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Correspondence should be addressed to Agneta M. Balint; balint@physics.uvt.ro

Received 30 August 2013; Revised 8 December 2013; Accepted 15 December 2013; Published 12 January 2014

Academic Editor: Abdullah Alotaibi

Copyright © 2014 S. Balint and A. M. Balint. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This paper considers the stability of constant solutions to the 1D Euler equation. The idea is to investigate the effect of different
function spaces on the well-posedness and stability of the null solution of the 1D linearized Euler equations. It is shown that
the mathematical tools and results depend on the meaning of the concepts “perturbation,” “small perturbation,” “solution of the
propagation problem,” and “small solution, that is, solution close to zero,” which are specific for each function space.

1. Motivation of
the Mathematical Considerations

Due to the practical importance of the sound attenuation in
case of the turbofan aircraft engines, in the last years more
than six hundred papers, reporting experimental and theoret-
ical results on the subject, were published.Thepapers refereed
here and those refereed herein concern acoustic perturbation
propagation in a gas flowing through a lined duct and rep-
resent just a very small part of the literature concerning the
subject.

For describing an instantaneous acoustic perturbation
propagation, the authors consider the solution of the nonlin-
ear Euler equations (without source) governing the gas flow.
After that, the nonlinear Euler equations are linearized at
the specified solution and the homogeneous linearized Euler
equations are derived. It is commonly accepted that those
equations govern the propagation of an instantaneous acous-
tic perturbation (called frequently also initial value perturba-
tions). More precisely, it is assumed that if at the moment, let
us say 𝑡 = 0, an instantaneous acoustic perturbation occurs,
then its propagation is described by that solution of the
homogeneous linearized Euler equations which satisfies on

the duct wall the boundary condition and at 𝑡 = 0 it is equal
to the perturbation in discussion.

For describing a source-produced permanent time har-
monic perturbation propagation, the mathematical objects
describing the perturbation are added as right-hand mem-
bers to the homogeneous linearized Euler equations. It is
commonly accepted that the so-obtained nonhomogeneous
linearized Euler equations govern the propagation of the
source-produced permanent time harmonic perturbation in
discussion. More precisely, it is assumed that if starting at the
moment, let us say 𝑡 = 0, a source begins to produce per-
manent time harmonic perturbation, then the propagation
of this perturbation is described by that solution of the non-
homogeneous linearized Euler equations which is equal to
zero for 𝑡 ≤ 0 and verifies on the duct wall the boundary
conditions.

It turns that in [1] for a large class of impedance
lining models (i.e., boundary conditions) the above pre-
sented initial-boundary value problem was declared “ill-
posed” because the set of the exponential growth rates of
the solutions of the homogeneous linearized Euler equations,
satisfying the considered boundary conditions, is unbounded
from above. Later in [2–4] considerable efforts were made
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for modifying the boundary conditions in order to make the
problem “well posed” in the sense defined in [1]. Here it has to
be mentioned that in [1] a concept of “well posed differential
equation” is defined. This is different from the concept of
“well-posed problem” usually in mathematics [5, 6] and
introduced by Hadamard long time ago.

Definition 1. FollowingHadamard, for a given class of instan-
taneous initial value perturbations (permanent source-pro-
duced time harmonic perturbations, resp.) one calls the
perturbation propagation problem well posed if there is
a unique solution to the problem and the solution varies
continuously with the initial data (source amplitude, resp.).

In [7] it was shown that the concept introduced in [1] is
confusing, because the equation considered in [1], depending
on the function space, can be ill-posed or can be well posed.
In fact the concept introduced in [1] is the transcription of
the behavior of an example of a semigroup of contractions of
class 𝐶

0
which act in a precise function space (see [1, 8] pages

240-241 referred in [1]). In this situation, according to [8], the
resolvent operator of the infinitesimal generator exists in a
half plane of the form Re 𝑧 > 𝜇 and the Laplace transform
can be considered for every solution of the homogeneous
equation.

