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Inspired by the life cycle and survival of the fittest and combined with the consideration of living space information, a new
computational intelligence approach, namely, living space evolution (LSE), is presented. LSE has reflected two new ideas. One
is living space evolution: under the guidance of living space information, the offspring of life concentrate and evolve continuously
towards richer living spaces.The other ismultiple offspring reproduction: simulating real life in nature, a life can reproducemultiple
offspring within one generation. In this work, LSE dynamic model, its flow, and pseudocodes are described in detail. A digital
simulation has shown the procedure of LSE living space evolution. Furthermore, two applications of using LSE are employed to
demonstrate its effectiveness and applicability. One is to apply it to the optimization for continuous functions, and the other is to
use it as an optimization tool for routing protocol in wireless sensor network that is a discrete problem in real world. Research has
shown that LSE is effective for the optimization for the continuous functions and also applicable for the discrete problem in real
world. In addition, LSE has a special ability to balance search process from exploration to exploitation gradually.

1. Introduction

Bioinspired computation [1, 2] opens up a new way for
computational intelligence [3–5]. The basic idea of bioin-
spired computation is to seek inspiration and methods of
problem solving from the natural biological systems. Under
the guidance of bioinspired ideas, a series of approaches of
computational intelligence have been created successively,
including artificial neural networks, evolutionary computa-
tion, swarm intelligence techniques, and artificial immune
systems.These approaches imitate biological neural structure
and various behaviors, numerous applications of which [6–9]
have proved their effectiveness and reliability.

Bioinspired computation is an active area of computer
science [1] and tries to simulate some characteristics of
biological systems in nature from the following aspects.

(1) Mimic Biological Neural Structure: Artificial Neural Net-
work. Artificial neural network (ANN), firstly reported
by Warren McCulloch and Walter Pitts with the idea of
mathematically simulating biological neural structures, is
multi-input and multioutput computing system made up of

a number of simple and highly interconnected processing
elements known as neurons, which processes information by
its dynamic state response to external inputs. The advantage
of ANN is that complex nonlinear relationships can be easily
handled even when the exact nature of such behavior is not
well defined [10].

(2) Mimic the Process of Biological Evolution: Evolutionary
Computation. Evolutionary computation (EC) is produced
based on principles of biological evolution, such as natural
selection and genetic inheritance [11, 12]. While efficient
utilization of computational resources is increasing, EC is
making rapid progress, and its social recognition and need
as applied technology are increasing [13–16]. Today, there are
a variety of algorithms involved in EC. Among them, the four
well-known EC variants are evolutionary programming (EP),
evolution strategy (ES), genetic algorithm (GA), and genetic
programming (GP).

In addition, a new evolutionary algorithm (EA), namely,
Backtracking Search Optimization Algorithm (BSA), is very
recently developed by Civicioglu in 2013 [17]. Unlike many
search algorithms, BSA has a single control parameter and a
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simple structure. BSA’s strategies for generating trial popula-
tions and controlling the amplitude of the search-direction
matrix and search-space boundaries give it very powerful
exploration and exploitation capabilities. BSA seems to be
very promising [18].

(3) Mimic Biological Swarm Behaviors: Swarm Intelligence.
Swarm intelligence [19, 20], inspired by the behaviors of some
social living beings such as bird flocks and fish schools and
colonies of ants, termites, bees, and wasps, is a discipline
that deals with natural and artificial systems composed
of many individuals that coordinate their activities using
decentralized control and self-organization [21]. The most
well-known swarm intelligence techniques include particle
swarm optimization (PSO) [22, 23], ant colony optimization
(ACO) [24, 25], and artificial bee colony algorithm (ABC)
[26].

(4) Mimic Biological Immune System: Artificial Immune Sys-
tem. Artificial immune system (AIS), inspired by the biolog-
ical immune system, is an emerging kind of computational
paradigms that belong to the computational intelligence
family. The work in the field of AIS was initiated by Farmer
[27]. In their research, a dynamic model of the immune
system that was simple enough to be simulated on a computer
where the antibody-antibody and antibody-antigen reactions
are simulated via complementarymatching strings was intro-
duced [28].

As introduced above, the primary approaches of bioin-
spired computation are inspired from some the character-
istics of the biological systems in nature such as different
biological behaviors or structures, but they have a common
drawback in that they usually neglect the biological living
condition. Throughout the life phenomena in nature, life
cycle and survival of the fittest as timeless, constant, and
universal natural laws are two basic survival rules for life’s
individual and colony. Following these rules, lives living on
the earth reproduce offspring from generation to generation
and are born again and again for hundreds of millions of
years. However, by careful analysis, we know that lives cannot
live without a certain biological living condition. Therefore,
biological living condition is an essential factor for life’s living
and evolution. Here, biological living condition is referred
to as living space information. In this paper, computer and
program are employed to simulate the principles of life cycle
and survival of the fittest, combined with the consideration
of living space information, so as to establish a new crowd
based computational intelligence approach, namely, living
space evolution (LSE). LSE has reflected two new ideas.
One is living space evolution: under the guidance of living
space information, the offspring of life concentrate and
evolve continuously towards richer living spaces.The other is
multiple offspring reproduction: a life can reproducemultiple
offspring within one generation, which stimulates real lives in
nature.

The rest of the paper is organized as follows. LSE dynamic
model is set up in Section 2. Section 3 gives the description
of LSE algorithm in detail. Digital demonstration in Section 4

illustrates the procedure of LSE. Examples for LSE’s applica-
tion are presented in Section 5. Finally, conclusions are drawn
in Section 6.

