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An enhanced 𝑘-nearest neighbor (𝑘-NN) classification algorithm is presented, which uses a density based similarity measure in
addition to a distance based similarity measure to improve the diagnostic performance in bearing fault diagnosis. Due to its use of
distance based similarity measure alone, the classification accuracy of traditional 𝑘-NN deteriorates in case of overlapping samples
and outliers and is highly susceptible to the neighborhood size, 𝑘. This study addresses these limitations by proposing the use of
both distance and density based measures of similarity between training and test samples. The proposed 𝑘-NN classifier is used
to enhance the diagnostic performance of a bearing fault diagnosis scheme, which classifies different fault conditions based upon
hybrid feature vectors extracted from acoustic emission (AE) signals. Experimental results demonstrate that the proposed scheme,
which uses the enhanced 𝑘-NN classifier, yields better diagnostic performance and ismore robust to variations in the neighborhood
size, 𝑘.

1. Introduction

Rotary machines, in both industry and common households,
use bearings to reduce friction and ensure steady and energy
efficient operation. Bearings reduce the noise and vibration
levels associated with a machine, which is essential for the
long term health of both the machine and its operators.
Although bearings are very sturdy components and have very
long useful lives; nevertheless, material fatigue due to vari-
ations in operating load, currents due to electric discharge,
thermal stresses due to variations in operating temperature,
corrosion, and contaminants in the operating environment
can cause them to fail abruptly. A bearing failure can result
in the abrupt shutdown of a machine, which leads to tremen-
dous financial losses. Bearings account for more than 50% of
failures in inductionmotors alone [1], whichmakes their con-
dition monitoring essential to preventing any abrupt failu-
res. Thus, early and reliable detection of bearing defects is
very important as these defects lead to bearing failure.

Many data driven techniques have been proposed for
diagnosing faults in bearings. These techniques largely use
time-frequency analysis of the fault signals for the extraction
of meaningful information about underlying faults [2, 3].
Fault signals, such as stator current, vibration acceleration,
and acoustic emissions, are inherently nonstationary and
hence they are processed in the time-frequency domain,
using the short-time Fourier transform (STFT) [4], wavelet
transforms [5–10], empirical mode decomposition (EMD)
[11–15], and the Hilbert-Huang transform [16–18], to extract
characteristic information about different bearing defects.
Acoustic emissions are characterized by their low energies
and very high bandwidths. They are captured using wide-
band acoustic sensors and are very effective in diagnosing
nascent faults [19–21]. This paper presents a data driven
approach for fault diagnosis in bearings, which extracts
hybrid features from the acoustic emission (AE) signals and
then employs the proposed enhanced 𝑘-NN classifier to diag-
nose different bearing defects.
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Figure 1: Limitation of classical 𝑘-NN using only the distance based
similarity measure.

The hybrid feature vectors are constructed by calculating
different statistical measures of the time and frequency
domain AE signal and its envelope power spectrum. This
rather extensive set of features is constructed to uniquely
identify each fault condition; nevertheless, all features are not
of equal utility in classifying a given fault correctly. Moreover,
a high dimensional feature vector is bound to make the
classification process computationally more expensive. Fur-
thermore, if the feature vector contains too many redundant
or irrelevant features, it may also degrade the classifier’s
accuracy. Hence, the dimensionality of the feature vector is
reduced using feature selection methods, which prune the
high dimensional feature vector by eliminating the subop-
timal features and selecting only those, which would result
in the highest classification accuracy. These optimal features
are used to create a model of the data by training a classifier,
which is then employed to classify the unknown fault signals.

Due to its simplicity and effectiveness, 𝑘-NN is usually
the first choice in solving any classification problem. How-
ever, two factors can degrade its performance. First, 𝑘-NN
determines the similarity between two samples using only a
distance measure of similarity; the widely used distance mea-
sures are the Euclidean and Manhattan distance. Second, the
classification decision and hence accuracy are sensitive to the
neighborhood size, 𝑘. These problems have been highlighted
in Figure 1, where the classification decision for the unknown
test sample (shown as a red circle) changes with change in
the neighborhood size. The test sample is labeled as “B” if𝑘 = 3, whereas it is labeled as “A” if 𝑘 = 5. The limitations
of traditional 𝑘-NN, due to its use of distance based similarity
measure, can be overcome using the local outlier factor (LOF)
[22, 23] and local correlation integral (LOCI) [24], which are
measures of similarity, based on the density of data samples.
Hence, in this study, hybrid similarity measures (i.e., both
distance and density based) are proposed to improve the
diagnostic performance of the classical 𝑘-NN and make it
more resilient to the choice of neighborhood size, 𝑘.