The objective of the present work is to underline that
the precise description of the function space is crucial even
in the case of the 1D gas flow model, where the wall and
the lining effect are absent. For the achievement of this
objective the linear stability analysis of the constant 1D gas
flow with respect to the initial value and source-produced
permanent time harmonic perturbations is presented in four
different function spaces, revealing significant differences.
For instance, in the topological function space𝑋

4
the propa-

gation problem of the initial value perturbation is well posed,
but that of the source produced perturbation is ill posed; in
the topological function space 𝑋

1
in which the origin has

not absorbing neighborhoods, stability and strictly positive
growth rate coexists in contrast to the case of topological
vector spaces𝑋

2
,𝑋
3
.

2. The 1D Gas Flow Model

In the 1D gas flow model the nonlinear Euler equations gov-
erning the flow of an inviscid, compressible, nonheat con-
ducting, isentropic, perfect gas, according to [9], are

𝜕𝑢

𝜕𝑡
+ 𝑢 ⋅

𝜕𝑢

𝜕𝑥
+
1

𝜌
⋅
𝜕𝑝

𝜕𝑥
= 0,

𝜕𝜌

𝜕𝑡
+ 𝑢 ⋅

𝜕𝜌

𝜕𝑥
+ 𝜌 ⋅

𝜕𝑢

𝜕𝑥
= 0.

(1)

Here, 𝑡 is time, 𝑢 is velocity along the 𝑂𝑥 axis, 𝑝 is pressure,
and 𝜌 is density. Equation (1) are considered for 𝑥 ∈ 𝑅󸀠 and
𝑡 ≥ 0. It is assumed that 𝑝, 𝜌 and the absolute temperature 𝑇󸀠
satisfy the equation of state of the perfect gas:

𝑝 = 𝜌 ⋅ 𝑅 ⋅ 𝑇
󸀠 (2)

with 𝑅 = 𝑐
𝑝
− 𝑐V; 𝑐𝑝, 𝑐V being the specific heat capacities at

constant pressure and constant volume, respectively. Let

𝑢 ≡ 𝑈
0
= const > 0, 𝜌 ≡ 𝜌

0
= const > 0, 𝑝 ≡ 𝑝

0
= const > 0

be a constant solution of the system of partial differential
equations (SPDE) (1). According to (2), 𝑝

0
= 𝜌
0
⋅𝑅⋅𝑇
󸀠

0
and the

associated isentropic sound speed 𝑐
0
verifies 𝑐2

0
= 𝛾⋅(𝑝

0
/𝜌
0
) =

𝛾 ⋅ 𝑅 ⋅ 𝑇
󸀠

0
, where 𝛾 = 𝑐

𝑝
/𝑐V.

Linearizing (1) at 𝑢 = 𝑈
0
, 𝜌 = 𝜌

0
, 𝑝 = 𝑝

0
and using the

perturbations 𝑝󸀠, 𝜌󸀠 of 𝑝
0
, 𝜌
0
satisfying

(
𝜕

𝜕𝑡
+ 𝑈
0
⋅
𝜕

𝜕𝑥
) (𝑝
󸀠
− 𝑐
2

0
𝜌
󸀠
) = 0, (3)

the following system of homogeneous linear partial differ-
ential equations, for the perturbations 𝑢󸀠, 𝑝󸀠 of 𝑈

0
, 𝑝
0
, is

obtained:

𝜕𝑢
󸀠

𝜕𝑡
+ 𝑈
0
⋅
𝜕𝑢
󸀠

𝜕𝑥
+
1

𝜌
0

⋅
𝜕𝑝
󸀠

𝜕𝑥
= 0,

𝜕𝑝
󸀠

𝜕𝑡
+ 𝑈
0
⋅
𝜕𝑝
󸀠

𝜕𝑥
+ 𝛾 ⋅ 𝑝

0
⋅
𝜕𝑢
󸀠

𝜕𝑥
= 0.