2. LSE Dynamic Model

Life is cyclic, which is a natural law. Life cycle has two
meanings. The first is that the lifetime of a life is limited. The
second is that the life has the ability to reproduce offspring
under certain conditions. On the other hand, life must obey
the rule of survival of the fittest which is another natural law
in order to continue to be alive on the earth. Subject to these
two laws, the life’s significance is that it looks for richer places
on the earth and captures adequate nutrition then survives
and reproduces. Here richer placesmean the places where life
has better biological living condition. Here, biological living
condition is referred to as living space information.

In nature, each life’s lifetime is different, and its process
of reproducing offspring is different too. For the ease of
simulation, a simplified dynamic model is extracted from the
two principles of life cycle and survival of the fittest and from
the combination with the consideration of life’s living space
information, which is named as living space evolution (LSE),
as shown in Algorithm 1.

From Algorithm 1, we can see that there are five assump-
tions in the LSE dynamic model.

(1) A life acquires nutrition in its living space or subspace.

(2) A life that captures adequate nutrition survives; oth-
erwise, it dies.

(3) One surviving life can reproduce multiple offspring
at the same time. After reproducing one generation of
offspring, the parental life dies immediately.

(4) The offspring inherit and share their parental living
subspaces only.

(5) All lives reproduce offspring in a synchronous man-
ner.

From the LSE dynamic model, we can know that its
running process can be described as follows: life reproduces
its multiple offspring from generation to generation, but only
the offspring that capture adequate nutrition in their living
spaces can survive; other offspring with their living spaces
are eliminated. By this way, life’ living spaces continually
evolve. In other words, in order to survive, the offspring of
life concentrate and evolve continuously towards the richer
living spaces for ever and never stopped.

3. Description of LSE Algorithm

3.1. Basic Concepts. First of all, the following concepts should
be defined in order to describe LSE algorithm.

Definition 1 (life). Life is an abstract entity. Living space
and living condition, here, namely, nutrition, are the two
basic surviving elements that life depends on. Life’s spatial
coordinates are defined at the midpoint in its living space.
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Step 1. Initialization
Set initial swarm of life.
Set initial living space.

Step 2. Divide the initial living space to each life in the initial swarm of life, namely, assign living space for each life.
Step 3. Each life gets nutrient in its living space.
Step 4. For each life, do:
{

Step 4.1. Acquires nutrition in its living space.
Step 4.2.The life that capture adequate nutrition survives, otherwise dies.
Step 4.3.The surviving life reproduces its multiple offspring in its living spaces.
Step 4.4.The offspring inherit and share their parental life’s living spaces, namely, assign living subspace for each offspring.
Step 4.5.The parental life die after reproduction.
Step 4.6. Each offspring gets nutrient in its living subspace.
}

Step 5. For each offspring, do:
{

Step 5.1.The offspring that capture adequate nutrition survives, otherwise dies.
Step 5.2.The surviving offspring reproduces its multiple new offspring in its living subspaces.
Step 5.3.The new offspring inherit and share their parental offspring’s living subspaces, namely, assign living subspace for each
new offspring.
Step 5.4.The parental offspring die after reproduction.
Step 5.5. Each new offspring gets nutrient in its living subspace.
}

Step 6. Go to Step 5

Algorithm 1: LSE dynamic model.

Definition 2 (living space). Living space denotes the spatial
range where a life is located in. Life monopolizes its living
space. When life reproduces offspring, its offspring inherit
and share its living space.

Definition 3 (nutrition). Nutrition represents the resource
that life depends on. Here, the size of nutrition is supposed
to be a fixed distribution in living space.

Definition 4 (threshold nutrition). Threshold nutrition is
defined as a basic amount of nutrition; a life that acquires
nutrition bigger than or equal to threshold nutrition survives;
otherwise, it dies.

Definition 5 (richer living space). Richer living space stands
for the living space with richer nutrition. There are two
cases: for maximum optimizations, richer living space means
the living space with bigger fitness, whereas, for minimum
optimizations, it means the living space with smaller fitness.

3.2. Basic Assumptions. To create LSE algorithm, the follow-
ing assumptions should be introduced too.

Assumption 1 (reproduction). When the acquired nutrition
is bigger than or equal to the threshold nutrition, life can
reproduce offspring, whereas if the acquired nutrition is
smaller than the threshold nutrition, life cannot reproduce
offspring.

Assumption 2 (asexual reproduction). Life reproduces off-
spring by asexual means.

Assumption 3 (multiple offspring reproduction). One life can
reproduce multiple offspring within one generation.

Assumption 4 (inheritance and share). Offspring inherit and
share their parental life’s living space. But the living space
where life cannot reproduce offspring will be naturally dis-
carded because no offspring can inherit and share the living
space.

Assumption 5 (survival of the fittest). When acquiring nutri-
tion bigger than or equal to the threshold nutrition, life
survives and reproduces offspring; otherwise, life dies imme-
diately.

Assumption 6 (life cycle). There are two cases for life’s
termination. Life dies immediately while acquiring nutrition
smaller than threshold nutrition or dies immediately after
reproducing one generation’s offspring.

Assumption 7 (nutrition calculation). The size of nutrition
in living space is supposed to be a fixed distribution and
calculated bymeans of its distribution functionmarked as𝑓()
with coordinates at midpoint in the living space.

3.3. Flow of LSE Algorithm. Based on the concepts defined
and the assumptions introduced above and according to the
LSE dynamic model in Algorithm 1, we can get the flow of
LSE algorithm that is described in Algorithm 2.

