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Mobile sensor networks (MSNs), consisting of mobile nodes, are sensitive to network attacks. Intrusion detection system (IDS)
is a kind of active network security technology to protect network from attacks. In the data gathering phase of IDS, due to the
high-dimension data collected in multidimension space, great pressure has been put on the subsequent data analysis and response
phase. Therefore, traditional methods for intrusion detection can no longer be applicable in MSNs. To improve the performance
of data analysis, we apply K-means algorithm to high-dimension data clustering analysis. Thus, an improved K-means clustering
algorithm based on linear discriminant analysis (LDA) is proposed, called LKM algorithm. In this algorithm, we firstly apply the
dimension reduction of LDA to divide the high-dimension data set into 2-dimension data set; then we use K-means algorithm
for clustering analysis of the dimension-reduced data. Simulation results show that LKM algorithm shortens the sample feature
extraction time and improves the accuracy of K-means clustering algorithm, both of which prove that LKM algorithm enhances
the performance of high-dimension data analysis and the abnormal detection rate of IDS in MSNs.

1. Introduction

FOR the special network application,mobile sensor networks
(MSNs) are proposed as a new type ofwireless sensor network
with low node density and sparse network environment.
Nodes in MSNs are no longer distributed statically to sam-
ple data but wore on the mobile carriers and move with
them, which conduces to highly dynamic network topology,
poor network connectivity, and intermittent communication
between nodes [1]. Furthermore, nodal mobility will easily
lead to invalid data transmission, retransmission storm, and
easiness of being injected by virus, risking the security of
network. Keung et al. studies the intrusion detection problem
in a mobile sensor network, focusing on providing barrier
coverage against moving intruders [2]. It becomes particu-
larly challenging when the movement route of sensors and
intruders needs to be captured. Abduvaliyev et al. propose
a comprehensive classification of various IDS approaches
according to their employed detection techniques such as
anomaly detection,misuse detection, and specification-based

detection protocols [3]. Because of wireless broadcast com-
munication, wireless sensor networks (WSNs) are vulnerable
to denial-of-service (DoS) attacks. Han et al. identifie mali-
cious nodes through energy consumption of sensor nodes in
WSNs, distinguishing the ongoing DoS attack species effec-
tively. It is difficult to set a suitable threshold for evaluating
the abnormal energy consumption [4]. To detect the sinkhole
nodes in WSNs, Han et al. also make full use of neighbor
information stored in the nodes, avoiding the occurrence
of abnormal energy holes and severe malicious attacks, for
example, the selective forwarding attack [5].However, there is
little related work about the security ofMSNs. In the previous
studies, IDS is the key technology to ensure network security
and also a proactive technology to protect network from
attacks. IDS can detect system or network resources in real-
time to find out network intruders or prevent legitimate users
from misusing resources.

IDS is divided into three parts, for example, data gath-
ering, data analysis, and response. In order to find traces of
network intrusion, IDS collects data from multiple points in
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the network system.Thus, data gathering coversmultidimen-
sion space including system logs, network packets, important
documents, and status or behavior of user activity. In tradi-
tional data analysis phase, the collected high-dimension data
will be handled with pattern matching, anomaly detection,
or integrity testing. Once intrusion behaviors are found, IDS
will immediately enter the response phase, including logging,
alarming, and security controlling. In the data gathering
phase of IDS, therefore, the high-dimension data obtained
from multidimension space bring great challenges to the
subsequent analysis and response stages.This paper proposes
the LKM algorithm that firstly applies linear discriminant
analysis (LDA) to accomplish dimensionality reduction of
original high-dimension data and then uses the 𝐾-means
cluster analysis for the 2-dimension data. In this way, LKM
solves the high-dimension data analysis problems in IDS.

Lee et al. are the first one to apply data mining techniques
to intrusion detection, such as association rules algorithm,
classification algorithm, and sequence mining algorithm [6].
Recently, it has been a new trend to use the data mining algo-
rithm in IDS. Related algorithm research will help to improve
the security of network. Clustering analysis in intrusion
detection is the key to realizing intelligent IDS. Clustering
analysis is an important method for data partitioning or
packet processing of huge data. Clustering algorithm can
be roughly classified into division-based method, hierarchy-
based method, density-based method, grid-based method,
model-based method, and the fuzzy clustering. 𝐾-means
algorithm is a typical clustering algorithm based on distance
partition. The distance is used as the similarity evaluation
index. In the case of two-dimensional or three-dimensional
data, 𝐾-means algorithm can ensure the quality of the
clustering. However, curse of dimensionality is common in𝐾-
means clustering algorithmwhendealingwith 𝑛-dimensional
(𝑛 > 3) data set. In this circumstance, the processing time of
𝐾-means algorithm will be too long and the efficiency will be
rather low.

