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We present a novel scheme of an excellent flat-top 25GHz optical interleaver based on two ring configurations. And the Advanced
SystemsAnalysis Program (ASAP) opticalmodeling software has been utilized for the interleaver design.The optical path difference
for interference and the phase shift are provided by the interferometer with two birefringent crystals and dual-ring arrangement.
The proposed structure exhibits the passband utilization of more than 90% and the channel isolation greater than 95 dB within
the C-band. Furthermore, we improve the dispersion performance by employing 𝜆/6 wave plates as birefringent compensators for
interleavers. The research results illustrate that our proposed scheme with compensator can improve the dispersion of more than
85.8%. Comparing the performance with the previous studies of optical interleavers with birefringent crystal and ring structure,
the proposed system can achieve an excellent 25GHz multichannel filter for dense wavelength division multiplexing (DWDM)
transmission systems.

1. Introduction

Due to the growing demand for network communications
capacity, dense wavelength division multiplexing (DWDM)
[1, 2] has emerged as vital component for optical fiber net-
works. Several techniques for flexibility in all-optics dynamic
networks have been engaged in DWDM systems [3, 4]. And
how to increase the number of channels is an important
issue [5]. A spectral interleaver is capable of separating a
set of channels into two sets twice the channel spacing. An
optical interleaver has been verified as an effective technique
in increasing channel counts by doubling or quadrupling the
number of optical channels when the channel spacing is in
the range of 0.2 nm [6–8].

Conventional interleavers are based on interferometers
that employ Gires-Tournois etalons (GTEs) as a phase-
dispersion element [9, 10]. These interferometers employ a
polarization beam splitter (PBS) to split the input signal into
two beams and then recombine them at the beam splitter
by using two GTEs to provide the redirection path; these
interferometers can be Michelson interferometers or Mach-
Zehnder interferometers. When a path length difference

exists between the two interfering beams, these conventional
interleavers provide a square-like spectrum transmission
function. However, in conventional etalons involving thin
film coatings, the performance is often optimized in a small
spectral region within the C-band. They cannot carry on the
entire C-band.

To provide a uniform performance over the entire C-
band, the partial reflecting mirrors of the optical resonator
must maintain constant reflectivity over the entire C-band.
Such requirements are difficult to achieve by using con-
ventional thin-film coating technology. In this research, the
Advanced Systems Analysis Program (ASAP) [11] optical
modeling software has been utilized for the interleaver
design. The ASAP model is configured based on the actual
component parameters that compared with the actual size is
1 : 1. The greatest shortcoming of conventional interleavers is
an inferior dispersion. In this study, we propose a new scheme
of birefringent optical interleaver employing dual-ring struc-
tures including the quarter-wave (𝜆/4) plates, trapezoid
prisms, and the 𝜆/6 wave plates to improve the dispersion.

The next section presents the design procedures of a high
performance interleaver using quarter-wave (𝜆/4) plates and
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polarization optics.Then the design of an improved structure
of interleaver is illustrated.We can get a very good dispersion
improvement to employ this proposed configuration. The
simulation result is performed to evaluate the performance
of this design method in Section 3. Finally, we conclude this
paper in Section 4.

2. The Proposed Interleaver Based on
Two Ring Configurations

Figure 1 shows the schematic configuration (noncompensa-
tion) of the dual-ring structure based birefringent optical
interleaver consisting of two birefringent crystals (the length
of YVO

4
is 30mm), two trapezoid prisms (transmission

rate is 91.4% and refraction index is 1.6), a polarization
beam splitter (PBS), two 𝜆/4 wave plates, and four highly
reflective mirrors (reflectivity is 99.8%). A beam of unpo-
larized light is transmitting through the PBS, and then the
beams are directed toward the YVO

4
birefringent crystal and

the quarter-wave plate (𝜆/4 @ 45∘). The YVO
4
birefringent

crystal is used for appropriate retardance of interference.
The quarter-wave plate is employed to rotate the polarization
states of these two beams by 45 degrees. As a result, the
beams inside the birefringent crystals consist of both ordinary
and extraordinary waves, but with equal amplitudes. While
the beams propagate inside the birefringent crystals, a phase
retardation exists between these two waves at the end of the
crystals. These beams, consisting of both ordinary and extra-
ordinary waves, are then directed toward the ring structure,
as shown in Figure 1.

