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The rigid-flexible coupling systemwith a hub and concentratedmass is studied in this paper. Considering the second-order coupling
of axial displacement which is caused by transverse deformation of the beam, the dynamic equations of the system are established
using the second Lagrange equation and the assumedmodemethod.The simulation results show that the concentratedmassmainly
suppresses the vibration and exhibits damping characteristics. When the nondimensional mass position parameter 𝛽 > 0.67, the
first natural frequency is reduced as the concentrated mass increases. When 𝛽 < 0.67, the first natural frequency is increased as
the concentrated mass increases. We also find the maximum first natural frequency nondimensional position for the concentrated
mass.

1. Introduction

A classical motion mechanism in technical field of engi-
neering and mechanical structures, such as space crafts,
the robots, wind turbine blades, aircraft rotary wings, and
the engine valves, is always reduced to a typical rotating
cantilever beam. In order to design and control the dynamic
behavior of those structures, it is necessary to estimate
the modal characteristics and dynamical response. For the
purpose of studying the basic characteristics, the model
is simplified to a rigid-flexible coupling dynamical system
consisting of both the flexible bodies and the rigid bod-
ies. Southwell and Gough [1] derive the famous Southwell
equation by using the Rayleigh energy theory to research
the natural frequency of rotating beam. Then, to investigate
further, some researchers combine Southwell equation with
Ritz method [2, 3] to get a better simulation.

With the development of the dynamic stiffening and one-
order coupling model, the study of vibration characteristics
of the flexible cantilever beam has also entered a new stage
[4–6]. Many researchers have studied the vibration control
of the flexible cantilever beam [7–10]. For example, Ding
et al. [11, 12] investigate the convergence of the Galerkin

method for the dynamic response of an elastic beam resting
on a nonlinear foundation with viscous damping subject
to a moving concentrated load. Zhang et al. [13] present
experimental verifications of vibration suppression for a
cantilever beam bond with a piezoelectric actuator by an
adaptive controller. Li et al. [14] discuss the effects of themass
and position of the balance weight added in blades on the
natural frequencies and mode shapes of the blades. By using
the dynamic stiffness matrix method, Banerjee [15] studies
the free vibration of axially loaded composite Timoshenko
beams and applies his method to composite wings and
helicopter blades. For the typical helicopter and wind turbine
blades, Kambampati and Ganguli [16] assume the mass and
stiffness distributions of the tapered rotating beam to be
polynomial functions of span and find nonrotating beams
that are isospectral to a given tapered rotating beam. Lee et al.
[17, 18] give an exact power-series solution for free vibration
of a rotating inclined Timoshenko beam. It is shown that both
the extensional deformation and the Coriolis force will have
significant influence on the natural frequencies of the rotating
beam when the dimensionless rotating extension parameter
is large. Even when the system parameters are changing, the
vibration may show significant difference. In this paper, the
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Figure 1: Rigid-flexible beam coupling system with concentrated
mass.

rigid-flexible coupling system with a hub and concentrated
mass is studied. Considering the second-order coupling of
axial displacement which is caused by transverse deformation
of the beam, the second Lagrange equation and assumed
mode method are used to establish the dynamic equations.
The influences of system parameters are analyzed.

2. The Dynamic Equations of Rigid-Flexible
Coupling System

2.1. Dynamics Mode. In Figure 1, the rigid-flexible coupling
system, which moves in the horizontal plane, is composed of
the hub, flexible beam, and concentrated mass. The hub can
rotate around the point 𝑂. The point 𝑜 connects the hub and
flexible beam.There is a concentrated mass on the beam.The
extra excitation of the hub is 𝜏. A fixed coordinate system𝑂-𝑋𝑌 is established at 𝑂, and a rotating coordinate system𝑜-𝑥𝑦 is established at the point 𝑜. The reverse extension line
of 𝑥-axis passes𝑂. This system can be divided into two parts:
the hub and the flexible beamwith the concentratedmass. All
the parameters are presented in the Notations.