In this paper, an improved𝐾-means clustering algorithm
(namely, LKM algorithms) is proposed. Firstly, LDA is
introduced to reduce the dimensionality of the original high-
dimensional data, and then 𝐾-means clustering algorithm
is adopted to make clustering analysis on the dimension
reduced data.The so-called dimension reduction refers to the
process in which samples from the high-dimensional space
are mapped to the low-dimensional space for a meaningful
representation of the high-dimensional data by linear or
nonlinear method. Through data dimension reduction, the
curse of dimensionality can be alleviated and other irrelevant
properties in the high-dimensional space are eliminated.
Therefore, we offset the defects and improve the performance
of the𝐾-means clustering algorithmwhen dealing with high-
dimensional data set.

The rest of the paper is organized as follows. In Section 2,
related works of the 𝐾-means algorithm are introduced,
mainly about existing problems and corresponding improve-
ments. In Section 3, LDA and 𝐾-means clustering algo-
rithm are described respectively, and then LKM algorithm
is described in detail. Simulation experiments on LKM
algorithm are implemented, and experimental comparison

results of existing PCA-Km algorithm and LKM algorithm
are discussed in Sections 4 and 5. Section 6 concludes the
paper.

2. Related Work

Lee et al. introduced an intrusion detection method based
on data mining. The basic idea is to use the audit program
to extract a large number of network connections and the
host session features and apply data mining technology to
export the rules that correctly distinguish between normal
and intrusion behavior [6]. Elbasiony et al. proposed a
hybrid detection framework which is based on data mining
classification and clustering techniques. In the framework,
𝐾-means clustering algorithm is used to detect novel intru-
sions by clustering the network connections’ data to collect
most of the intrusions together in one or more clusters
[7]. Muniyandi et al. proposed an anomaly detectionmethod
using 𝐾-means combined with C4.5, a method to cascade
𝐾-means clustering, and the C4.5 decision tree methods for
classifying anomalous and normal activities in a computer
network [8]. However, there are still some shortcomings of
𝐾-means algorithm. The main problems are in the following
areas. (i) The result of the clustering mostly depends on
the selection of the initial centers. Yedla et al. put forward
searching for better initial centers and providing an effective
method to allocate a suitable cluster of data points [9];
Neha and Kirti selected the data located at the center as
the initial point [10]. (ii) The number of clusters k needs
to be given in advance. Li suggested the optimal value of k
and the conditions of its upper bound [11], which confirms
the rationality of the thumb 𝑘-max theoretically. (iii) The
clustering results are vulnerable to the noise data point.
Momin and Yelmar utilized the possible members to reduce
the noise points [12]; Wang and Su reduced the impact of
noise points via preprocessing [13]. (iv)The algorithm is not
applicable for a large amount of data clustering problems.
Kanungo et al. used a simple data structure to store the
information for each iteration [14]; Li et al. speeded up
the computation rate by reducing the grid data [15]. (v)
The algorithm cannot deal with the high-dimensional data
effectively. Literatures [16, 17] failed to solve the fusion
problem of 𝐾-means and dimension reduction; Napoleon
and Pavalakodi proposed PCA-Km algorithm [18], which
applied PCA on original data set and obtained a reduced data
set containing possibly uncorrelated variables; Ding and He
proposed a coherent framework to adaptively select the most
discriminative subspace [19].

Different from other 𝐾-means, LKM achieves linear
dimension reduction for the original high-dimension data
and then generates 2D data for 𝐾-means clustering analysis.
In this way, LDA and 𝐾-means are combined with each
other. LKM improves the performance of 𝐾-means dealing
with high-dimension data than other modified 𝐾-means
solutions. Since the works of Napoleon et al. and Ding et
al. are much similar to ours, the simulation analysis and the
experimental comparison of LKM algorithm and PCA-Km
algorithm are discussed in Section 4.



International Journal of Distributed Sensor Networks 3

3. LKM Algorithm

In LKM algorithm, the linear dimension reduction method,
LDA, is firstly adopted to reduce the dimension of the original
𝑛-dimension data set 𝐴. After the dimension reduction, the
𝑙-dimension data set 𝑌 can be obtained. Then 𝐾-means
clustering algorithm is applied to clustering analysis, and the
final result is output.