The main contribution of this study is that an enhanced𝑘-NN classifier is proposed, which uses hybrid measures of
similarity between data samples to make it more resilient

to the choice of neighborhood size, 𝑘, and to increase its
diagnostic performance relative to classical 𝑘-NN. The den-
sity based similarity measure (i.e., LOF) is used to boost
the decision of classical 𝑘-NN, which classifies an unknown
sample based only upon its Euclidean distance from its “𝑘”
nearest neighbors using the majority rule. In the proposed 𝑘-
NN, when the 𝑘 nearest neighbors of an unknown sample do
not belong to the same class, then the LOF is used to decide
the class membership of the unknown simple.

The organization of the rest of the paper is as follows. In
Section 2, the fault simulator and data acquisition setup are
presented. In Section 3, the fault diagnosis scheme and the
proposed enhanced 𝑘-NN classifier are discussed in detail.
In Section 4, a discussion of the achieved results is provided,
whereas, in Section 5, conclusions of this work are provided.

2. Fault Simulator and Data
Acquisition System

The acoustic emission (AE) signals are acquired using a
machinery fault simulator, which is used to simulate different
fault conditions. The fault simulator uses cylindrical roller
element bearings (FAGNJ206-E-TVP2), which are ingrained
with cracks on its different parts. AE signals are collected
for bearings at the nondrive end of the simulator using a
wide-band acoustic sensor and a PCI-2 based data acquisition
system, which samples the AE signals at a rate of 250KHz
[25].The acoustic sensor is connected to the top of the bearing
housing and is at an approximate distance of 21.48mm from
the bearing, as shown in Figure 2. The nondrive end shaft
is connected to the drive end through a gearbox with a
reduction ratio of 1.52 : 1.

The bearings are seeded with cracks of two different sizes
(e.g., 3mm and 12mm), and these cracks are introduced
on either one or two components of the bearing to study
both single and compound bearing defects. The AE signals
recorded for bearings with 3mm cracks and for bearings with
12mm cracks are grouped into separate datasets. Moreover,
for each crack size, the AE signals are recorded at two differ-
ent shaft speeds (e.g., 300 RPMand 350 RPM).Thus, a total of
four datasets are considered, each with AE signals recorded
at a different shaft speed along with different crack sizes. The
types of single and compound bearing defects are shown in
Figure 3; they include cracks on the roller (BFR), inner race-
way (BFI), outer raceway (BFO), inner and outer raceways
(BFIO), inner raceway and roller (BFIR), outer raceway and
roller (BFOR), and both inner and outer raceways and the
roller (BFIOR). For each shaft speed, AE signal for a healthy
bearing (FFB) is also recorded.

As mentioned earlier, the AE signals are divided into 4
datasets based upon the crack size and shaft speed, as given in
Table 1. For every bearing defect, 90 AE signals are recorded;
each signal is of 5-second duration. Similarly, 90 AE signals
are recorded for the healthy bearing. Thus, every dataset
contains a total of 720 AE signals.
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Figure 2: (a) The fault simulator with a three-phase induction motor, a wide-band acoustic sensor, gearbox, and (b) a PCI-2 based system
for AE data acquisition.
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Figure 3: Different single and combined bearing faults: (a) outer raceway fault, (b) inner raceway fault, (c) roller fault, (d) outer and inner
raceway faults, (e) outer raceway and roller faults, (f) inner raceway and roller faults, and (g) inner and outer raceway and roller faults.

Table 1: Datasets for the proposed bearing fault diagnosis methodology.

Dataset Shaft speed Crack size Fault types
(Number of AE signals)

Dataset 1 300 rpm 3mm BFI BFO BFR BFIO BFIR BFOR BFIOR FFB
(90) (90) (90) (90) (90) (90) (90) (90)

Dataset 2 350 rpm 3mm BFI BFO BFR BFIO BFIR BFOR BFIOR FFB
(90) (90) (90) (90) (90) (90) (90) (90)

Dataset 3 300 rpm 12mm BFI BFO BFR BFIO BFIR BFOR BFIOR FFB
(90) (90) (90) (90) (90) (90) (90) (90)

Dataset 4 350 rpm 12mm BFI BFO BFR BFIO BFIR BFOR BFIOR FFB
(90) (90) (90) (90) (90) (90) (90) (90)
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Figure 4: The proposed methodology for bearing fault diagnosis.