In both birefringent crystals (see Figure 1), the ordinary
wave corresponds to the s-wave while the extraordinary one
corresponds to the p-wave. The trapezoid prism interface of
the ring structure exhibits different Fresnel reflectivities for
these two polarization components (s- and p-) of the beam.
As a result of these different reflectivities, the two polarization
components experience further phase retardation by the
quarter-wave plate (𝜆/4 @ 45∘) after the birefringent crystal
and different phase shifts upon transmitting (or reflecting)
through the ring arrangement. Before both components of
the beam are mixed and recombined by the PBS, a phase
retardation by the birefringent crystal reoccurs again. The
birefringent crystal (YVO

4
) acts as an interferometer, and the

ring structure is configured by a prism and twomirrors (with
air in the resonator).The ring configuration, acting as aGires-
Tounois Etalon, is formed by the mirrors M

1
, M
2
andM

3
, M
4

and the prism-air interface which are aligned perpendicular-
wise to the light beams.

The prism is cut in a trapezoid-shape to provide the
appropriate angle of incidence so that the desired Fresnel
reflectivities, 𝑅

𝑜
and 𝑅

𝑒
, are obtained and 𝑅

𝑒
and 𝑅

𝑜
are the

reflectivity of the air-prism interface for the 𝑒-component
(extraordinary beam) and 𝑜-component (ordinary beam).
The normalized intensity of one of the output ports can be
expressed as follows [13–15]:

𝐼
1
=
𝐼
0

2
[1 + cos(4𝜋

𝜆
Δ𝑛𝐿 + (𝜙

𝑒
− 𝜙
0
))] , (1)

where 𝐼
0
is the intensity of the unpolarized incident beam

and 𝐿 is the length of the two birefringent crystals, 𝜙
𝑒
and

𝜙
𝑜
are the phase shifts of the beam upon reflection from

the ring structure, and (Δ𝑛 = 𝑛
𝑒
− 𝑛
𝑜
) is the refractive

index difference of 𝑛
𝑒
and 𝑛

𝑜
. The channel isolation of the

interleaver with the dual-ring structure is near 95 dB, and the
calculated results of the stopband and channel isolation of a
25GHz channel spacing application, odd channels and even
channels of partial C-band, are shown in Figures 2(a) and
2(b), respectively. In Figure 2, the 25 dB stopband was found
to be 0.173 nm (21.625GHz) and a 0.5 dB wide passband
of 0.156 nm (19.5GHz); hence, we can reach the passband
utilization of 90.17% (=0.156 nm/0.173 nm × 100%). And the
channel isolation of the interleaver is greater than 95 dB. The
higher passband utilization means that the output was closer
to square wave results. The more close to a square wave out-
put, the better the performance of interleaver. These results
clearly indicate that an interleaver with a ring structure can
provide a wide 0.5 dB passband and a good 25 dB stopband.

3. Optimal Design of Improved Dispersion
Interleaver by Compensators

Chromatic dispersion compensation is the most deserving
progress in this study. This interleaver with improved dis-
persion compensation is shown in Figure 3. The polarization
azimuth angle of the birefringent crystal [16–19] is obtained
by employing 𝜆/4wave plates (𝜆/4 @ 45∘) and 𝜆/6 wave plates
(𝜆/6 @ 30∘). The phase shifts of 𝜆/4wave plates and 𝜆/6wave
plates can be expressed as (2) and (3), respectively:

𝑤1
 =
𝑅 (−𝜓)𝑤0𝑅 (𝜓)
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(3)

where𝑤
1
and𝑤

2
are the round-trip phase shift inside the ring

structure of 𝜆/4wave plates and 𝜆/6wave plates, respectively.
𝑅(𝜓) is the coordinate rotation matrix and 𝑤

0
is the Jones

matrix depending on the retarder plates.
The output group delay after compensation can be viewed

as the average group delay from two modes, 𝜏(𝜔) = [𝜏
𝑒
(𝜔) +

𝜏
0
(𝜔)]/2, where 𝜔 = 2𝜋𝑐/𝜆 is the optical angular frequency

and can be demonstrated as

𝜏 (𝜔) =
𝑇

2
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Figure 1: A schematic drawing of a 25GHz channel spacing interleaver based on two ring configurations.
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Figure 2: The transmission of a 25GHz interleaver, passband utilization of 95.49%: (a) output port 1 (partial odd channels) and (b) output
port 2 (partial even channels) of C-band.
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Figure 3: The ASAP layout of improved dispersion configuration.

× (1 + [
𝑅
𝑒

(𝑤2
1
+ 𝑤3
2
)
]

−2[
𝑅
𝑒

(𝑤2
1
+ 𝑤3
2
)
]

1/2

cos [(4𝜋
𝜆
) 𝐿
𝑅
])

−1

}

}

}

.