3.1. Algorithm Definition. LDA is the method that mini-
mizes within-class distance while it maximizes the interclass
distance as much as possible [20]. So we can obtain the
optimal projection direction to obtain the best classification.
That is, we choose characteristic description of samples that
maximize the ratio of within-class dispersion and interclass
dispersion. For a given matrix 𝐴 ∈ 𝑅

𝑑×𝑛 (𝑅𝑑×𝑛 represents the
𝑛-dimension real linear space constituted by all the 𝑑 × 𝑛 real
matrices), LDA is used to generate a transformation matrix
𝐺 ∈ 𝑅

𝑑×𝑙 (𝑅𝑑×𝑙 represents the 𝑙-dimension real linear space
constituted by all 𝑑 × 𝑙 real matrices). Each column vector 𝑎𝑖
of the matrix 𝐴 in the n-dimensional space is mapped to a
column vector 𝑦𝑖 in the 𝑙-dimensional space as follows:

𝑦𝑖 = 𝐺
𝑇
𝑎𝑖 ∈ 𝑅

𝑙
(𝑙 < 𝑑) , 1 ≤ 𝑖 ≤ 𝑛. (1)

The matrix 𝐴 is divided into 𝑘 classes; that is

𝐴 = [𝐴1, 𝐴2, . . . , 𝐴𝑘] , 𝐴 𝑖 ∈ 𝑅
𝑑×𝑛𝑖 ,

𝑛 =

𝑘

∑

𝑖=1

𝑛𝑖,

(2)

where 𝑛𝑖 represents the number of data in𝐴 𝑖 and 𝑅
𝑙 indicates

the 𝑙-dimensional linear space.
The concepts of within-class scattering matrix, interclass

scattering matrix, and the total scattering matrix of LDA are
defined as follows.

Definition 1. Within-class scattering matrix 𝑆𝑤 is as follows:

𝑆𝑤 =
1

𝑛

𝑘

∑

𝑖=1

∑

𝑥∈𝐴𝑖

(𝑥 − 𝑐
(𝑖)
) (𝑥 − 𝑐

(𝑖)
)
𝑇

. (3)

The within-class scattering matrix 𝑆𝑤 reflects the mean
square distance between various kinds of samples and the
centers of various classes. 𝑆𝑤 indicates the dispersion degree
of samples in the same class.

Definition 2. Interclass scattering matrix 𝑆𝑏 is as follows:

𝑆𝑏 =
1

𝑛

𝑘

∑

𝑖=1

𝑛𝑖 (𝑐
(𝑖)
− 𝑐) (𝑐

(𝑖)
− 𝑐)
𝑇

. (4)

The interclass scattering matrix 𝑆𝑏 reflects the mean square
distance between centers of various classes and the overall
center. 𝑆𝑏 indicates the dispersion degree of centers in
different classes.

Definition 3. In the total scattering matrix 𝑆𝑡, obviously, 𝑆𝑡 is
equal to the sum of 𝑆𝑤 and 𝑆𝑏; namely,

𝑆𝑡 = 𝑆𝑤 + 𝑆𝑏. (5)

According to formula (5), total scattering matrix can be
deduced as follows:

𝑆𝑡 =
1

𝑛

𝑛

∑

𝑗=1

(𝑎𝑗 − 𝑐) (𝑎𝑗 − 𝑐)
𝑇

. (6)

The total scattering matrix 𝑆𝑡 reflects overall dispersion
degree of entire sample. Here, 𝑐(𝑖) is the initial centroid of 𝐴 𝑖.
Calculating mean value for all the data objects in 𝐴 𝑖, 𝑐

(𝑖) can
be expressed as

𝑐
(𝑖)

=
1

𝑛𝑖

𝐴 𝑖𝑒
(𝑖)
, (7)

where 𝑒(𝑖) represents 𝑛 order columnmatrix and the values of
all matrix elements are one; namely,

𝑒
(𝑖)

= (1, 1, . . . , 1)
𝑇
∈ 𝑅
𝑛
. (8)

On the basis of formulas (5) and (7), the expression of the
overall centroid can be deduced as follows:

𝑐 =
1

𝑛
𝐴𝑒, (9)

where 𝑒 = (1, 1, . . . , 1)
𝑇
∈ 𝑅
𝑛, 𝑛 = ∑

𝑘

𝑖=1
𝑛𝑖.