In Algorithm 2, Step 1 finishes initialization for LSE algo-
rithm, including setting the number of lives in initial swarm



4 International Journal of Distributed Sensor Networks

Step 1. Initialization.
Set the number of lives in initial swarm of life;
Set the scope of initial living space;
Set the number of offspring reproduced by each surviving life;
Set nutrition distribution function 𝑓().
Set the maximum number of reproduction generations;

Step 2. Divide uniformly the initial living space to each life in the initial swarm of life, namely, assign uniformly living space for
each life.
Step 3. Each life acquires nutrition in its living space, which is calculated by nutrition distribution function 𝑓() with coordinates
at midpoint of its living space.
Step 4. For each life, do:
{

Step 4.1. Calculate threshold nutrition that is equal to the average of nutrition acquired by all lives at present.
Step 4.2.The lives that acquire nutrition bigger than or equal to threshold nutrition survive, otherwise die.
Step 4.3.The surviving lives reproduce multiple offspring in their living spaces.
Step 4.4.The offspring inherit and share uniformly their parental life’s living spaces, namely, assign uniformly living subspace
for each offspring.
Step 4.5.The parental life dies after reproduction.
Step 4.6. Each offspring acquires nutrition in its living subspace, which is calculated by nutrition distribution function 𝑓() with
coordinates at midpoint of its living subspace.
}

Step 5. Judge whether the maximum number of reproduction generations is reached. If reached, go to Step 8.
Step 6. For each offspring, do:
{

Step 6.1. Calculate threshold nutrition that is equal to the average of nutrition acquired by all offspring at present.
Step 6.2.The offspring that acquire nutrition bigger than or equal to threshold nutrition survive, otherwise die.
Step 6.3.The surviving offspring reproduce its mutiple new offspring in its living subspaces.
Step 6.4.The new offspring inherit and share uniformy their parental offspring’s living subspaces,
namely, assign uniformly living subspace for each new offspring.
Step 6.5.The parental offspring die after reproduction.
Step 6.6. Each new offspring acquires nutrition in its living subspace, which is calculated by nutrition distribution function 𝑓()

with coordinates at midpoint of its living subspace.
}

Step 7. Go to Step 5
Step 8.The end

Algorithm 2: Flow of LSE algorithm.

of life, the ranges of initial living spaces, the number of off-
spring reproduced by each surviving life, and the maximum
number of reproduction generations and giving the nutrition
distribution function 𝑓(). Step 2 assigns uniformly living
space for each life. In Step 3, each life acquires nutrition in
its living space, calculated by nutrition distribution function
𝑓() with coordinates at midpoint of its living space.

Step 4 enters a loop for each life, in which Step 4.1

calculates threshold nutrition that is equal to the average
of nutrition acquired by all lives at present. In Step 4.2,
the lives that acquire nutrition bigger than or equal to the
threshold nutrition survive; otherwise, they die. In Step
4.3, the surviving lives reproduce its multiple offspring in
their living spaces. In Step 4.4, the offspring inherit and
share uniformly their parental life’s living spaces; namely,
they assign uniformly living subspace for each offspring. In
Step 4.5, the parental life dies after reproduction. In Step
4.6, each offspring acquires nutrition in its living subspace,
which is calculated by nutrition distribution function 𝑓()

with coordinates at midpoint of its living subspace.

Step 5 judges whether the maximum number of repro-
duction generations is reached. If it is reached, go to Step 8

that ends the LSE algorithm.
Step 6 enters a loop for each offspring, in which its

procedures and operations are same as Step 4. Step 7 goes to
Step 5. Step 8 is the end of the LSE algorithm.

We need to pay special attention to the fact that Steps
4 and 6 accomplish living space evolution and multiple
offspring reproduction, respectively. On the one hand, within
the course of living space evolution, a portion of lives with
their living spaces are eliminated.On the other hand,multiple
offspring reproduction can continuously supplement fresh
lives in order to maintain a certain number of ones. There-
fore, multiple offspring reproduction is the prerequisite and
guarantee for achieving living space evolution.

3.4. Implementation of LSE Algorithm. Pseudocodes of LSE
algorithm are summarized as shown in Pseudocode 1.

In Pseudocode 1, for ease of computer programing, the
number of lives in initial swarm is set to be equal to 𝑁

𝑛 and
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Step 1. Initialization
Set initial 𝑛-dimensional living space as 𝑈 = {𝑥

𝑖
| 𝑎
𝑖
≤ 𝑥
𝑖
≤ 𝑏
𝑖
}, 𝑖 = 1, . . . , 𝑛, 𝑛 ∈ 𝑁

+

Set the number of lives in initial swarm equal to𝑁
𝑛,𝑁 ∈ 𝑁

+, 𝑛 is the number of dimensions of living space.
Set the number of offspring reproduced by each surviving life equal to𝑁next

𝑛,𝑁next ∈ 𝑁
+, 𝑛 is the number of dimensions of living

space.
Set the nutrition distribution function in living space equal to 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑎
𝑖
≤ 𝑥
𝑖
≤ 𝑏
𝑖
, 𝑖 = 1, . . . , 𝑛, 𝑛 ∈ 𝑁

+

Set the adjustment coefficient 𝑐 = 1

Set the initial value of present reproduction generation 𝑡 = 1

Set the maximum number of reproduction generations equal to 𝑇

Step 2. Share living space
Set the coordinates of lives in 𝑖th dimensional living space marked as 𝑝

𝑖𝑗
.

𝑝
𝑖𝑗
= (𝑥
𝑖
| 𝑎
𝑖
≤ 𝑥
𝑖
≤ 𝑏
𝑖
), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑁

Set the interval of sharing evenly 𝑖th dimensional living space marked as 𝜎
𝑖
.