2.2. The Dynamic Equations of the System. According to the
model of rigid-flexible coupling system, the kinetic energy of
the whole system is

𝑇 = 12 ∫𝐿
0
𝜌𝐴 ̇⃗𝑟 ⋅ ̇⃗𝑟 𝑑𝑥 + 12𝐼ℎ𝜃�̇�

2 + 12𝑚 ̇𝑟2𝑑. (1)

The potential energy is elastic deformation energy
because the system is moving in the horizontal plane. That
is,

𝑉 = 12𝐸𝐼∫
𝐿

0
(𝜕2V𝜕𝑥2)

2 𝑑𝑥 + 12𝐸𝐴∫𝐿
0
(𝜕2𝑢𝜕𝑥2)

2 𝑑𝑥. (2)

The coordinate transformation equation is

̇⃗𝑟 = �⃗�𝑟 + �⃗� × ⃗𝑟
= (�̇� + �̇�𝑓 − V�̇�) ⃗𝑖 + (V̇ + (𝑥 + 𝑢 + 𝑢𝑓) �̇�) ⃗𝑗. (3)

When using the assumed mode method, V(𝑥, 𝑡) can be
expressed as V(𝑥, 𝑡) = ∑𝑛𝑖=1 𝜙𝑖(𝑥)𝐵𝑖(𝑡), where 𝜙𝑖(𝑥) is the𝑖th order modal shape functions of the transverse vibration

of a flexible beam; 𝐵𝑖(𝑡) is the 𝑖th order modal generalized
coordinates; 𝑛 is the modal order. 𝑢𝑓(𝑥, 𝑡) can be expressed
as 𝑢𝑓(𝑥, 𝑡) = −(1/2) ∫𝑥

0
∑𝑛𝑖=1∑𝑛𝑗=1 𝜙𝑖 (𝜎)𝜙𝑗(𝜎)𝐵𝑖𝐵𝑗𝑑𝜎. Substi-

tuting (3) into (1) and (2), we can get

𝑇
= 12𝜌𝐴�̇�2 ∫𝐿

0
((𝑎 + 𝑥 + 𝑢𝑓)2 + V2) 𝑑𝑥

+ 12𝜌𝐴∫𝐿
0
(V̇2 + �̇�2𝑓) 𝑑𝑥

+ 𝜌𝐴�̇�2 ∫𝐿
0
(−V�̇�𝑓 + V̇ (𝑎 + 𝑥 + 𝑢𝑓)) 𝑑𝑥 + 12𝐼ℎ�̇�

2

+ 12𝑚 ̇𝑟2𝑑,
𝑉

= 12 ∫
V
𝐸𝜀2𝑥𝑥𝑑V

+ 𝜌𝐴𝑔∫𝐿
0
((𝑎 + 𝑑 + 𝑢𝑑 + 𝑢𝑓𝑑) sin 𝜃 + V cos 𝜃) 𝑑𝑥.

(4)

Expand the expressions 𝑇 and 𝑉
𝑇 = 12𝜌𝐴�̇�2 ∫𝐿

0
((𝑎 + 𝑥 + 𝑢𝑓)2 + V2) 𝑑𝑥 + 12

⋅ 𝑚(�̇�2 ((𝑎 + 𝑑 + 𝑢𝑓𝑑)2 + V𝑑
2)