In the low-dimensional space reduced by the linear
transformation matrix 𝐺, 𝑆𝑤 is turned into 𝐺

𝑇
𝑆𝑤𝐺. 𝑆𝑏 is

changed to 𝐺
𝑇
𝑆𝑏𝐺, and 𝑆𝑡 becomes 𝐺

𝑇
𝑆𝑡𝐺. However, in

practical applications of LDA, when sample dimension is
greater than or close to the number of samples, the within-
class scattering matrix is not reversible. Meanwhile, it is
difficult to calculate thematrix directly, which is the so-called
problem of 𝑠𝑚𝑎𝑙𝑙𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖𝑧𝑒(𝑆𝑆𝑆) [21].

Therefore, we take advantage of the best transformation
matrix 𝐺∗ to overcome the 𝑆𝑆𝑆 problem, which is defined as
follows.

Definition 4. Calculate optimal transformation matrix 𝐺∗ by
solving the optimization problems:

𝐺
∗
= argmax

𝐺

{trace ((𝐺𝑇𝑆𝑤𝐺)
−1

𝐺
𝑇
𝑆𝑏𝐺)} . (10)

Considering formulas (3), (4), and (5), we can get the
equivalent form of (10):

𝐺
∗
= argmax

𝐺

{trace ((𝐺𝑇𝑆𝑡𝐺)
−1

𝐺
𝑇
𝑆𝑏𝐺)} . (11)

In this way, we are able to obtain the optimum conversion
matrix 𝐺∗. The above optimization problem is equivalent to
the equation when 𝜆 ̸= 0:

𝑆𝑏𝑥 = 𝜆𝑆𝑡𝑥. (12)
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The value of 𝑥 is solved out which satisfies the above
conditions. When matrix 𝑆𝑡 is nonsingular, by conducting
singular value decomposition (SVD) onmatrix 𝑆𝑡

−1
𝑆𝑏, we can

obtain 𝑥 that meets these conditions. Finally, each column
vector 𝑎𝑖 of matrix A in 𝑅

𝑑×𝑛 is a one-to-one mapping to
column vector 𝑦𝑖 in 𝑙-dimension space 𝑅𝑑×𝑙; namely,

𝑦𝑖 = (𝐺
∗
)
𝑇
𝑎𝑖, 1 ≤ 𝑖 ≤ 𝑛. (13)

In addition, in order to measure dissimilarity of data
object, we use Euclidean distance ranging method in 𝐾-
means algorithm.

Definition 5. In the high-dimension space, dimensionalmap-
ping process of data objects makes Euclidean distance in two-
dimension space close to the shortest path from the high-
dimensional space between objects. In two-dimension space,
Euclidean distance between two points can be calculated
based on the coordinates or vectors of them; namely,

𝐷(𝑦𝑖, 𝑍𝑗 (𝐼)) =
√(𝑦𝑖 − 𝑍𝑗 (𝐼))

2

. (14)

Definition 6. In order to obtain the best clustering results,
error square and the guideline functions are adopted to obtain
the optimal value of 𝐽𝑐, which is defined as

𝐽𝑐 (𝐼) =

𝑘

∑

𝑗=1

𝑛𝑗

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩󵄩
𝑦
(𝑗)

𝑘
− 𝑍𝑗 (𝐼)

󵄩󵄩󵄩󵄩󵄩󵄩

2

. (15)

𝐽𝑐 represents sum of squared error of all data samples and
their centers, when a data set containing 𝑛 data objects is
divided into 𝑘 classes. The value of 𝐽𝑐 is related to the size
of cluster center. Apparently, the error of data objects within
their class center enlarges as 𝐽𝑐 increases. Thus, the degree of
differences between various types of data within the object
will be greater, and quality of clustering will be worse than
before.

Definition 7. The iteration is implemented repeatedly to find 𝑘
clustering centers; 𝑛 sample points are assigned to the nearest
cluster center, so that the clustering error sum of squares
reaches a minimum. Clustering center 𝑍𝑗 is calculated as
follows:

𝑍𝑗 (𝐼) =
1

𝑛

𝑛𝑗

∑

𝑖=1

𝑥
(𝑗)

𝑖
, 𝑗 = 1, 2, 3, . . . , 𝑘. (16)

3.2. Algorithm Steps. LKM algorithm flow chart is shown in
Figure 1.

The specific process of LKM algorithm is illustrated as
follows:

input: 𝑛-dimension data set ofmatrix𝐴 = (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛),
the number of clusters 𝑘;

output: 𝑘 clusters 𝐶𝑚 that meets conditions of 𝑙-dimension
data.