𝜎
𝑖
= (𝑏
𝑖
− 𝑎
𝑖
)/𝑁 /∗ Interval of sharing uniformly 𝑖th dimensional living space ∗/

Set 𝑝
𝑖𝑗
= 𝑎
𝑖
+ (1/2)𝜎

𝑖
| 𝑗 = 1 and 𝑝

𝑖(𝑗+1)
= 𝑝
𝑖𝑗
+ 𝜎
𝑖
| 𝑗 ≥ 1 /∗ Relationship of coordinates of lives in 𝑖th dimensional living space.

The coordinate range of each life in 𝑖th dimensional living subspace is [𝑝
𝑖𝑗
− (1/2)𝜎

𝑖
, 𝑝
𝑖𝑗
+ (1/2)𝜎

𝑖
], and its length is 𝜎

𝑖

∗/
Where 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑁

Step 3. Acquire nutrition
Calculate 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) for all lives with coordinates at midpoints in their living subspaces.

Step 4. Calculate threshold nutrition
Set threshold nutrition marked 𝜃.
𝜃 = 𝑐 ∗ (∑𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)/𝑁
𝑛

) /∗ Calculate threshold nutrition, which is defined as an average of all 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)multiple 𝑐 ∗/

Step 5. Survival of the fittest
For each life
If 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥ 𝜃 /∗ Compare 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) with 𝜃

∗/
Write its coordinates and nutrition [𝑝

𝑖𝑗
, 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)] into a (𝑛 + 1)-dimensional linked list Linkedlist1 /∗ Surviving lives

are recorded in Linkedlist1, while other lives are dead, which are not recorded into Linkedlist1. ∗/
End if
End for
Set the length of Linkedlist1 marked as 𝐿

1
.

Calculate 𝐿
1
from Linkedlist1.

Step 6. Output and Exit loop
If 𝑡 ≥ 𝑇

Search the maximum of 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) from Linkedlist1 and output its coordinates and nutrition [𝑝

𝑖𝑗
, max𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)]

Output “Maximum number of reproduction generations is reached. Exit loop.”
Exit
End If
Step 7. Reproduction
Step 7.1. Inherit and share living space
Set the number of offspring reproduced by each surviving life equal to𝑁next

𝑛 /∗The coordinate range of offspring in 𝑖th dimensional
living space, inherited form their parent, is [𝑝

𝑖𝑗
− (1/2)𝜎

𝑖
, 𝑝
𝑖𝑗
+ (1/2)𝜎

𝑖
], and its length is 𝜎

𝑖
. ∗/

For 𝑘 = 1 : 𝐿
1

Read 𝑝
𝑖𝑗
from Linkedlist1 /∗ Lives recorded in Linkedlist1 reproduce offspring. ∗/

Set the interval of sharing evenly 𝑖th dimensional living space marked as 𝜌
𝑖

𝜌
𝑖
= 𝜎
𝑖
/𝑁next /

∗ Interval of sharing uniformly 𝑖th dimensional living space ∗/
Set 𝑝
𝑞𝑖𝑗

= 𝑝
𝑖𝑗
− (1/2)𝜎

𝑖
+ (1/2)𝜌

𝑖
| 𝑞 = 1 and 𝑝

(𝑞+1)𝑖𝑗
= 𝑝
𝑞𝑖𝑗

+ 𝜌
𝑖
| 𝑞 ≥ 1 /∗ Relationship of coordinates of offspring in 𝑖th dimensional

living space. The coordinate range of each offspring in 𝑖th dimensional living subspace is [𝑝
𝑞𝑖𝑗

− (1/2)𝜌
𝑖
, 𝑝
𝑞𝑖𝑗

+ (1/2)𝜌
𝑖
], and its

length is 𝜌
𝑖
. ∗/

Where, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑁, 𝑞 = 1, 2, . . . , 𝑁next
End For
Step 7.2. Acquire nutrition
Calculate 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) for all offspring with coordinates at midpoints in their living subspaces, and write [𝑝

𝑞𝑖𝑗
, 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)]

into a (𝑛 + 1)-dimensional linked list Linkedlist2
Step 7.3. Calculate threshold nutrition
Set the length of Linkedlist2 marked as 𝐿

2
.

𝐿
2
= 𝑁next

𝑛

𝐿
1
/∗ Length of Linkedlist2 ∗/

𝜃 = 𝑐 ⋅ (∑𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)/𝐿
2
) from Linkedlist2 /∗ Calculate threshold nutrition from Linkedlist2, which is defined an

average of all 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)multiple 𝑐 ∗/

Step 7.4. Survival of the fittest
For each offspring
If 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥ 𝜃 /∗ Compare 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) with 𝜃

∗

/

Pseudocode 1: Continued.
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Write its coordinates and nutrition [𝑝
𝑞𝑖𝑗
, 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)] into a (𝑛 + 1)-dimensional linked list Linkedlist3 /∗ Surviving

offspring are recorded in Linkedlist3, while other offspring are dead, which are not recorded into Linkedlist3. ∗/
End if
End for
Set the length of Linkedlist3 marked as 𝐿

3
.

Calculate 𝐿
3
form Linkedlist3.

