

Figure 14 presents the network inflows, outflows, and
passengers loading distribution every 30minutes.There is no
doubt that the reason for these two sharp peaks in the morn-
ing and evening is commuter travelling. The imbalanced
travel demand makes it difficult for transport organizations
and capacity utilization. We can find that the peak of the
network load is approximately 500,000 passengers, which is
less than the maximum capacity of the simulator. Hence, the
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Figure 14: Time-varying network passenger flows.

developed simulator is efficient enough for large-scale transit
network applications.

4.3.2. Special Events Evaluation. The traffic management for
special events such as concerts, large conferences, and sports
events is a difficult task for transport corporations. Generally,
the transport schedules should be adjusted for themass traffic
flows caused by these events. However, precise quantitative
empirical data are usually insufficient due to the lack of
observation data and analysis tools. In rail transit systems, the
detailed trip records of each traveller can be stored in theAFC
system. However, it is also impossible to determine which
passenger is part of the event audience. Considering the high
regularity of rail transit passengers, a comparison method
between the event day and the corresponding weekday of
the previous week is used to evaluate the traffic influence of
special events.

A football game held in Worker’s Stadium on 23 April
2016, starting at 19:35 and ending at 21:40, is used as our
case study. The Worker’s Stadium is one the most important
centres for entertainment and sports in Beijing, and it can
accommodate approximately 150,000 people. The location of
the Stadium is shown in Figure 15.The Dongsishitiao (DSST)
Station is the nearest railway station to theWorker’s Stadium,
so it is the most used station for passengers going to the
stadium. In this study, the comparison day of the previous
week is 16 April 2016.

Figure 16 shows the time-varying inflow and outflow
distributions of the DSST station. It can be clearly observed
that (1) there is a high arrival peak flow (station outflow)
before the game, with the peak time at 18:30; (2) there is also a
high departure peak flow (station inflow) after the game, with
the peak at 22:00; and (3) the number of departure passengers
entering the DSST station is as much as four times than the
normal day, and the departure peak is much higher than the
arrival flow. If there is no additional transport capacity added
to support these mass flows, congestion and safety issues may
emerge for the event stations.
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Dongsishitiao
Station

The Worker’s
Stadium

10-minute walk

Figure 15: Location of the Worker’s Stadium (source: http://map.baidu.com/).

Table 5: Comparison results between the event day and a normal day.

Maximum section flow in a
normal day
(person)

Maximum section flow in
an event day
(person)

Rate of increase
(%)

Line 1 Line 2 Line 5 Line 6 Line 1 Line 2 Line 5 Line 6 Line 1 Line 2 Line 5 Line 6
21:00–21:30 4985 2525 4709 4857 4694 2538 4884 4525 −5.84 0.51 3.72 −6.84
21:30–22:00 4363 2562 4582 4435 4303 3815 4611 6087 −1.38 48.91 0.63 37.25
22:00–22:30 4056 1842 3948 3942 4671 3335 4597 4732 15.16 81.05 16.44 20.04
22:30–23:00 3045 1360 3165 3405 3112 1205 3506 3839 2.20 −11.40 10.77 12.75
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Figure 16: Time-dependent inflows and outflows of the DSST
Station.

The number of extra section flows is used as the eval-
uation indicator for the event influence, which equals the
section flows in an event dayminus the flows in a normal day.
After simulating the traffic status of two comparison days, the
time-dependent extra section flowdistribution after the event
ends is shown in Figure 17. 𝑉 means the number of flows,

which also corresponds to different colours. The red colour
means the extra section flow is over 800 passengers, and the
other colours represent smaller numbers of passengers. It can
be found that (1) an outward evacuation process exists after
the sports game ends, with a peak 20 minutes later; (2) the
extra section flow (event flow) mainly travels through Lines
2, 6, and 1; hence, the train schedule adjustment should be
made for these lines; and (3) fiftyminutes later the event flows
almost disappear from the network.

The maximum section flow in a line determines the train
headway time. Table 5 gives the maximum section flows for
the most influenced lines, as shown in Figure 17. We can
determine that (1) the most influenced line is Line 2 and
the influenced time is from 21:30–22:30 and (2) the most
influenced time for the network is 22:00–22:30. Hence, some
regulatory measures should be made for transporting these
additional event flows, such as reducing headway time or
running a short route train for these influenced sections.

5. Conclusions

A simulation-based DTA framework and models for the
schedule-based rail transit network were proposed in this
work. The dynamic equilibrium status of network flows is
achieved by integrating the pretrip equilibrium and enroute
path switch models, which is consistent with the route choice

http://map.baidu.com/
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Figure 17: Extra section flow distributions after the event ends.

behavior in rail transit system. A queue-based method for
describing the passenger flow stream within stations makes
it possible to simulate the passenger travelling processes at a
disaggregate level. A simulator based on the proposedmodels
was developed in the C# programming language using
object-oriented and continuous time-driven approaches.The
Beijing rail transit network and AFC transaction data are
applied to verify the simulation models and tool. The results
indicate that an acceptable accuracy and high computational
efficiency can be obtained for capturing the dynamics of
passenger flow in a large-scale transit network.

The DTA is an essential foundation for the development
of dynamic operations management systems. This research
focuses on the descriptive capability for describing spatial-
temporal flow patterns on the network. Moreover, based on
different travel demand inputs, the simulation-based DTA
models and tools can be applied to estimate the online traffic
flow status and predict future traffic states for short-term
management applications. To further improve our models,
the dynamic train running control in the microscopic view
should be added to the simulation framework.
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