Step 1. Apply LDA to generate a transformation matrix 𝐺.

End

Begin

Using LDA to generate 
discrimination matrix

On basis of the
mapping rules of 

objects as initial cluster 

Solving formula (10) for 
the optimum conversion 

Calculating Euclidean 
distance of all data 
objects with initial 

center

the initial cluster 

formula (16) 

Assigning data object

to formula (15) 

convergent

Ye
s

Ye
s

No

No

matrix G
∗

formula (13), obtain Y

Arbitrarily choosing k

centers from Y

Dm = min(D)

cluster Cm ,
calculate Jc according

Jc(I) function is

I = I + 1, recalculating

centers Zj in line with 

to mth 

Figure 1: LKM algorithm flow chart.

Step 2. Generate within-class scattering matrix 𝑆𝑤, interclass
scattering matrix 𝑆𝑏, and total scattering matrix 𝑆𝑡.

Step 3. Solve the optimization problems and then the best
transformation matrix 𝐺∗is obtained.

Step 4. Using optimal transformation matrix 𝐺
∗, each col-

umn vector 𝑎𝑖 of matrix 𝐴 in 𝑛-dimension space 𝑅𝑑×𝑛 is one-
to-one mapped to column vector 𝑦𝑖 in 𝑙-dimension space
𝑅
𝑑×𝑙. The data set 𝑌 is obtained.
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Input: 𝑛-dimensional dataset of matrix 𝐴 = (𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛)

Output: 𝑙-dimensional dataset 𝑌 = (𝑦
1
, 𝑦
2
, 𝑦
3
, . . . , 𝑦

𝑛
) after dimension reduction

(1) Begin
(2) initial 𝑛 prototype 𝑎𝑖, 𝑖 ∈ [1, 𝑛]

(3) repeat
(4) compute 𝑆𝑤, 𝑆𝑏, 𝑆𝑡, G, 𝐺∗
(5) if 𝐺∗ = argmax𝐺{trace((𝐺

𝑇
𝑆𝑤𝐺)
−1
𝐺
𝑇
𝑆𝑏𝐺)}

(6) for 𝐼 = 1 to 𝑛 do
(7) 𝑦𝑖 = (𝐺

∗
)
𝑇
𝑎𝑖

(8) end for
(9) End

Algorithm 1: Pseudocode of dimensionality reduced data set 𝑌 through LDA.

The pseudocode of the dimensionality reduced data set 𝑌
by LDA is shown in Algorithm 1.

Step 5. Randomly select 𝑘 objects from𝑌 as the initial cluster
centers 𝑍𝑗(𝐼), 𝑗 = 1, 2, 3, . . . , 𝑘, 𝐼 = 1.

Step 6. Calculate the Euclidean distanced 𝐷(𝑦𝑖, 𝑍𝑗(𝐼)) of
all the data objects and 𝑘 initial center, 𝑖 = 1, 2, 3, . . . , 𝑛,
𝑗 = 1, 2, 3, . . . , 𝑘. If the condition that 𝐷(𝑦𝑖, 𝑍𝑚(𝐼)) = min
𝐷(𝑦𝑖, 𝑍𝑗(𝐼)) is satisfied, 𝑚 ∈ 1, 2, 3, . . . , 𝑘, 𝑦𝑖 will be assigned
to the𝑚th cluster 𝐶𝑚.

Step 7. Calculate sum of squared error criterion function 𝐽𝑐.

Step 8. Judge: if function 𝐽𝑐 is convergent, or |𝐽𝑐(𝐼)−𝐽𝑐(𝐼−1)| <
𝜀, the algorithm is finished and outputs the results; otherwise,
𝐼 = 𝐼 + 1, recalculate new cluster center 𝑍𝑗(𝐼), and return to
Step 6 to recalculate distance.

The pseudocode of 𝐾-means clustering analysis of 𝑙-
dimensional data sets 𝑌 is shown in Algorithm 2.

4. Simulation Analysis

We employ matlab7.0 programming for simulations. The
PCA-Km algorithm [18] is similar to LKM algorithm
described in this paper. To compare performance of these
two cluster analysis algorithms for high-dimension data
processing, we, respectively, utilize the LKM algorithm and
PCA-Km algorithm to experiment with 40-dimension data
set and 70-dimension data set. The results are shown from
Figure 2 to Figure 9. The dimension of the initial data
set is changed successively; the LKM algorithm and PCA-
Km algorithm are applied to make clustering analysis for
2-dimension, 3-dimension, 4-dimension,. . ., 70-dimension
initial data sets.Therefore, the feature extraction time of LDA
and PCA is shown in Figure 10. The changes of the three
algorithms (PCA-km, LKM, and 𝐾-means algorithm) are
shown in Figure 11.