+ 𝜌𝐴�̇� ∫𝐿
0
(−V�̇�𝑓 + V̇ (𝑎 + 𝑥 + 𝑢𝑓)) 𝑑𝑥 + 12

⋅ 𝜌𝐴∫𝐿
0
(V̇2 + �̇�𝑓2) 𝑑𝑥 + 2�̇� (−V𝑑�̇�𝑓𝑑

+ V̇ (𝑎 + 𝑑 + 𝑢𝑓𝑑)) + V̇𝑑
2 + �̇�𝑓𝑑2) = 12𝜌𝐴∫𝐿

0
(𝑢2

+ 𝑢𝑓2 + 2𝑢𝑢𝑓 + V2�̇�2 − 2�̇�V�̇� − 2�̇�𝑓V�̇� + 𝑥2�̇�2

+ 𝑢2�̇�2) 𝑑𝑥 + 12𝜌𝐴∫𝐿
0
(2𝑢𝑓𝑢�̇�2 + V̇2 + 𝑢𝑓2�̇�2

+ 2𝑢𝑥�̇�2 + 2𝑢𝑓𝑥�̇�2 + 2𝑥V̇�̇� + 2𝑢V̇�̇�) 𝑑𝑥 + 12
⋅ 𝜌𝐴∫𝐿

0
(2𝑢𝑓V̇�̇� + 𝑎2�̇�2 + 2𝑎𝑥�̇�2 + 2𝑎𝑢�̇�2 + 2𝑎𝑢𝑓�̇�2

+ 2𝑎V̇�̇�) 𝑑𝑥 + 12𝑚(�̇�2 ((𝑎 + 𝑑 + 𝑢𝑓𝑑)2)
+ 2�̇� (−V𝑑�̇�𝑓𝑑 + V̇ (𝑎 + 𝑑 + 𝑢𝑓𝑑) + �̇�𝑓𝑑2 + �̇�𝑑2) + 12
⋅ 𝑚 (−2�̇�V𝑑�̇�𝑓𝑑 + �̇�2𝑑2 + �̇�2𝑢𝑑2 + �̇�2𝑢𝑓𝑑2 + 2𝑑𝑢𝑑�̇�2
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+ 2�̇�𝑓𝑑�̇�𝑑 + V𝑑
2�̇�2) + 12𝑚(−2�̇�V𝑑�̇�𝑑 + 2𝑑𝑢𝑓𝑑�̇�2

+ 2𝑢𝑓𝑑𝑢𝑑�̇�2 + V̇𝑑
2 + 2𝑑V̇𝑑�̇� + 2𝑢𝑑V̇𝑑�̇� + 2𝑢𝑓𝑑V̇𝑑�̇�)) ,

𝑉 = 12 ∫
V
𝐸𝜀2𝑥𝑥𝑑V + 𝜌𝐴𝑔∫𝐿

0
((𝑎 + 𝑑 + 𝑢𝑑 + 𝑢𝑓𝑑) sin 𝜃

+ V cos 𝜃) 𝑑𝑥 = 12𝐸𝐴∫𝐿
0
(𝜕𝑢𝜕𝑥)2 𝑑𝑥 + 12

⋅ 𝐸𝐼∫𝐿
0
(𝜕2V𝜕𝑥2)

2 𝑑𝑥

+ 𝜌𝐴𝑔∫𝐿
0
((𝑎 + 𝑑 + 𝑢𝑑 + 𝑢𝑓𝑑) sin 𝜃

+ V cos 𝜃) 𝑑𝑥.
(5)

The dynamic equation of the system is established by
Hamilton least action principle

∫𝑡2
𝑡
1

(𝛿𝑇 − 𝛿𝑉 + 𝛿𝑊𝑓) 𝑑𝑡 = 0, (6)

where 𝛿 means the variation of 𝑇, 𝑉, or 𝑊. 𝑊 is the work of
external force.

The kinetic equation of hub is

𝐽0�̈� = 𝜏. (7)

According to the knowledge of structure dynamics, we
assume the first two model functions of this system are

𝜙1 (𝑥) = 𝐴1 sin (𝛽1𝑥) + 𝐴2 cos (𝛽1𝑥) , (8)

𝜙2 (𝑥) = 𝐵1 sin (𝛽2𝑥) + 𝐵2 cos (𝛽2𝑥) + 𝐵3 sin ℎ (𝛽2𝑥)
+ 𝐵4 cos ℎ (𝛽2𝑥) , (9)

where 𝛽21 = 𝜌𝜔2/𝐸, 𝛽42 = 𝜌𝐴𝜔2/𝐸𝐼;𝐴1,𝐴2, 𝐵1, 𝐵2, 𝐵3, and 𝐵4
are unknown parameters.

For the cantilever beam, the boundary conditions in axial
direction are 𝜙(0) = 0, 𝜙(𝐿) = 0. We can get 𝐴2 = 0,
cos(𝛽1𝑥) = 0.