3. The Proposed Methodology for
Bearing Fault Diagnosis

The proposedmethodology for bearing fault diagnosis works
in two phases, as illustrated in Figure 4. The first phase
comprises an offline process that involves feature extraction
and feature selection, which are discussed in detail in Sections
3.1 and 3.2, respectively. The offline process is used to deter-
mine the set of optimal features that would yield the highest
classification accuracy. In the second phase, an online process
is used to classify the unknownAE signals using the proposed
enhanced 𝑘-NN classifier. The online process calculates only
the optimal set of features for each AE signal and, using only
those features, it labels the unknown AE signals.

3.1. Features Extraction. In order to accurately identify each
bearing defect, a high dimensional hybrid feature vector is
constructed using 22 different features of the AE signal.These
features are useful in extractingmaximum information about
each fault [26] and include ten statistical measures of the
time-domain AE signal and three statistical measures of the
frequency domain AE signal. These features are listed in
Table 2 along with the mathematical relationships for their
calculation. Moreover, nine statistical measures, calculated
over the envelope power spectrum of the AE signal, are
also included in the hybrid feature vector. The features from
the envelope power spectrum include the root mean square
(RMS) values for each of the three defect frequencies and its
first two harmonics. The defect frequencies include the ball
pass frequency over inner race (BPFI), the ball pass frequency
over the outer race (BPFO), and the ball spin frequency (BSF).
The range of values for these defect frequencies and their
harmonics is shown in Figure 5.

The range of values for the defect frequencies and their
first two harmonics is calculated using (1), (2), and (3),
respectively.

𝑟inner = 2 × {𝑛sidebands × (𝑓𝑠 + 𝑓𝑠 × 𝑒rate) + 𝑒rate × 𝑓𝑖} , (1)𝑟outer = 2 × 𝑒rate × 𝑓𝑜, (2)𝑟roller = 2 × {𝑛sidebands × (𝑓𝑐 + 𝑓𝑐 × 𝑒rate) + 𝑒rate × 𝑓𝑟} , (3)

Table 2: Statistical measures calculated over the time and frequency
domain AE signal.

Parameter Definition

Root mean square
(RMS)

√ 1𝑁
𝑁∑
𝑖=1

𝑥2𝑖
Kurtosis value (KV)

1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥𝜎 )4
Peak-to-peak value
(PPV) PPV = max (𝑥𝑖) −min (𝑥𝑖)
Crest factor (CF)

max (󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)√(1/𝑁)∑𝑁𝑖=1 𝑥2𝑖
Shape factor (SF)

√(1/𝑁)∑𝑁𝑖=1 𝑥2𝑖(1/𝑁)∑𝑁𝑖=1 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨
Frequency center
(FC)

1𝑁
𝑁∑
𝑖=1

𝑓𝑖
RMS frequency
(RMSF)

√ 1𝑁
𝑁∑
𝑖=1

𝑓2𝑖
Square root of
amplitude (SRA) ( 1𝑁

𝑁∑
𝑖=1

√󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)
2

Skewness value (SV)
1𝑁
𝑁∑
𝑖=1

(𝑥𝑖 − 𝑥𝜎 )3
Impulse factor (IF)

max (|𝑥|)(1/𝑁)∑𝑁𝑖=1 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨
Margin factor (MF)

max (󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)
((1/𝑁)∑𝑁𝑖=1√󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨)2

Kurtosis factor (KF) 𝐾𝐹 = (1/𝑁)∑𝑁𝑖=1 ((𝑥𝑖 − 𝑥) /𝜎)4((1/𝑁)∑𝑁𝑖=1 𝑥2𝑖 )2
Root variance
frequency (RVF)

√ 1𝑁
𝑁∑
𝑖=1

(𝑓𝑖 − 𝑓𝑐)2

where 𝑛sidebands is the number of sidebands,𝑓𝑠 is the operating
frequency, 𝑒rate is the error rate, 𝑓𝑖 is the inner defect
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Figure 5: Fault frequency regions up to three harmonics at (a) inner, (b) outer, and (c) roller fault frequency.