(4)

It is assumed that if at 𝑡 = 0 an acoustic perturbation occurs,
then its propagation is given by that solution of (4) which at
𝑡 = 0 is equal to the perturbation in discussion. It is assumed
also that if at 𝑡 = 0 a source begins to produce permanent
time harmonic acoustic perturbation, then the propagation
of this perturbation is given by that solution of the system of
non-homogeneous linearized Euler equations:

𝜕𝑢
󸀠

𝜕𝑡
+ 𝑈
0
⋅
𝜕𝑢
󸀠

𝜕𝑥
+
1

𝜌
0

⋅
𝜕𝑝
󸀠

𝜕𝑥
= 𝑄
1
,

𝜕𝑝
󸀠

𝜕𝑡
+ 𝑈
0
⋅
𝜕𝑝
󸀠

𝜕𝑥
+ 𝛾 ⋅ 𝑝

0
⋅
𝜕𝑢
󸀠

𝜕𝑥
= 𝑄
2

(5)

which is equal to zero for 𝑡 ≤ 0.
Here 𝑄

1
, 𝑄
2
(functions or distributions) describe the

source-produced permanent time harmonic acoustic pertur-
bations, being equal to zero for 𝑡 ≤ 0 and periodic in 𝑡 for
𝑡 > 0.

Definition 2. The constant solution 𝑢 = 𝑈
0
, 𝑝 = 𝑝

0
, 𝜌 = 𝜌

0

of (1) is linearly stable with respect to the initial value per-
turbation (to the source-produced permanent time harmonic
perturbation, resp.) if the “solution 𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡) of (4)” (of
(5), resp.) “is small = close to zero” all time 𝑡 ≥ 0 provided
“𝑢󸀠(𝑥, 0), 𝑝󸀠(𝑥, 0)” ((𝑄

1
, 𝑄
2
), resp.) “is small = close to zero.”

In other words, the constant solution of (1) is linearly
stable if and only if the null solution of (4) is stable.

These stability concepts are not necessarily equivalent to
the hydrodynamic stability defined in [10].

The precise meaning of the concepts: “perturbation,”
“small perturbation,” “solution of the propagation problem,”
and “small solution” has to be designed by other definitions
and there is some freedom here.

Using this freedom, in the following we present four dif-
ferent function spaces in order to reveal that in each of them
themeaning of “perturbation,” “small perturbation,” “solution
to the propagation problem,” and “small solution” is specific
and the results and mathematical tools are specific as well.
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3. The First Function Space

The set 𝑋
1
of the perturbations of the initial value (instan-

taneous perturbations) is the topological function space [11]
of the couples 𝐻 = (𝐹, 𝐺) of continuously differentiable
functions 𝐹, 𝐺 : 𝑅󸀠 → 𝑅

󸀠 with respect to the usual algebraic
operations and topology generated by the uniform conver-
gence on 𝑅󸀠 [12].

A neighborhood of the origin𝑂 is a set𝑉
0
of couples from

𝑋
1
having the property that there exists 𝜀 > 0 such that if for

𝐻 = (𝐹, 𝐺) ∈ 𝑋
1
we have |𝐹(𝑥)| < 𝜀 and |𝐺(𝑥)| < 𝜀 for any

𝑥 ∈ 𝑅
󸀠, then𝐻 = (𝐹, 𝐺) ∈ 𝑉

0
.

The set 𝑉𝜀
0
defined by

𝑉
𝜀

0
= {𝐻 = (𝐹, 𝐺) ∈ 𝑋

1
: |𝐹 (𝑥)| < 𝜀, |𝐺 (𝑥)| < 𝜀 ∀𝑥 ∈ 𝑅

󸀠
}

(6)

is a neighborhood of the origin.
Themeaning of the concept “the perturbation𝐻 = (𝐹, 𝐺)

∈ 𝑋
1
is small” is that there exists 𝜀 small such that𝐻 ∈ 𝑉

𝜀

0
.

For a perturbation 𝐻 = (𝐹, 𝐺) ∈ 𝑋
1
(i.e., 𝑢󸀠(𝑥, 𝑜) =

𝐹(𝑥), 𝑝
󸀠
(𝑥, 𝑜) = 𝐺(𝑥)) the couple of functions 𝐻󸀠(𝑥, 𝑡) =

(𝑢
󸀠
(𝑥, 𝑡), 𝑝

󸀠
(𝑥, 𝑡)) given by

𝑢
󸀠
(𝑥, 𝑡) =

𝐹 [𝑥 − (𝑈
0
− 𝑐
0
) 𝑡] + 𝐹 [𝑥 − (𝑈

0
+ 𝑐
0
) 𝑡]