The nature frequency is 𝜔𝑖 = ((2𝑖 − 1)/2)(𝜋/𝐿)√𝐸/𝜌, 𝑖 =1, 2, . . ., or 𝜔𝑖 = (1/2)(𝜋/𝐿)√𝐸/𝜌, 𝑖 = 1, 3, 5, . . .. The model
functions are 𝜙𝑖1(𝑥) = 𝐴1 sin(((2𝑖−1)/2)(𝜋/𝐿)𝑥), 𝑖 = 1, 2, . . ..

The boundary conditions in transverse direction are𝜙(0) = 0, 𝜙(0) = 0, 𝜙(𝐿) = 0, 𝜙(𝐿) = 0. Here, 0 and𝐿 mean fix side and free side of the beam. Substituting those
conditions into (9) yields 𝐵1 = −𝐵3, 𝐵2 = −𝐵4, and

𝐵1 (cos (𝛽2𝐿) + cos ℎ (𝛽2𝐿))
+ 𝐵2 (sin (𝛽2𝐿) + sin ℎ (𝛽2𝐿)) = 0,

− 𝐵1 (sin (𝛽2𝐿) − sin ℎ (𝛽2𝐿))
+ 𝐵2 (cos (𝛽2𝐿) − cos ℎ (𝛽2𝐿)) = 0.

(10)

The condition of nonzero solution for 𝐵1 and 𝐵2 is

cos (𝛽2𝐿) + cos ℎ (𝛽2𝐿) sin (𝛽2𝐿) + sin ℎ (𝛽2𝐿)
− sin (𝛽2𝐿) + sin ℎ (𝛽2𝐿) − cos (𝛽2𝐿) + cos ℎ (𝛽2𝐿)


= 0.

(11)

The solution for this equation is 𝛽12𝐿 = 1.875, 𝛽22𝐿 = 4.694,𝛽32𝐿 = 7.855when 𝑖 = 1, 2, 3. When 𝑖 ≥ 3, 𝛽𝑖2𝐿 ≈ ((2𝑖−1)/2)𝜋.
The nature frequencies are𝜔𝑖 = (𝛽𝑖2𝐿)√𝐸𝐼/𝜌𝐴𝐿4, 𝑖 = 1, 2, . . ..
The model function is

𝜙𝑖2 (𝑥) = cos (𝛽𝑖2𝑥) − cos ℎ (𝛽𝑖2𝑥)
+ 𝜉𝑖 (sin (𝛽𝑖2𝑥) − sin ℎ (𝛽𝑖2𝑥)) ,

𝑖 = 1, 2, . . . ,
(12)

where 𝜉𝑖 = (cos(𝛽𝑖2𝑥) + cos ℎ(𝛽𝑖2𝑥))/(sin(𝛽𝑖2𝑥) + sin ℎ(𝛽𝑖2𝑥)),𝑖 = 1, 2, . . ..
The orthogonal condition of the transverse modal func-

tion of the flexible beam is

∫𝐿
0
𝜌𝐴𝜙𝑚 (𝑥) 𝜙𝑛 (𝑥) 𝑑𝑥 = {{{

0 𝑚 ̸= 𝑛
1 𝑚 = 𝑛. (13)

The dynamic equations can be written by the functions𝐵1, 𝐵2, and 𝜃 as
∫𝐿
0
(𝜌𝐴𝜙𝑇1 𝜙1�̈�1 − 2𝜌𝐴𝜙𝑇1 𝜙2�̇�2�̇� − 𝜌𝐴𝜙𝑇1 𝜙2𝐵2�̈�
− 𝜌𝐴 (𝑎 + 𝑥) 𝜙1�̇�2 − 𝜌𝐴𝜙𝑇1 𝜙1𝐵1�̇�2) 𝑑𝑥
− 𝑚 (𝑎 + 𝑑) 𝜙1 (𝑑) �̇�2 + 𝑚(𝜙𝑇1 (𝑑) 𝜙1 (𝑑) �̈�1
− 2𝜙𝑇1 (𝑑) 𝜙2 (𝑑) �̇�2�̇� − 𝜙𝑇1 (𝑑) 𝜙2 (𝑑) 𝐵2�̈�)
+ ∫𝐿
0
(𝐸𝐴𝜙𝑇1 𝜙1𝐵1) 𝑑𝑥 − 𝑚𝜙𝑇1 (𝑑) 𝜙1 (𝑑) 𝐵1�̇�2