(1) Use the rand() function to randomly generate a 40-
dimension data set 𝐴 with 30 rows and 40 columns. LKM
algorithm is used for LDA linear dimension reduction to
generate a 2-dimension data set 𝑌 with 30 rows and 2

0 0.1 0.2 0.3 0.4 0.5 0.6

0

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

−0.1

Figure 2: 30 × 2-dimension data set 𝑌 after dimension reduction of
LKM.

columns.The result is shown in Figure 2. PCA-Km algorithm
is used for the PCA linear dimension reduction to obtain a 2-
dimension data set𝑌󸀠 with 30 rows and 2 columns.The result
is shown in Figure 3.

Comparing Figures 2 and 3, although LDA and PCA both
complete the process of the data dimension reduction, LDA
is superior to PCA in classification.

As we keep running LKM algorithm to perform cluster-
ing analysis of 2-dimension data set 𝑌, the final outputs are
two clusters. The clustering result of LKM algorithm for the
40-dimension data is shown in Figure 4; similarly, we proceed
to implement the PCA-Km algorithms cluster analysis of the
data set 𝑌󸀠; two cluster classes finally are output. The output
of PCA-Km algorithm is shown in Figure 5.

By comparison of Figures 4 and 5, the distribution of
data objects remains relatively dispersed after PCA-Km clus-
tering. On the contrary, after the clustering process of LKM
algorithm, the data objects are divided into two obviously
different clusters.

(2) Similarly, simulation is implemented with a 70-
dimension data set𝐴with 50 rows and 70 columns randomly
generated by rand() function to verify the performance of
experiment (1).The LKMalgorithm is executed tomake LDA



6 International Journal of Distributed Sensor Networks

Input: 𝑙-dimensional data sets 𝑌 = (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛), clustering number 𝑘
Output: 𝑘 of clusters 𝐶

𝑚
consisting of 𝑙-dimensional data

(1) Begin
(2) 𝐼 = 1

(3) initial 𝑘 prototype 𝑍𝑗, 𝑗 ∈ [1, 𝑘]

(4) repeat
(5) for 𝐼 = 1 to 𝑛 do
(6) compute𝐷(𝑦𝑖, 𝑍𝑗(𝐼))

(7) if𝐷(𝑦𝑖, 𝑍𝑚(𝐼)) = min𝐷(𝑦𝑖, 𝑍𝑗(𝐼)) then 𝑦𝑖 ∈ 𝐶𝑚

(8) end for
(9) if 𝐼 = 1, then
(10) compute 𝐽𝑐(𝐼)
(11) 𝐼 = 𝐼 + 1

(12) for 𝑗 = 1 to k do
(13) compute 𝑍𝑗(𝐼), 𝐽𝑐(𝐼)
(14) Until |𝐽𝑐(𝐼) − 𝐽𝑐(𝐼 − 1)| < 𝜀

(15) End

Algorithm 2: Pseudocode of 𝐾-means clustering analysis of 𝑙-dimensional data sets 𝑌.
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Figure 3: 30×2-dimension data set𝑌󸀠 after dimension reduction of
PCA-Km.
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Figure 5: PCA-Km algorithm clustering output.

linear dimension reduction on 𝐴. The result of 2-dimension
data set𝑌 in 50 rows and 2 columns is shown in Figure 6.After
the PCA linear dimension reduction of PCA-Km, the result
of the two-dimension data set 𝑌󸀠 in 50 rows and 2 columns is
shown in Figure 7.

Comparing the results of dimension reduction from
Figures 6 and 7, LDA not only maintains the best projection
identify information of the original data, but also improves
the classification performance. Figures 6 and 7 further veri-
fied that the classification performance of LDA is superior to
that of PCA.

If we go on with LKM algorithm, the final output will
be two clusters. The results of LKM clustering algorithm for
70-dimensional data analysis are shown in Figure 8. And the
results of PCA-Km algorithms are shown in Figure 9.