frequency, 𝑓𝑜 is the outer defect frequency, 𝑓𝑐 is the cage
frequency, and 𝑓𝑟 is the roller defect frequency.
3.2. Feature Selection. Although a high dimensional hybrid
feature vector is highly desirable to capture the characteristics
of different types of defects, the diagnostic performance of the
proposed method can be degraded by potentially irrelevant
and redundant features.Moreover, a high dimensional feature
vector entails an increased computational cost during feature
extraction and classification, which involves the calculation
of distances and densities between different samples [25–27].
Hence, the original feature vector is evaluated to determine
the set of optimal features that would yield the best diagnostic

performance and reduce the computational cost of the
proposed method.

In this study, sequential forward selection (SFS) is used
for feature selection, which is a simple and fast greedy search
algorithm. It starts with an initially empty set, 𝑆 = 0, and then
iteratively selects the most significant feature from the origi-
nal set with respect to the set, 𝑆. This is done by first selecting
a feature from the original set and then adding it to the set, 𝑆,
only if the newly selected feature maximizes the value of the
objective function for the set, 𝑆. The feature is discarded and
the process moves to the next feature, if the selected feature
decreases the value of the objective function for the set, 𝑆.The
objective function for SFS is given by (4), which is basically
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Figure 6: The proposed 𝑘-NN classifier.

the ratio of interclass separability to intraclass compactness
[25]. The interclass separability is given by the interclass
distance 𝑑inter class, whereas 𝑑intra class is the intraclass com-
pactness. Although SFS is simple, efficient, and reasonably
accurate, it has its own disadvantages. It suffers from the
nesting problem; that is, a feature retained once cannot be
discarded, which can result in suboptimal feature selection
[28–30].

𝑓objective = 𝑑inter class𝑑intra class
. (4)

3.3. Enhanced 𝑘-NN Classification Algorithm. The traditional𝑘-NN classifier labels an unknown test sample according to
the majority of its nearest neighbors in the training set. The
nearest neighbors are determined using a distance measure,
which is mostly the Euclidean distance between two samples.
In multiclass classification problems, where the density of
each class is different, the use of a distance based measure of
similarity between the test and training samples can result in
misclassification and render the classification result sensitive
to the choice of neighborhood size, 𝑘, as illustrated in
Figure 1.This happens because traditional 𝑘-NNdoes not take
into account variation in densities across different classes.
Therefore, an enhanced 𝑘-NN classifier is proposed, which
uses both distance and density based similarity measures to
improve its classification accuracy. For a given test sample,
first its membership probabilities for different classes are
calculated. This is done through voting by its 𝑘 nearest
neighbors, which in turn are determined using the Euclidean
distance of the test sample from all the training samples. If
the membership probability for the test sample is one (i.e.,
all its nearest neighbors belong to a single class), then the
proposed 𝑘-NN classifier admits this result and labels the test
sample according to its nearest neighbors. However, if the
membership probability of the test sample is less than one,
(i.e., all the nearest neighbors do not belong to a single class),
then the LOF based density measure is used to determine the
label of the test sample. The use of LOF in conjunction with
Euclidean distance makes the classification performance, of
the enhanced k-NN, insensitive to the neighborhood size, 𝑘.

As shown in Figure 6, the proposed 𝑘-NN first calculates
the membership probabilities for the unknown test samples
using probabilistic 𝑘-NN, which uses Euclidean distance as a
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Figure 7: Classifying a test sample using the enhanced 𝑘-NN
classifier.

measure of similarity.The probabilistic 𝑘-NN does not assign
any class labels to the test samples; instead it only calculates
their membership probabilities for all the classes.

If, for each class, the membership probability of a test
sample is less than 1.0, then the output of the majority rule
is ignored and the final membership of the test sample is
determined using the LOF value, as shown in Figure 7.