= 0,
∫𝐿
0
(𝜌𝐴𝜙𝑇2 𝜙2�̈�2 + 2𝜌𝐴𝜙𝑇1 𝜙2�̇�1�̇� − 𝜌𝐴 (𝑎 + 𝑥) 𝜙2�̈�
− 𝜌𝐴𝐵𝑇1𝜙𝑇1 𝜙2�̈� − 𝜌𝐴�̇�2𝜙𝑇2 𝜙2𝐵2) 𝑑𝑥 − 𝑚((𝑎
+ 𝑑) 𝜙2 (𝑑) �̈� − 𝐵𝑇1𝜙𝑇1 (𝑑) 𝜙2 (𝑑) �̈� − �̇�2𝜙𝑇2 (𝑑) 𝜙2 (𝑑)
⋅ 𝐵2 + (𝑎 + 𝑑)𝐻 (𝑑) 𝐵2�̇�2) + ∫𝐿

0
(𝐸𝐼𝜙𝑇2 𝜙2 𝐵2 + (𝑎

+ 𝑥)𝐻𝐵2�̇�2) 𝑑𝑥 + 𝑚(𝜙𝑇2 (𝑑) 𝜙2 (𝑑) �̈�2
+ 2𝜙𝑇1 (𝑑) 𝜙2 (𝑑) �̇�1�̇�) = 0,
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∫𝐿
0
𝜌𝐴 (�̈� ((𝑎 + 𝑥)2 + 𝐵𝑇2𝜙𝑇2 𝜙2𝐵2 + 𝐵𝑇1𝜙𝑇1 𝜙1𝐵1
+ 2 (𝑎 + 𝑥) 𝜙1𝐵1 − 𝐵𝑇2 (𝑎 + 𝑥)𝐻𝐵2)) 𝑑𝑥
+ 𝐵𝑇1𝜙𝑇1 (𝑑) 𝜙1 (𝑑) 𝐵1 + 2 (𝑎 + 𝑑) 𝜙1 (𝑑) 𝐵1 − (𝑎 + 𝑑)
⋅ 𝐵𝑇2𝐻(𝑑) 𝐵2 + (𝑎 + 𝑑) 𝜙2 (𝑑) �̈�2 + ∫𝐿

0
𝜌𝐴 ((𝑎 + 𝑥)

⋅ 𝜙2�̈�2 + 𝐵𝑇1𝜙𝑇1 𝜙2�̈�2 − 𝐵𝑇2𝜙𝑇2 𝜙1�̈�1 − 𝐵𝑇2 (𝑎 + 𝑥)𝐻�̇�2
+ 2�̇� ((𝑎 + 𝑥) 𝜙1�̇�1)) 𝑑𝑥 + 𝐵𝑇1𝜙𝑇1 (𝑑) 𝜙2 (𝑑) �̈�2
− 𝐵𝑇2𝜙𝑇2 (𝑑) 𝜙1 (𝑑) �̈�1 + 2�̇� ((𝑎 + 𝑑) 𝜙1 (𝑑) �̇�1
+ 𝐵𝑇1𝜙𝑇1 (𝑑) 𝜙1 (𝑑) �̇�1
+ ∫𝐿
0
𝜌𝐴 (2�̇� (𝐵𝑇1𝜙𝑇1 𝜙1�̇�1 + 𝐵𝑇2𝜙𝑇2 𝜙2�̇�2)) 𝑑𝑥

+ 𝑚(�̈� ((𝑎 + 𝑑)2 + 𝐵𝑇2𝜙𝑇2 (𝑑) 𝜙2 (𝑑) 𝐵2
+ 𝐵𝑇2𝜙𝑇2 (𝑑) 𝜙2 (𝑑) �̇�2 − (𝑎 + 𝑑) 𝐵𝑇2𝐻(𝑑) �̇�2)))
= 𝜏,

(14)

where𝐻 = ∫𝑥
0
(𝜕𝜙2/𝜕𝜉)𝑇(𝜕𝜙2/𝜕𝜉)𝑑𝜉.