2

+
𝐺 [𝑥 − (𝑈

0
+ 𝑐
0
) 𝑡] − 𝐺 [𝑥 − (𝑈

0
− 𝑐
0
) 𝑡]

2𝑐
0
𝜌
0

,

𝑝
󸀠
(𝑥, 𝑡) = 𝑐

0
𝜌
0
⋅
𝐹 [𝑥 − (𝑈

0
+ 𝑐
0
) 𝑡] − 𝐹 [𝑥 − (𝑈

0
− 𝑐
0
) 𝑡]

2

+
𝐺 [𝑥 − (𝑈

0
+ 𝑐
0
) 𝑡] + 𝐺 [𝑥 − (𝑈

0
− 𝑐
0
) 𝑡]

2

(7)

is continuously differentiable and verifies (4) and the initial
condition:

(𝑢
󸀠
(𝑥, 0) , 𝑝

󸀠
(𝑥, 0)) = 𝐻

󸀠
(𝑥, 0) = 𝐻 (𝑥) = (𝐹 (𝑥) , 𝐺 (𝑥)) .

(8)

Proposition 3. In the class of the continuously differentiable
functions, the couple of functions (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)), given by
(7), is the unique point wise (classical) solution of the initial
value problem (4) and (8).

Proof. If (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)) is a point wise (classical) solution
of the initial value problem (4), (8), then V󸀠 = 𝑢󸀠−(1/𝑐

0
𝜌
0
) ⋅𝑝
󸀠

and 𝑞󸀠 = 𝑢󸀠 + (1/𝑐
0
𝜌
0
) ⋅ 𝑝
󸀠 satisfy the equalities

(𝜕V󸀠/𝜕𝑡) + (𝑈
0
− 𝑐
0
) ⋅ (𝜕V󸀠/𝜕𝑥) = 0,

V󸀠 (𝑥, 0) = 𝐹 (𝑥) − (1/𝑐
0
𝜌
0
) ⋅ 𝐺 (𝑥) ,

(𝜕𝑞
󸀠
/𝜕𝑡) + (𝑈

0
+ 𝑐
0
) ⋅ (𝜕𝑞

󸀠
/𝜕𝑥) = 0,

𝑞
󸀠
(𝑥, 0) = 𝐹 (𝑥) + (1/𝑐

0
𝜌
0
) ⋅ 𝐺 (𝑥) .

(9)

Hence, by using the method of characteristics, we obtain

V󸀠 (𝑥, 𝑡) = 𝐹 (𝑥 − (𝑈0 − 𝑐0) 𝑡) −
1

𝑐
0
𝜌
0

⋅ 𝐺 (𝑥 − (𝑈
0
− 𝑐
0
) 𝑡)

𝑞
󸀠
(𝑥, 𝑡) = 𝐹 (𝑥 − (𝑈

0
+ 𝑐
0
) 𝑡) +

1

𝑐
0
𝜌
0

⋅ 𝐺 (𝑥 − (𝑈
0
+ 𝑐
0
) 𝑡) .

(10)

Taking into account the equalities 𝑢󸀠 = (1/2)(V󸀠 + 𝑞󸀠), 𝑝󸀠 =
(𝑐
0
𝜌
0
/2)(𝑞
󸀠
− V󸀠), we deduce that 𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡) are given

by the formula (7). So, it was shown that if (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡))
is a point wise solution of (4) and (8), then necessarily
𝑢
󸀠
(𝑥, 𝑡), 𝑝

󸀠
(𝑥, 𝑡) are given by (7). The fact that the couple of

functions given by (7) is a solution of (4), (8) is obtained by
verification.

In other words, when the set of the perturbations of the
initial value is 𝑋

1
, then the initial value problem (4) and (8)

has a unique classical (point wise) solution [9] given by (7).
If a sequence of perturbations 𝐻

𝑛
= (𝐹
𝑛
, 𝐺
𝑛
) ∈ 𝑋

1

converges in 𝑋
1
to 𝐻 = (𝐹, 𝐺) ∈ 𝑋

1
, then for any 𝑡 ≥ 0

(fixed) the sequence of the corresponding solutions 𝐻󸀠
𝑛
(⋅, 𝑡)

belongs to 𝑋
1
and converges in 𝑋

1
to the solution 𝐻󸀠(⋅, 𝑡),

corresponding to𝐻.
Thismeans that when the set of the initial value perturba-

tions is the function space 𝑋
1
, then the initial value problem

(4) and (8) is well posed in sense of Hadamard [5, 6] on [0, 𝑇],
for any 𝑇 > 0.