3.4. Calculating the Local Outlier Factor (LOF). The local out-
lier factor (LOF) has been used for the detection of outliers or
anomalous data points [22], which have relatively lower prob-
abilities of being members of any class. An unknown sample
is classified by comparing its density with that of its neigh-
bors. Points with densities like their neighbors are classified
accordingly; that is, points with lower densities are labeled
according to their neighbors with lower densities, whereas
points with higher densities are labeled according their
neighbors with higher densities. The LOF can be calculated
as follows:

(i) First, the calculation of the distance of every data
point “𝑞” to its 𝑘th nearest neighbor (i.e., 𝑑𝑞

𝑘
is cal-

culated), for 𝑘 = 3, is illustrated in Figure 8(a).
(ii) Second, for each data point “𝑞”, its reachability dis-

tance with respect to the data point “𝑝” (i.e., 𝑑𝑞,𝑝𝑟 is
calculated) is the true distance between points “𝑝”
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(a) (b)

Figure 8: For 𝑘 = 3, calculating (a) the k-distance and (b) the reachability distance.

and “𝑞” with a minimum value of 𝑑𝑞
𝑘
, as illustrated in

Figure 8(b). It can be calculated as follows:

𝑑𝑞,𝑝𝑟 = max
𝑖
⟨𝑑𝑞
𝑘
, 𝑑𝑞,𝑝𝑟 ⟩ . (5)

(iii) Third, for each data point “𝑞”, its local reachability
density (i.e., 𝜎𝑞𝑟 is calculated) is defined as the inverse
of its average reachability distance from its “𝑀”
nearest neighbors, as given in (6). The value of “𝑀”
is set to 16, as given in Table 3:

𝜎𝑞𝑟 = 𝑀∑𝑀 𝑑𝑞,𝑝𝑟 . (6)

(iv) Finally, for each data point “𝑞”, its local outlier
factor or LOF value is determined, by comparing its
local reachability density to that of its “𝑀” nearest
neighbors using the following relation:

LOF = 1𝑀
𝑀∑
𝑝=1

𝜎𝑝𝑟𝜎𝑞𝑟 . (7)

The LOF values for all the training samples are computed
using (7) during the training phase. The unknown test
samples are classified based upon the similarity of their LOF
values to that of their neighbors.

4. Results and Discussion

In this section, a discussion of the experimental results
achieved by the proposed method for bearing fault diagnosis
is provided. As mentioned earlier, four datasets are used
to test the proposed method, details of which are given in
Table 1.Themethod uses the enhanced 𝑘-NN classifier, which
has been proposed to address the limitations of traditional𝑘-NN. The enhanced 𝑘-NN classifier was used with the
parameters given in Table 3.

Table 3: Values of various parameters for the enhanced 𝑘-NN
classifier.

Property Value
Neighborhood size for 𝑘-NN 3, 5, 7, and 9
Neighborhood size for local reachability density 16
Neighborhood size for LOF 12
Outlier threshold >2𝜎

To demonstrate the effectiveness of the proposed k-NN
classifier, the classification of inner race fault samples from
dataset 1 is illustrated in Figure 9, using both the traditional
and proposed 𝑘-NN classifiers with neighborhood sizes of 3
and 7 (i.e., 𝑘 = 3 and 𝑘 = 7).The samples shown inside the red
ellipse are to be classified; their true label is “inner race fault”
(i.e., these samples belong to the inner race fault class). How-
ever, the classification result of the traditional 𝑘-NN classifier
varies with the value of 𝑘 (i.e., for 𝑘 = 3); it correctly classifies
these samples as inner race fault samples, whereas, for 𝑘 = 7, it
classifies these as outer race fault samples, which is incorrect.
It happens because traditional 𝑘-NN uses the majority rule
to decide the class label for an unknown test sample. In this
particular case, among the nearest three neighbors of these
unknown test samples, two are inner race fault and one is
outer race fault. Hence, for the case of 𝑘 = 3, they are correctly
classified as inner race fault samples. However, among the
nearest seven neighbors of these unknown test samples, four
are outer race fault and three are inner race fault. Hence, for
the case of 𝑘 = 7, they are incorrectly classified as outer
race fault samples. In contrast, the proposed 𝑘-NN always
classifies these samples as inner race fault samples, irrespec-
tive of the size of neighborhood (i.e., the value of 𝑘).