Step 8. Life cycle
Set 𝑡 = 𝑡 + 1

Linkedlist2 =𝑁𝑢𝑙𝑙 /∗ Parents of the offspring are naturally dead. Their coordinates and nutrition information are lost
naturally in the algorithm. ∗/
Linkedlist1 =𝑁𝑢𝑙𝑙 /∗ Now all data of parents are of insignificance ∗/
Linkedlist1 = Linkedlist3 /∗ Surviving offspring become parents for next generation ∗/
𝐿
1
= 𝐿
3
/∗ Length of linked list for next generation ∗/

𝜎
𝑖
= 𝜌
𝑖
/∗ Interval of sharing uniformly 𝑖th dimensional living space for next generation ∗/

Step 9. Loop
Go to Step 6 /∗ Loop ∗/

Pseudocode 1: Pseudocodes of LSE algorithm.

the number of offspring reproduced by each surviving life is
set to be equal to𝑁

𝑛

next, where 𝑛 is the number of dimensions
of living space and a lot of simulations have proved that this is
feasible. In addition, offspring inherit and share their parental
life’s living space and are to be set to be uniformly distributed
in the living space.

The software codes of the LSE algorithm are implemented
in C# on the platform of Visual Studio 2008.

3.5. Output of LSE Algorithm. Theoutput of LSE algorithm in
Pseudocode 1 is the maximum of function 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and its coordinates at last generation.
If the optimality of all generations is going to be output,

we can easily improve the LSE algorithmby adding a function
that could output the optimality of each generation and then
compare them to get the optimality of all generations. But,
in general, the optimality at last generation could represent
the optimality of all generations, because the living space of
the later generation is more superior to that of the previous
generation.

It should be noted that if the comparison statement
𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥ 𝜃 is turned into 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ 𝜃

in Pseudocode 1, the output of LSE algorithm will become
to output the minimum of function 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) and its

coordinates at the last generation.

4. Demonstration of LSE

By using the following example, the procedure of LSE is going
to be digitally demonstrated.

4.1. Function and Parameter Setting. The following function
is employed to demonstrate the procedure of LSE:

𝑓 (𝑥, 𝑦) = −10 (0.2𝑥 − 𝑥
3

− 𝑦
5

) exp (−𝑥2 − 𝑦
2

) − (
1

3
)

⋅ exp (− (1 + 𝑥)
2

− 𝑦
2

) + 3 (1 − 𝑥)
2

⋅ exp (−𝑥2 − (1 + 𝑦)
2

) .

(1)

2
1

0
−1

−2

2
1 0 −1

−2

−8
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0

4

8

y-axis x-axis

z
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s

Figure 1: Graph of two-dimensional function.

Table 1: Parameter setting of two-dimensional function.

𝑎
1
, 𝑎
2

𝑏
1
, 𝑏
2

𝑛 𝑁 𝑁next 𝑐 𝑡 𝑇

−3 3 2 4 2 1 1 10

The scope of variables, namely, initial living space, is −3 ≤

𝑥 ≤ 3, −3 ≤ 𝑦 ≤ 3.The objective is to calculate theminimum
of 𝑓(𝑥, 𝑦). The graph of the function is shown in Figure 1.

Parameter setting is shown in Table 1.

4.2. Procedure of LSE . Procedure of LSE for the function
from the first generation to the tenth generation is shown in
Figure 2. It is noted that, in Figure 2, each blue line visually
represents each life, one end of which stands for the position
of the life located in its living space, while the other end stands
for the size of nutrition acquired by the life.

In this demonstration, in order to calculate the minimum
of the function, the comparison statement𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥

𝜃 in LSE algorithm should be turned into 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤
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Figure 2: Continued.
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Figure 2: Continued.
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Figure 2: Processes of LSE for the function from the first generation to the tenth generation, where each blue line visually represents each life,
one end of which stands for the position of the life located in its living space, while the other end stands for the size of nutrition acquired by
the life. (a) The first generation data; (b) the first generation survival data; (c) the second generation data; (d) the second generation survival
data; (e) the third generation data; (f) the third generation survival data; (g) the fourth generation data; (h) the fourth generation survival
data; (i) the fifth generation data; (j) the fifth generation survival data; (k) the sixth generation data; (l) the sixth generation survival data; (m)
the seventh generation data; (n) the seventh generation survival data; (o) the eighth generation data; (p) the eighth generation survival data;
(q) the ninth generation data; (r) the ninth generation survival data; (s) the tenth generation data; (t) the tenth generation survival data.

𝜃; by this way, the output of LSE algorithm is the minimum
of the function and its position.

Figure 2(a) shows the first generation data, where all the
lives (here, 𝑁 = 4, 𝑛 = 2, so the total number of lives is
equal to 𝑁

𝑛

= 4
2

= 16) are set to be uniformly distributed
in the living space. Figure 2(b) shows the first generation
survival data, where some of the lives are discarded after
the operation of the survival of the fittest. Figure 2(c) shows
the second generation data, where each life reproduces four
offspring (here,𝑁next = 2, 𝑛 = 2, so the number of offspring
reproduced by each life is equal to 𝑁

2

next = 4) and the
four offspring are set to be distributed uniformly in each life
subspace too. The rest of the figures (Figures 2(d)–2(t)) can
be done in the same manner.

It is observed from Figure 2 that the living spaces of off-
spring are gradually moving closer and closer to the position
where the minimum of 𝑓(𝑥, 𝑦) is located as the generation is
increased, which means that Figure 2 has demonstrated the
procedure of LSE; namely, the life’s living spaces can evolute
to the richer living spaces. In this demonstration, we should

note that we want to calculate theminimumof𝑓(𝑥, 𝑦), which
means the richer living space is the living space where the
value of function is smaller.

The above procedure of LSE could also be simply
expressed as a graphical abstract shown in Figure 3, which
is a continuously evolving result from the first generation to
the tenth generation.