(4)

In (4), 𝐿
𝑅
is the round-trip optical path of the ring structure,

𝑇 = 𝐿
𝑅
/𝑐 is the round-trip time, and 𝜆 = 𝑐/]. Both 𝑤

1
and

𝑤
2
are the transmission matrixes of 𝜆/4 wave plates and 𝜆/6

wave plates, respectively. After the dispersion is compensated,
the configuration as shown in Figure 3, the group velocity
dispersion (GVD) is given by𝐷(𝜆) = 𝑑𝜏/𝑑𝜆 [ps/nm] and can
be expressed as follows:
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Figure 4 shows the path of the ring cavity which is con-
figured by a trapezoid prism and two mirrors. The incident
light hits trapezoid prism at a perpendicular angle and total
reflects by the second surface, and finally transmits through
the first surface of prism perpendicular again. In Figure 4,
𝜃
1
and 𝜃

2
are the incident and transmitted angles at third

surface, and 𝑛
1
and 𝑛

2
are the reflective indices of prism and

air, respectively. At the prism-air surface, the different Fresnel
reflectivities for ordinary wave and extraordinary wave (s-
and p-polarization components) can be presented by [6]
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According to (1) and (5), calculated by the simulation
software ASAP, we can get normalized intensity of the output
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Figure 4: Optical path between the prism and air schematic chart.
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Figure 5: The simulation result of the flat-top ripple in a 25GHz
channel spacing.

channels and their chromatic dispersion. In this study, the
optimum incident angle 𝜃

1
is about 34.5∘. At this angle

of incidence, the reflectivities of the flat-top bandwidth
interleaver are about 𝑅

𝑜
= 17.01% and 𝑅

𝑒
= 8.39%.

And the ripple of output power intensity of the 25GHz
channel spacing is 0.227397×10−9 dB (see Figure 5). Figure 6
shows that the dispersion comparison of a 25GHz channel
spacing of partial C-band with- and without-compensation.
The research results illustrate that our modified scheme
can improve the dispersion of more than 85.8% (=(1524.3–
215.93)/1524.3).The effect of improved dispersion of a 25GHz
interleaver can be observed, as shown in Figure 7.The optical
intensities of without-compensating and with-compensating
schemes are 0.546 a.u. and 0.936 a.u., respectively. The eye
diagrams for 10Gb/s application of with-compensation and
without-compensation by pseudorandom binary sequence
(PRBS) (231-1) have beenmeasured, as shown in Figure 8.The
research results are compared with other related issues such
as a ring-cavity architecture system [6, 12] and using Gires-
Tournois etalons as phase dispersive mirrors in a Michelson
interferometer system [9] (see Table 1).

4. Conclusions

We have analyzed a flat-top 25GHz optical interleaver based
on a dual-ring architecture with fewer components. Com-
pared to previous studies, our interleaver exhibited a 0.5 dB
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Figure 6: The chromatic dispersion comparison between with-
compensation and without-compensation of a 25GHz channel
spacing of partial C-band.
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Figure 7: The optical intensity comparisons of a 25GHz chan-
nel spacing: the calculated intensities are 0.936 a.u. of with-
compensation and 0.546 a.u. of without-compensation.

passband larger than 0.156 nm (19.5 GHz), a 25 dB stop-
band greater than 0.173 nm (21.625GHz), a channel isolation
greater than 95 dB, and an excellent flat-top ripple, which is
smaller than 0.227 × 10−9 dB. The benefit of this interleaver
is that it utilizes the Fresnel principle to achieve precise
reflectivity. Unlike dielectric mirrors with thin-film coatings,
the reflectivities of the Fresnel reflection are insensitive to
wavelength variations in the transmission band. Uniform
reflectivities are essential to ensure the same performance
over the entire C-band. In particular, the novel interleaver
can simultaneously produce an excellent performance of
chromatic dispersion which can achieve an improvement of



6 Mathematical Problems in Engineering

0 10.5
Time (bit period)

Eye diagram analyzer

800

600

400

200

0

A
m

pl
itu

de
 (a

.u
.)

(a)

0 10.5
Time (bit period)

Eye diagram analyzer

800

600

400

200

0

A
m

pl
itu

de
 (a

.u
.)

(b)

Figure 8: The eye diagrams by PRBS 231-1 for 10Gb/s application (a) with-compensation and (b) without-compensation.

Table 1: The characteristics comparison of interleaver systems.

Characteristics System type
Lee et al. [6] Lee et al. [12] Hsieh et al. [9] This work

Filter channel spacing 25GHz 25GHz 50GHz 25GHz
Structure technique Sagnac interferometer and ring cavity Ring cavity Gires-Tournois etalons Two-ring cavity
Channel isolation (dB) 45 >36 30 95
0.5 dB passband (nm) 0.182 >0.145 0.35 0.156
25 dB stopband (nm) 0.155 >0.145 0.32 0.173
Flat-top ripple (dB) <10−3 ∼10−3 NA 0.227 × 10−9

85.8%when wemodify the interleavers structure by 𝜆/6wave
plates.This unique interleaver is suitable for capacity upgrade
in DWDM and FTTx applications.
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