The proposed 𝑘-NN classifier correctly classifies these
unknown test samples because it uses the LOF, which is a
density based similarity measure. LOF is used only when the
nearest neighbors of a given test sample do not belong to
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Figure 9: Classification of inner race fault samples from dataset 1 using the traditional k-NN classifier (a) with 𝑘 = 3 and (b) with 𝑘 = 7 and
using the proposed 𝑘-NN classifier (c) with 𝑘 = 3 and (d) with 𝑘 = 7.
the same class (i.e., the vote is not unanimous). Therefore,
the class membership probabilities for the unknown test
samples are determined. In this particular case, for 𝑘 = 3,
the probability that a given test sample is a member of the
inner race fault is 66.7%, and the probability that it belongs
to the outer race fault is 33.33%. Since both class membership
probabilities are less than one, the proposed 𝑘-NN classifier
employs the LOF values of the unknown test samples and
their neighbors to determine the final class labels. This is
demonstrated in Figure 10, which shows the LOF values for
the test samples and their nearest neighbors. The LOF values
of the test samples for outer race fault class are 5.09, 5.069,
and 4.979, whereas, for the inner race fault class, their LOF
values are 3.33, 3.399, and 3.192, respectively. If the LOF
values of these test samples for both the outer and inner race
fault classes are compared to the LOF values of their nearest
training samples, it can be observed that the LOF values of the
test samples for inner race fault are similar to the LOF values
of training samples from the inner race fault class. Hence, it
can be argued that these test samples are outliers to the outer
race fault class and inliers to or members of the inner race
fault class.

Similarly, when 𝑘 = 7, the probability that a given test
sample is a member of the inner race fault is 42.86%, and
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Figure 10: The classification of unknown test samples using LOF
based density similarity measure.

the probability that it belongs to the outer race fault is 57.14%.
Here again, the class membership probabilities are less than
one, and, thus, the proposed 𝑘-NN classifier employs the
LOF values of the unknown test samples and their neighbors
to determine the final class labels. Using the LOF values of
the test samples and their nearest training samples, the test
samples are classified as members of the inner race fault class.
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Table 4: Diagnostic performance of the two classifiers for different fault types and datasets.

𝑘 = ? Model BFI BFO BFR BFIO BFOR BFIR BFIOR FFB Avg. classification
accuracy (%)

Dataset 1: 300 rpm, 3mm crack

𝑘 = 3 𝑘-NN 94.65 79.50 96.42 98.53 95.67 97.08 91.67 100.00 94.19
Enhanced 𝑘-NN 95.70 87.24 98.75 99.58 96.25 99.92 93.08 100.00 96.32

𝑘 = 5 𝑘-NN 72.52 75.61 92.35 91.35 89.25 96.08 94.53 100.00 88.96
Enhanced 𝑘-NN 96.25 92.35 99.45 98.25 99.50 97.92 96.25 100.00 97.50

𝑘 = 7 𝑘-NN 98.76 78.50 97.75 96.25 90.75 94.92 87.42 99.83 93.02
Enhanced 𝑘-NN 99.05 94.56 98.65 98.96 98.42 97.56 91.56 99.89 97.33

𝑘 = 9 𝑘-NN 89.76 80.56 91.53 97.45 95.26 98.12 92.54 100.00 93.15
Enhanced 𝑘-NN 98.68 94.56 98.16 98.56 99.92 99.92 93.89 100.00 97.96

Dataset 2: 350 rpm, 3mm crack

𝑘 = 3 𝑘-NN 93.56 78.52 94.25 97.86 94.58 97.12 92.35 98.68 93.37
Enhanced 𝑘-NN 95.59 88.45 99.02 98.95 96.12 99.43 93.56 99.26 96.30

𝑘 = 5 𝑘-NN 73.48 76.53 90.89 90.75 87.62 96.89 95.42 100.00 88.95
Enhanced 𝑘-NN 96.45 93.25 98.45 98.75 98.69 96.25 95.86 100.00 97.21

𝑘 = 7 𝑘-NN 98.48 81.52 96.53 95.48 91.48 93.28 89.45 99.89 93.26
Enhanced 𝑘-NN 99.75 95.48 98.15 98.75 97.98 98.06 92.56 100.00 97.59

𝑘 = 9 𝑘-NN 94.58 84.83 94.25 96.53 94.56 97.85 92.56 100.00 94.40
Enhanced 𝑘-NN 98.65 95.69 98.75 98.45 99.05 98.45 94.12 100.00 97.90

Dataset 3: 300 rpm, 12mm crack

𝑘 = 3 𝑘-NN 97.05 86.52 98.45 98.53 96.98 97.08 93.58 100.00 96.02
Enhanced 𝑘-NN 97.45 93.56 100.00 99.58 98.46 99.92 95.26 100.00 98.03