Why can the life’s living spaces evolve to the richer spaces?
The reasons can be explained as follows. Firstly, in LSE
algorithm, the lives that acquire nutrition bigger than or equal
to the threshold nutrition survive, and their living spaces
are inherited by their offspring and therefore preserved. In
contrast, the lives that acquire nutrition smaller than the
threshold nutrition die and their living spaces immediately
disappeared. Here, richer living space stands for the living
space with richer nutrition. Secondly, a life could reproduce
multiple offspring, which could on the one hand supplement
fresh lives and could on the other hand accelerate the
procedure of living space evolution to much richer living
spaces. The procedure of LSE seems like that people move
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Figure 3: Graphical abstract of LSE.

continuously from countryside to city and the population in
city rapidly increases because the living space in city is much
richer than that in countryside.

5. Examples for LSE’s Application

Here, two examples are employed for LSE’s applications. The
first is the optimization for continuous functions; the other is
to apply LSE to routing protocol for sensor networks that is a
discrete problem in real world.The critical question for LSE’s
applications is the creation of living space. For continuous
function, living space is its variable space. But, for discrete
problem in real world, how to create its living space depends
on specific issues.

5.1. Optimization for Continuous Functions

5.1.1. Continuous Functions. Nine continuous functions
including three unimodal functions and six multimodal
functions are employed for the optimization for continuous
functions with the objective of computing the minimum
of each function. Their mathematical models and three
dimensional graphs are given and illustrated in Table 2.

5.1.2. Parameter Settings. Parameter settings of the nine
continuous functions are shown in Table 3. In order to be
concise and get to the point, here only three-dimensional
variables of the functions are calculated.

5.1.3. Results of Optimization. We should note that in order
to calculate the minimum of these functions the comparison
statement 𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≥ 𝜃 in LSE algorithm should be

turned into 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ≤ 𝜃, so that the optimization

result of which is to output the minimum of each function
and its position.

Optimization results of the nine continuous functions are
shown in Table 4, from which the following results could be
drawn.

For sphere, the minimum searched is equal to 0.0003
through 8 generations. For weighted sphere, the minimum

searched is equal to 0.0006 through 8 generations. For
Schwefel’s, the minimum searched is equal to 0.0006 through
8 generations. For Rosenbrock, the minimum searched is
equal to 0 through 7 generations. For Rastrigin, the min-
imum searched is equal to 0.009522323 through 7 gen-
erations. For Griewank, the minimum searched is equal
to 9.17386𝐸 − 05 through 6 generations. For Schwefel,
the minimum searched is equal to 0.008065647 through
6 generations. For Ackley, the minimum searched is equal
to 0.02133098 through 9 generations; For Schaffer’s f6, the
minimum searched is equal to 5.143344𝐸 − 05 through 8
generations. Furthermore, multiple coordinate points have
the same minimum for some functions. For example,
sphere has the same minimum of 0.0003 at 8 coordinate
points, namely, (−0.01, −0.01, −0.01), (0.01, −0.01, −0.01),
(−0.01, 0.01, −0.01), (0.01, 0.01, −0.01), (−0.01, −0.01, 0.01),
(0.01, −0.01, 0.01), (−0.01, 0.01, 0.01), and (0.01, 0.01, 0.01).
Other functions of multiple coordinate points are not listed
here.

Graphs that illustrate the convergence performance for
the nine benchmark functions are shown in Figure 4.

From Figure 4, it can be observed that for all functions
theminimum searched by the later generation is smaller than
the previous generation, which indicates that living spaces
are evolving towards much better ones. For Rosenbrock, the
minimum of the function is directly obtained, while the
minima of other functions searched by LSE are getting closer
and closer to the real minima of the functions as the number
of generations is increased. Hence, LSE is effective for the
optimization of these functions.

Why is LSE algorithm effective for the optimization of
these functions? The success of an optimization method
depends on a large extent on the careful balance of two
conflicting goals, exploration and exploitation. While explo-
ration is an important global search to ensure that every
part of the solution space is searched enough to provide a
reliable estimate of the global optimum, exploitation is an
important local search around the best solutions found so far
by searching their neighborhoods to reach better solutions
[29]. From the optimization course of these functions, we can
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Table 3: Parameter settings of the test functions.

Function Dimension Initialization
𝑎
1
, 𝑎
2
, 𝑎
3

𝑏
1
, 𝑏
2
, 𝑏
3

𝑛 𝑁 𝑁next 𝑐 𝑡 𝑇

Sphere 3 −5.12 5.12 3 4 2 1 1 8
Weighted sphere 3 −5.12 5.12 3 4 2 1 1 8
Schwefel’s 3 −5.12 5.12 3 4 2 1 1 8
Rosenbrock 3 −2.048 2.048 3 4 2 1 1 7
Rastrigin 3 −2.048 2.048 3 8 2 1 1 7
Griewank 3 −5.12 5.12 3 16 2 1 1 6
Schwefel 3 100.12 500.12 3 16 2 1 1 6
Ackley 3 −5.12 5.12 3 4 2 1 1 9
Schaffer’s f6 3 −2.12 2.12 3 4 2 1 1 8

Table 4: Optimization results of continuous functions.