From (14), the ordinary differential equations can be
rewritten into matrix form as

[[
[

𝑀𝜃𝜃 M𝜃1 M𝜃2
M1𝜃 M11 0
M2𝜃 0 M22

]]
]

[[[
[

�̈�
B̈1
B̈2

]]]
]

+ 2�̇� [[
[

0 0 0
0 0 G12
0 G21 0

]]
]

[[[
[

�̇�
Ḃ1
Ḃ2

]]]
]

+ [[
[

0 0 0
0 k11 0
0 0 k22

]]
]

[[
[

𝜃
B1
B2

]]
]

= [[
[

Q𝜃
Q1
0

]]
]

,
(15)

where

𝑀𝜃𝜃 = ∫𝐿
0
𝜌𝐴 (𝑥 + 𝑎)2 𝑑𝑥 + 𝑚 (𝑑 + 𝑎)2 + B𝑇1M11B1

+ B𝑇2M22B2 + 2 (U11 + 𝑎U10)B1 − B𝑇2 (D1 + 𝑎D0)
⋅ B2,

M1𝜃 = M𝑇𝜃1 = −RB2,
M𝜃2 = M𝑇2𝜃 = U12 + B𝑇1R + 𝑎U20,
G12 = −G𝑇21 = −R,

M11 = ∫𝐿
0
𝜌𝐴𝜙𝑇1𝜙1𝑑𝑥 + 𝑚𝜙𝑇1 (𝑑)𝜙1 (𝑑) ,

M22 = ∫𝐿
0
𝜌𝐴𝜙𝑇2𝜙2𝑑𝑥 + 𝑚𝜙𝑇2 (𝑑)𝜙2 (𝑑) ,

K11 = K1 − �̇�2M11,
Q1 = �̇�2 (U11 + 𝑎U10)𝑇 ,
K1 = ∫𝐿

0
𝐸𝐴𝜙𝑇1 𝜙1𝑑𝑥,

K2 = ∫𝐿
0
𝐸𝐼𝜙𝑇2 𝜙2 𝑑𝑥,

K22 = K2 − �̇�2M22 + �̇�2 (D1 + 𝑎D0) ,
U1𝑗 = ∫𝐿

0
𝜌𝐴𝑥𝜙𝑗 (𝑥) 𝑑𝑥 + 𝑚𝑑𝜙𝑗 (𝑑) , 𝑗 = 1, 2,

Q𝜃 = −2�̇� (B𝑇1M1Ḃ1 + B𝑇2M2Ḃ2 + (U11 + 𝑎U10) Ḃ1
− B𝑇2 (D1 + 𝑎D0) Ḃ2) ,

D0 = ∫𝐿
0
𝜌𝐴Z (𝑥) 𝑑𝑥 + 𝑚Z (𝑑) ,

D1 = ∫𝐿
0
𝜌𝐴𝑥Z (𝑥) 𝑑𝑥 + 𝑚𝑑Z (𝑑) ,

U10 = ∫𝐿
0
𝜌𝐴𝜙1 (𝑥) 𝑑𝑥,

R = ∫𝐿
0
𝜌𝐴𝜙𝑇1𝜙2𝑑𝑥 + 𝑚𝜙𝑇1 (𝑑)𝜙2 (𝑑) ,

U20 = ∫𝐿
0
𝜌𝐴𝜙2 (𝑥) 𝑑𝑥 + 𝑚𝜙2 (𝑑) ,

Z (𝑑) = ∫𝑑
0
𝜙
𝑇
2 (𝜎)𝜙2 (𝜎) 𝑑𝜎.