𝑘 = 5 𝑘-NN 78.96 81.45 91.75 92.86 88.46 95.63 94.53 100.00 90.46
Enhanced 𝑘-NN 98.96 95.86 99.26 99.43 99.50 98.76 96.25 100.00 98.50

𝑘 = 7 𝑘-NN 98.76 86.46 97.75 96.25 95.36 96.46 94.85 99.83 95.72
Enhanced 𝑘-NN 100.00 98.12 100.00 99.79 99.86 98.75 96.53 100.00 99.13

𝑘 = 9 𝑘-NN 89.76 81.65 91.47 96.85 94.62 97.45 90.67 100.00 92.81
Enhanced 𝑘-NN 100.00 98.45 100.00 100.00 99.45 99.92 93.89 100.00 98.96

Dataset 4: 350 rpm, 12mm crack

𝑘 = 3 𝑘-NN 99.16 99.56 99.48 100.00 100.00 98.54 98.65 100.00 99.42
Enhanced 𝑘-NN 99.86 100.00 100.00 100.00 100.00 99.75 99.46 100.00 99.88

𝑘 = 5 𝑘-NN 89.45 80.54 93.25 92.45 90.74 95.86 98.56 100.00 92.61
Enhanced 𝑘-NN 100.00 100.00 99.86 100.00 99.94 99.75 99.46 100.00 99.88

𝑘 = 7 𝑘-NN 98.76 89.45 97.75 96.25 94.52 97.63 96.25 99.83 96.31
Enhanced 𝑘-NN 99.80 100.00 100.00 100.00 100.00 99.75 99.70 100.00 99.91

𝑘 = 9 𝑘-NN 97.84 84.25 96.57 94.56 95.26 98.12 95.68 100.00 95.29
Enhanced 𝑘-NN 100.00 100.00 99.86 100.00 99.94 99.75 99.46 100.00 99.88

Likewise, for other datasets and fault types, this is how the
proposed 𝑘-NN classifier improves the classification accuracy
of traditional 𝑘-NN. It is clearly evident in Figure 11, which
compares the performance of these two classifiers in terms
of average classification accuracy, and Table 4, which lists
the classification accuracies for each dataset and individual
fault type.Moreover, it can also be observed that the accuracy
of the proposed k-NN is not affected by the neighborhood
size, 𝑘, whereas the accuracy of traditional 𝑘-NN varies with
variations in the neighborhood size, 𝑘. It achieves amaximum
accuracy for 𝑘 = 3.

The size of the optimal neighborhood, which maximizes
the classification accuracy of traditional 𝑘-NN, has to be
determined on a case to case basis.There are no general rules
that work equally well in all situations and for all classes,
which can be challenging as it makes the whole process
computationally expensive and inflexible. The robustness of
the proposed 𝑘-NN to variations in the neighborhood size, 𝑘,
makes it more flexible and efficient to use. It delivers better
and steadier performance. Moreover, in multiclass problems
like the one considered in this study, where the densities of
different classes vary, traditional 𝑘-NN performs poorly as it
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Figure 11: Performance comparison of traditional k-NN and the proposed enhanced k-NN in terms of average classification accuracy: (a)
dataset 1, (b) dataset 2, (c) dataset 3, and (d) dataset 4.

does not consider variations in density. The proposed 𝑘-NN
takes into account variations in density of different classes
and uses the LOF to decide the class membership of test
samples in such cases.

5. Conclusion

In this paper, an enhanced 𝑘-nearest neighbor (𝑘-NN)
classification algorithm was presented, which employs both
density and distance based similarity measures to improve
the diagnostic performance in bearing fault diagnosis. The
density based similarity measure, LOF, was used to boost the
classification performance of traditional 𝑘-NN, which deteri-
orates in case of overlapping samples, outliers, and multiple
classes that show different feature distributions. Moreover,
the distance based similarity measure makes the classifica-
tion performance of traditional 𝑘-NN highly susceptible to
the neighborhood size, 𝑘. These limitations were addressed
through the use of both distance and density based similarity
metrics, between the training and test samples. Using the
enhanced 𝑘-NN classifier, the diagnostic performance of the
proposed bearing fault diagnosis scheme was significantly
improved, and the results were more robust to variations in
the neighborhood size, 𝑘.
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