Function Simulation results
𝑥
1

𝑥
2

𝑥
3

Minimum
Sphere −0.01 −0.01 −0.01 0.0003
Weighted sphere −0.01 −0.01 −0.01 0.0006
Schwefel’s −0.01 −0.01 −0.01 0.0006
Rosenbrock 1 1 1 0
Rastrigin −0.004 −0.004 −0.004 0.009522323
Griewank −0.01 −0.01 −0.01 9.17386E − 05
Schwefel 420.8231 420.8231 420.8231 0.008065647
Ackley −0.005 −0.005 −0.005 0.02133098
Schaffer’s f6 −0.004140625 −0.004140625 −0.004140625 5.143344E − 05
Note: some functions have multiple coordinate points, but they are not listed here.

know that, at the beginning, all of the lives are uniformly
distributed in the whole living spaces, so their search is
a global one. While the LSE algorithm goes ahead, their
offspring evolve towards some richer spaces, and their search
becomes a local one. Therefore, In LSE, its prophase is
exploration and its anaphase is exploitation. That is to say,
LSE has a special ability to balance the search process from
exploration to exploitation gradually.

5.2. Application for Routing Protocol in Wireless Sensor
Networks. In routing protocol for wireless sensor networks
(WSNs), LEACH [30, 31] is a famous clustering protocol
that resolves the energy unbalancing problem among nodes
by reforming clusters once every period of time, called a
round, in order to rotate the role of the cluster header among
members in a cluster. LEACH randomly selects a portion of
nodes as cluster headers that gather the neighboring nodes
to construct clusters. Each node forwards its sensed data to a
cluster header that collects and delivers data to the sink node.
LEACH takes account of data fusion and energy balanced
among nodes within a cluster, but it does not consider the
distance from each cluster header to sink node, which would
cause imbalance of energy. To solve this problem, CPSOCH is
proposed in [32], where both energy balance and the distance
of each cluster header to sink node are to be considered.
In this work, CPSOCH is improved by taking LSE as

a new approach of optimization instead of Chaos-PSO for the
selection of cluster headers.

5.2.1. Problem Description

(1) Network and Energy Model. Network model is assumed to
be as follows.

(1) There are𝑁 sensor nodes distributed in an interested
area. Each node has a unique identity.

(2) All nodes are homogeneous in terms of initial energy
and constant transmission range.The total energy in anynode
is limited.

(3) All sensor nodes can use power control to vary the
amount of transmit power in order to communicate with the
sink node.

(4) A sink node is located at some convenient place out of
the sensor field, which has sufficient energy resource.

(5)The sinknode and the sensor nodes are stationary after
deployment. Their locations are known by each other.

Energy model is assumed to be as follows.
The radio of power,𝐸Tx(𝑘, 𝑑), consumedby a transmitting

node to send a 𝑘-bit message over distance 𝑑m is

𝐸Tx (𝑘, 𝑑) =
{

{

{

𝑘𝐸elec + 𝑘𝜀
𝑓𝑠
𝑑
2

(𝑑 < 𝑑
0
)

𝑘𝐸elec + 𝑘𝜀
𝑚𝑝

𝑑
4

(𝑑 ≥ 𝑑
0
) .

(2)
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Figure 4: Convergence performance. (a) Sphere; (b) weighted sphere; (c) Schwefel’s; (d) Rosenbrock; (e) Rastrigin; (f) Griewank; (g) Schwefel;
(h) Ackley; (i) Schaffer’s f6.

To receive this message, the radio of power 𝐸
𝑅𝑥

(𝑘)

expends

𝐸Rx (𝑘) = 𝑘𝐸elec. (3)

To process this message, the radio of power 𝐸da-fus(𝑘)
expends

𝐸da-fus (𝑘) = 𝑘𝐸da, (4)

where 𝐸elec is energy consumption of sending circuits and
receiving circuits. 𝐸da is energy consumption of processing
data. 𝜀fs and 𝜀mp are energy consumption of power amplifiers
in free spacemodel andmultipath fadingmodel, respectively.
𝑑
0
is threshold of transmission distance.

(2) Objective for Clustering Routing.The objective is to elect𝐾
cluster headers from the𝑁 sensor nodes to create𝐾 clusters,
which should meet the following demands: the more the
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remaining energy in the node is and the closer the distance
from the node to the sink node is, the more the possible the
node should be a header node. The fitness is designed to be
as follows:

fitness = 𝛼
1
𝑓
1
+ 𝛼
2
𝑓
2
, (5)

𝑓
1
=

∑
𝐾

𝑘=1
𝑞
𝑘

∑
𝑁

𝑖=1
𝑞
𝑖

, (6)

𝑓
2
=

∑
𝑁

𝑖=1
𝑙
𝑖

∑
𝐾

𝑘=1
𝑙
𝑘

, (7)

where 𝛼
1
and 𝛼

2
are weight factors and meet 𝛼

1
+ 𝛼
2
= 1. 𝑞

𝑖

is the remaining energy of 𝑖th node in the network, 𝑞
𝑘
is the

remaining energy of 𝑘th cluster header, 𝑓
1
is an evaluating

factor of energy, 𝑙
𝑖
is the distance from 𝑖th node to the sink

node, 𝑙
𝑘
is the distance from 𝑘th cluster header to the sink

node, and 𝑓
2
is an evaluating factor of distance.

From (5), we can see that the problem of electing 𝐾

cluster headers from the 𝑁 sensor nodes becomes to find
𝐾 candidates to make its fitness optimal, which is a typical
optimization problem.

5.2.2. Creation of Life’s Living Space. Unlike continuous func-
tions, to select 𝐾 candidates from 𝑁 nodes is a problem of
discrete event. How to set up a life’s living space to use LSE to
optimize this kind of problems becomes a critical problem.

Let us first analyse what is a life in the problem. In
continuous functions, a life is a point in variable space. But
now what are the variables in the cluster routing problem? It
is obvious that 𝐾 different candidates are variables. In other
words, each candidate in𝐾 candidates could vary from node
Number 1 to Number𝑁; thus, each candidate is a variable. By
this way, we can create a living space for life, each candidate
is its coordinate as follows.