In Figures 8 and 9, the data is divided into two distinct
clusters classes after the LKM algorithm clustering analysis,
and the clustering effect is very ideal. However, the PCA-Km
algorithm clustering analysis still fails to achieve the desired
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Figure 6: 50 × 2-dimension data set 𝑌 after dimension reduction of
LKM.
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Figure 7: 50×2-dimension data set𝑌󸀠 after dimension reduction of
PCA-Km.
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clustering effect. We can conclude that LKM algorithm
clustering outperforms PCA-Km algorithm.

(3) The rand() function is run to randomly generate
2-dimension, 3-dimension, 4-dimension,. . ., 70-dimension
initial data sets𝐴. Implement the above experiments, respec-
tively, to make linear dimension reduction for different initial
data sets. In order to effectively implement the classification,
feature extraction is needed, which means that when all
kinds of information contained in high-dimension space are
analyzed and processed, the unique attributes are screened
without the interference of external factors. And feature
extraction time is the average time to complete the feature
extraction process. Changes of feature extraction time for
LDA and PCA linear dimension reduction technique are
shown in Figure 10.

Experiments show that when dealing with the data sets
of the same dimension, feature extraction time of LDA linear
dimension reduction technique is shorter than that of PCA
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Figure 11: Clustering precision changes of the PCA-Km, LKM, and
𝐾-means.

linear dimension reduction techniques. Unlike PCA, LDA is
a supervised feature extraction method, which can not only
maintain the best projection identification information of the
original data, but also improve the classification performance
and the efficiency.

With the increasing dimension of initial data sets, the
changes of the clustering precision for these three algorithms,
PCA-Km, LKM, and𝐾-means, are shown in Figure 11.

Figure 11 illustrates that when processing 1-dimension,
2-dimension, or 3-dimension data, 𝐾-means algorithm is
still able to guarantee the quality of clustering. However,
when processing the 𝑛-dimension (𝑛 > 3) data objects,
the performance of 𝐾-means clustering algorithm is poor.
Instead, the accuracy of improved𝐾-means algorithm based
on PCA or LDA (namely, PCA-Km or LKM algorithm)
is significantly higher than 𝐾-means clustering algorithm.
When characteristic dimension of initial data set is the
same, it is shown in Figure 11 that the performance of LKM
algorithm clustering is better than that of PCA-Km.

(4) To further validate the proposed algorithm’s effective-
ness in IDS, this paper applies thewell-knownKDDCup 1999
(KDD’99) data sets to perform the following experiments.
The attacks in KDD’99 data sets are categorized into five
types: DoS (denial of rervice), Probe, U2R (user to root),
date compromise (data), and R2L (remote to local) [22]. For
testing, 2500 testing instances are randomly selected from the
KDD’99 data sets.The experimental results are evaluatedwith
two indicators that are DR (detection rate) and FPR (false
positive rate):

(1) DR (detection rate): DR = the number of detected
attacks/the total number of attacks,
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Figure 13: FPR versus the number of clusters.

(2) FPR (false positive rate): FPR = the number of normal
connections that are misclassified as attacks/the total
number of normal connections.

Since the𝐾-means clustering algorithm requires to input
the number of clusters in advance, different values of clusters
have great influence on clustering outputs. Both LKM and
PCA-KM incorporate the 𝐾-means method. Therefore, Fig-
ures 12 and 13 illustrate the performance of 𝐾-means, LKM,
and PCA-KM when the number of clusters equals 10, 12, 14,
16, 18, 20, 22, 24, 26, and 28.

With the increment of the number of clusters, DR and
FPR also increase. Figures 12 and 13 show that when the
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number of clusters is rare, abnormal data after training
are rare. Many unusual attacks are recorded as normal
and assigned to normal class while normal ones will not
be assigned to abnormal class. But when the number of
clusters increases, the abnormal class system after training
also increases. Because of the supervised feature extraction
(LDA), LKM detects more attacks and makes fewer mistakes
than PCA-KM and𝐾-means.

When Figures 12 and 13 are mapped into receiver operat-
ing characteristic (ROC) curve, relationship between DR and
FPR can be reflected directly as Figure 14.

Seen from the ROC curve, FPR increases gradually with
DR. At initial stage, the curve of LKM is relatively steep,
indicating that DR can have greatly improvement at the
expense of FPR. Then as FPR increases, DR begins to rise
slowly. When the number of clusters is about 22, curve of
LKM is relatively flat even FPRhas increased significantly and
DR increases significantly small. In general, curve inflection
point is considered the best point of the system performance.
Therefore, optimal number of LKM clusters is 22 or so.