(16)

3. Dynamical Simulations

3.1. First Natural Frequency Analysis. For the study of [6],
the coupling effect between stretching and bending motions
can be ignored for slender beams and the natural frequencies
of stretching motion are far greater than those of bending
motion. Therefore, the bending vibration equation of the
beam can be expressed as

𝑀22�̈�2 + (𝐾2 − �̇�2𝑀22 + �̇�2 (𝐷1 + 𝑎𝐷0)) 𝐵2 = 0, (17)

where 𝑀22 = ∫1
0
𝜙𝑇2 𝜙2𝑑𝜉 + 𝛼𝜙𝑇2 (𝛽)𝜙2(𝛽), 𝐾2 = ∫1

0
𝜙𝑇2 𝜙2 𝑑𝜉,

𝑍(𝜉) = ∫𝜉
0
(𝜕𝜙2/𝜕𝜂)𝑇(𝜕𝜙2/𝜕𝜂)𝑑𝜂, 𝑈𝑇12 = (∫1

0
(𝛿 + 𝜉)𝜙2𝑑𝜉 +

𝛼𝜙2(𝛽))𝑇, 𝐷1 = ∫1
0
(𝛿+𝜉)𝑍(𝜉)𝑑𝜉+𝛼⋅(𝛿+𝛽) ∫𝛽

0
𝜙𝑇2 (𝜉)𝜙2(𝜉)𝑑𝜉.
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The nondimensional form of (17) can be obtained:

𝑀22�̈�2 + (𝐾2 − 𝛾2𝑀22 + 𝛾2𝐷1) 𝑘2 = −𝜒𝑈𝑇12, (18)

where the nondimensional parameters are

𝜁 = 𝑡𝑇 ,
𝜉 = 𝑥𝐿 ,

𝑘2 = 𝐵2𝐿 ,
𝛿 = 𝑎𝐿 ,
𝛾 = 𝑇�̇�,
𝛼 = 𝑚𝜌𝐴𝐿,
𝛽 = 𝑑𝐿 ,
𝜒 = 𝑇2�̈�,
𝑇 = (𝜌𝐴𝐿4

𝐸𝐼 )1/2 .

(19)

The natural frequency of rotating cantilever beam with a
concentrated mass can be studied by solving the eigenvalue
problem for (18). The harmonic function of the nondimen-
sional time 𝜁 can be expressed as

𝑘2 = 𝑒𝑗𝑓𝜁Θ, (20)

where 𝑗 is an imaginary number; 𝑓 is nondimensional
frequency; Θ is a constant column matrix. Substituting (18)
into (20) yields

𝜔2𝑀Θ = 𝐾𝐶Θ, (21)

where𝑀 and𝐾𝐶 are square matrices, which are, respectively,
defined as𝑀 = 𝑀22, 𝐾𝐶 = −𝛾2𝑀22 + 𝛾2𝐷1.

The simulation parameters are as follows: length of beam𝐿 = 8m, radius of the hub 𝑎 = 8m, cross section area of
the beam 𝐴 = 7.2968 × 10−5m2, moment of inertia of cross
section 𝐼 = 8.2189×10−9m4, density 𝜌 = 2.7667×103 kg/m3,
and elastic modulus 𝐸 = 6.8952 × 1010N/m2.

Figure 2 shows the effect of the concentrated mass on
the first natural frequency. The nondimensional position for
the numerical results is 𝛽 = 1 (at the free end of cantilever
beam). The natural frequency curves are lowered when the
concentrated mass increases. However, the lowering effect is
attenuated as the concentrated mass ratio increases.

Figure 3 shows the effect of the location of a concentrated
mass on the first natural frequency. With the concentrated
mass moving from the fixed end to the free end, the first
natural frequencies first increase and then decrease. The
variation increases as the concentrated mass increases. The
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Figure 2: Effect of the concentrated mass on the first natural
frequency.
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Figure 3: Effect of the concentrated mass location on the first
natural frequency.

crossover point of these curves is around 𝛽 = 0.67. When𝑚 = 0.4 kg, the maximum value position of first natural
frequency is 𝛽 = 0.442. When 𝑚 = 0.8 kg, the maximum
value position is 𝛽 = 0.429. When𝑚 = 1.2 kg, the maximum
value position is 𝛽 = 0.42. The maximum values position
decreases with the increasing of mass.