Life’s living space = {candidate 1, candidate 2, . . .,
candidate 𝐾 | each candidate could take a serial
number of nodes from Number 1 to Number𝑁}.

For example, if we select 2 cluster headers in the 100
nodes that are randomly distributed in an interesting area,
we can firstly give each node a serial number from Number
1 to Number 100 according to a certain order, as shown in
Figure 5.The living space could be set up afterwards as shown
in Figure 6, which is a discrete two-dimensional space.

In Figure 6, the possible value of candidate 1 is the serial
number from Number 1 to Number 100, while the possible
value of candidate 2 is also the serial number from Number
1 to Number 100 too, where the serial number represents the
node of the number. It is obvious that these two candidates
cannot be allowed to be the same node, so the positions
marked by black cycle could not be any life’s position, whereas
the positions marked by yellow cycle make up life’s living
space which is a two-dimensional living space, as shown in
Figure 6. In this living space, any life located at positions
marked by yellow cycle represents both candidate 1 and
candidate 2 that are two possible candidate cluster headers
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Figure 6: Discrete two-dimensional living space.

indicatedwith the serial number. In other words, the values of
coordinate axes 𝑥 and 𝑦 in the two-dimensional living space
should be the serial number of the nodes in the sensing area,
where a life has two coordinates, 𝑥 and 𝑦, which are discrete
values.

From the analysismentioned above, the following conclu-
sion could be drawn. If we select𝐾 candidates from𝑁 nodes,
the life’s living space is a 𝑘-dimensional space.

5.2.3. Application of LSE to Discrete Living Space. After
setting up the life’s living space, the next problem is how to
apply LSE to optimize the living space. In fact, it becomes
an easy problem compared with the continuous functions
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Step 1. Initialization.
Set the number of nodes in initial sensor networks;
Set the parameters of energy model according to (2), (3) and (4);
Set the parameters of fitness according to (5);
Set the maximum number of data transmission;

Step 2. Select cluster heads, set up clusters, create schedule and then transmit data according to the methods provided by LEACH;
Step 3. Judge whether the maximum number of data transmission is reached. If reached, go to Step 7;
Step 4. Cluster head selection optimized by LSE:
Step 4.1. Give a serial number to each node in the interesting area;
Step 4.2. Set the number of cluster heads;
Step 4.3. Set the maximum number of iterations according to computing capability of each node;
Step 4.4. Judge whether the maximum number of iterations is reached. If reached, go to Step 5;
Step 4.5. Optimization by LSE according to Sections 5.2.2 and 5.2.3, where fitness is computed by (5);
Step 4.6. Issue the information of cluster headers;
Step 4.7. go to Step 4.4;
Step 5. Set up clusters, create schedule and then transmit data according to the methods provided by LEACH;
Step 6. Goto Step 3
Step 7. End

Algorithm 3: Clustering routing algorithm based on LSE.

optimization; the only difference is that the values of the coor-
dinate axes 𝑥 and 𝑦 are discrete ones instead of continuous
ones in LSE.

For example, in the discrete two-dimensional living space
shown in Figure 6, the values of coordinate axes 𝑥 and 𝑦 fall
into {1, 2, . . . , 100} with lower bound 1 and upper bound 100,
where LSE is easy to be used.

5.2.4. Clustering Routing Algorithm Based on LSE. Clustering
routing algorithm based on LSE is described in Algorithm 3.

In the first round, at the beginning of deployment, the
remaining energy of all the nodes in the sensor networks
is provided to be equivalent. Therefore, we can still employ
LEACH algorithm for the selection of cluster heads as shown
in Step 2. From the second round, the remaining energy of all
the nodes in the sensor networks is no longer equivalent, and
the sink node should use the optimization methods based on
LSE introduced in the paper for the selection of cluster heads
as shown in Step 4.

In Step 4.5, the process of cluster head selection optimized
by LSE should be done according to the methods described
previously in Sections 5.2.2 and 5.2.3.

In Section 5.2, LSE is used as an optimization tool for
routing protocol in wireless sensor network and its optimiza-
tion methods and processes are described in detail, by which
we can see that LSE is also applicable for the optimization for
some discrete problems in real world.

6. Conclusions

In this paper, a new computational intelligence approach,
namely, living space evolution (LSE), is presented, which is
inspired by life cycle and survival of the fittest and combined
with the consideration of living space information. LSE
dynamic model, its flow, and pseudocodes are described in
detail. A digital simulation has shown the procedure of LSE.

Furthermore, two applications of using LSE are employed to
demonstrate its effectiveness and applicability. One is to apply
it to the optimization for continuous functions; the other is to
use it as an optimization tool for routing protocol in wireless
sensor network that is a discrete problem in real world.

By means of simulations and discussions in the paper,
conclusions could be summarized as follows.

(1) Research has shown that LSE is effective for the
optimization for the continuous functions and also applicable
for the discrete problem in real world.

(2) LSE has reflected two new ideas. One is living space
evolution.The other is multiple offspring reproduction. Mul-
tiple offspring reproduction is the prerequisite and guarantee
for achieving living space evolution.

(3) The critical question for LSE’s applications is the
creation of living space. For continuous function, living space
is its variable space. But, for discrete problem in real world,
how to create its living space depends on specific issues.

(4) In LSE, its prophase is exploration and its anaphase
is exploitation; in other words, LSE has a special ability
to balance search process from exploration to exploitation
gradually.
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