5. Discussions

Since 𝐾-means is a classical algorithm in data mining, many
literatures have done a lot of researches to improve the
performance of 𝐾-means algorithm. Here we will make
comparisons between some typical algorithms and our work
in detail. Napoleon and Pavalakodi proposed PCA-Km algo-
rithm [18], which incorporated principal component analysis
(PCA) and 𝐾-means for original high-dimension data set
analysis.

The main difference between LKM and PCA-KM is
described as follows. LDA, the key technology used in LKM,
is a supervised feature extraction method to screen low-
dimension features with the strongest discriminating power

from the high-dimension space. LDA not only maintains
optimal projector identification information of original data,
but also improves the classification performance and effi-
ciency. PCA, the key technology used in PCA-KM, is an
unsupervised feature extraction method that selects the orig-
inal data projection with the maximum feature covariance.
PCA and linear transformation are used for dimension
reduction; then dimension-reduced data set is clustered by
𝐾-means clustering algorithm; Ding and He proved that
continuous solutions of discrete 𝐾-means clustering mem-
bership indicators are data projections on principal directions
(principal eigenvectors of the covariance matrix) [19]. New
lower bounds for 𝐾-means objective function are derived,
and it is directly related to eigenvalues of covariance matrix.
Ding and Li combined linear discriminant analysis (LDA)
and𝐾-means clustering into a coherent framework.Themost
discriminative subspace is selected adaptively [23]. Relations
among PCA, LDA, and 𝐾-means were clarified. However,
further experiments and comparison are not given in detail.
It is shown in Section 4 that characteristics extraction
time of PCA is higher than LDA. Unlike PCA, LDA is a
supervised feature extraction method. LDA maintains the
best projection identification information of original data as
well as classification performance.

6. Conclusions

To achieve IDS in MSNs, data gathered by mobile nodes
covers multidimension space, including system logs, network
packets, important documents, and status or behavior of user
activity. Applying clustering analysis in intrusion detection is
the key to realizing intelligent IDS. By 𝐾-means clustering
analysis for high-dimension data, the performance of data
analysis in intrusion detection can be enhanced.Through lin-
ear dimension reductionmethod of LDA, the LKMalgorithm
proposed in this paper reduces the curse of dimensionality.
Other irrelevant attributes in high-dimension space are
eliminated, and characteristics of sample extraction time have
been shortened. The integration of 𝐾-means clustering into
dimension-reduced data set improves clustering accuracy,
which is rather meaningful in enhancing data analysis of
high-dimension data set. As a result, the anomaly detection
rate increases, which improves the performance of IDS.
However, the initial centers of 𝐾-means algorithm used in
the LKM algorithm are chosen arbitrarily, which have a
great impact on results of clustering analysis. Optimization
of initial centers of the LKM algorithm will be discussed in
our future work.

Glossary

𝑘-max: the upper bound of 𝑘 value optimization
problem

𝐴: original high-dimension data sets before
dimension reduction

𝑌: low-dimension data sets after linear dimension
reduction

𝑅
𝑑×𝑛: 𝑛-dimension real linear space constituted by

the 𝑑 × 𝑛 real matrix
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𝑅
𝑑×𝑙: 𝑙-dimension real linear space constituted

by the 𝑑 × 𝑙 real matrix
𝑎𝑖, 𝑎𝑗: 𝑖th, 𝑗th column vector of 𝐴
𝑦𝑖: 𝑖th column vector of 𝑌
𝐺: transformation matrix in LDA
𝐺
∗: optimization transformation matrix in

LDA
𝑛𝑖: the number of data in 𝐴 𝑖

𝐴 𝑖: matrix 𝐴 is divided into 𝑖th class
𝑆𝑤: within-class scattering matrix
𝑆𝑏: between-classes scattering matrix
𝑆𝑡: total scattering matrix
𝑐
(𝑖), 𝑐: the initial center of mass in 𝐴 𝑖 and the

overall center of mass in 𝐴

𝑒
(𝑖): all matrix elements are one; namely,

𝑒
(𝑖)

= (1, 1, 1)
𝑇

𝑍𝑗: cluster centers in 𝐾-means clustering
algorithm

𝐽𝑐: data sample of its class where the center
of the squared error criterion function

𝐷(𝑦𝑖, 𝑍𝑗): the distance between 𝑦𝑖 and 𝑍𝑗

𝐼: the number of iterations counter
rand(): randomly generatee the initial function

of 𝑛-dimension data set 𝐴
DR: detection rate
FPR: false positive rate
ROC: receiver operating characteristic (ROC)

curve.
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