3.2. The Effect of the Concentrated Mass on the Flexible Beam.
The angular velocity of large range motion is supposed as an
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Figure 4: Effect of the concentrated mass on the response when flexible beam is subjected to acceleration process, (a) deformation and (b)
velocity.

acceleration process

�̇� = {{{
𝜔0𝑇 𝑡 − 𝜔02𝜋 sin(2𝜋𝑇 𝑡) , 0 ≤ 𝑡 ≤ 𝑇
𝜔0, 𝑡 > 𝑇. (22)

When the time is 𝑇 = 15 s, the angular speed of the
flexible beam became rotating with a constant speed 𝜔0 =10 rad/s. The simulation parameters are as follows: length of
beam 𝐿 = 8m, radius of the hub 𝑎 = 0, cross section area
of the beam 𝐴 = 7.2968 × 10−5m2, moment of inertia of
cross section 𝐼 = 8.2189 × 10−9m4, density 𝜌 = 2.7667 ×103 kg/m3, and elastic modulus 𝐸 = 6.8952 × 1010N/m2.
When the concentrated mass position parameter 𝛽 = 1, the
effects of concentrated mass on the dynamical response are
shown in Figure 4. The free end vibration of flexible beam
has been increased by the concentrated mass. The velocity
and deformation with concentrated mass are bigger than
those without concentrated mass. The variable of response is
aggravated by concentrated mass at the free end.

For another situation, supposing that there is a sine
function couple on the hub.The couple with time variable can
be written as

𝜏 (𝑡) = {{{
𝜏0 sin(2𝜋𝑇 𝑡) , 0 ≤ 𝑡 ≤ 𝑇
0, 𝑡 > 𝑇, (23)

where 𝜏0 = 1N⋅m, 𝑇 = 10 s. The parameter 𝛽 is 1. After
10 s, the couple is 0. Figure 5 shows the response of angular
displacement and transverse deformation. From 0 to 10 s, the
angular displacement of the free end of the beam has been
depressed by the concentrated mass increasing. There exist
periodic vibrations after the couple of forces change to 0.
The transverse deformation has been slightly increased by
concentrated mass. However, the concentrated mass stables

the vibration of the free end of the beam. All these show that
the concentrated mass mainly suppresses the vibration and
exhibits damping characteristics.

4. Conclusion

By establishing the dynamicsmodel of rigid-flexible coupling
system, the dynamic equation of the flexible beam with con-
centrated mass is derived in this paper.Themain conclusions
were as follows:

(1) When the nondimensional mass position parameter𝛽 > 0.67, the first natural frequency is reduced
when the concentrated mass increases. When 𝛽 <0.67, the first natural frequency is increased when
the concentrated mass increases. By considering the
high order coupling, the critical value 0.67 is a better
prediction and a simulation value for this system.
Further experiment is needed to get the true value.

(2) The maximum first natural frequency position is
near 0.42 (nondimensional mass position parameter)
when the concentrated mass increases, comparing
with the result 0.4 in [6] which does not consider the
high order coupling.

(3) The concentrated mass mainly suppresses the vibra-
tion and exhibits damping characteristics.

Notations

Summary of the General Notation Used in Figure 1

𝑎: Radius of the hub𝐽𝑜ℎ: Moment of inertia of the central rigid body
around 𝑂
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Figure 5: Effect of the concentrated mass on the angular displacement and transverse deformation when flexible beam is subjected to a sine
function couple: (a) angular displacement, (b) local diagram of angular displacement, (c) transverse deformation, and (d) local diagram of
transverse deformation.

𝐿: Length of the flexible beam𝜌𝐴𝐿: Mass of the flexible beam𝐸𝐴: Tension and compression stiffness of the flexible
beam𝐸𝐼: Bending stiffness of the flexible beam𝐽𝑜𝑏: Moment of inertia of the flexible beam around𝑂𝑚: Quality of concentrated mass𝑟𝑑: Concentrated mass position on the beam𝑑: Distance between the concentrated mass and 𝑜𝜃: Angle between the beam and the 𝑥-axis.
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