In the following the couple of functions defined by (7) is
considered to be the solution to the problem of propagation
of the initial value perturbation for data in𝑋

1
.

The linear stability of the constant flow 𝑈
0
, 𝑝
0
, 𝜌
0
would

mean that for any 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such that for
any 𝐻 = (𝐹, 𝐺) ∈ 𝑉

𝛿(𝜀)

0
the corresponding solution 𝐻󸀠(𝑥, 𝑡)

(given by (7)) satisfies𝐻󸀠(⋅, 𝑡) ∈ 𝑉𝜀
0
for any 𝑡 ≥ 0.

Concerning the linear stability the following statement
holds.

Proposition 4. For any 𝜀 > 0 and 𝛿(𝜀) = 𝜀/2max (1+𝑐
0
𝜌
0
, 1+

(1/𝑐
0
𝜌
0
)) if𝐻 ∈ 𝑉

𝛿(𝜀)

0
, then𝐻󸀠(⋅, 𝑡) ∈ 𝑉𝜀

0
for 𝑡 ≥ 0.

Proof. If𝐻 = (𝐹, 𝐺) ∈ 𝑉
𝛿(𝜀)

0
, then |𝐹(𝑥)| < 𝛿(𝜀) and |𝐺(𝑥)| <

𝛿(𝜀) for any 𝑥 ∈ 𝑅󸀠. Since 𝛿(𝜀) ≤ 𝜀/2(1 + 𝑐
0
𝜌
0
) and 𝛿(𝜀) ≤

𝜀/2(1+(1/𝑐
0
𝜌
0
)) it follows that the following inequalities hold:

|𝐹(𝑥)| < 𝜀/2(1 + 𝑐
0
𝜌
0
), |𝐹(𝑥)| < 𝜀/2(1 + (1/𝑐

0
𝜌
0
)), |𝐺(𝑥)| <

𝜀/2(1 + 𝑐
0
𝜌
0
) and |𝐺(𝑥)| ≤ 𝜀/2(1 + (1/𝑐

0
𝜌
0
)) for any 𝑥 ∈ 𝑅󸀠.

By using (7) we obtain that for any 𝑥 ∈ 𝑅󸀠 and 𝑡 ≥ 0 the
following inequalities hold:

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
<
1

2
⋅ 2 ⋅

𝜀

2 (1 + 𝑐
0
𝜌
0
)
+

1

2𝑐
0
𝜌
0

⋅ 2 ⋅
𝜀

2 (1 + (1/𝑐
0
𝜌
0
))
= 𝜀
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󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨
<
1

2
⋅ 2𝑐
0
𝜌
0
⋅

𝜀

2 (1 + (1/𝑐
0
𝜌
0
))

+
1

2
⋅

2𝜀

2 (1 + 𝑐
0
𝜌
0
)
= 𝜀.

(11)

Hence,𝐻󸀠(⋅, 𝑡) ∈ 𝑉𝜀
0
for any 𝑡 ≥ 0.

This means that the null solution of (4) is stable; that is,
the constant solution 𝑢 = 𝑈

0
, 𝑝 = 𝑝

0
, 𝜌 = 𝜌

0
of (1) is linearly

stable with respect to the initial value perturbation with data
from𝑋

1
.

On the other hand, for initial data from 𝑋
1
the set of the

exponential growth rates of the solutions of the initial value
problem (4) and (8) is the whole real axis and there exist also
solutions whose exponential growth rate is equal to +∞ (for
instance, that of the solution corresponding to the initial data
𝐹(𝑥) = 𝐺(𝑥) = exp(𝑥2)).

Here, the exponential growth rate of𝐻󸀠(𝑥, 𝑡) = (𝑢󸀠(𝑥, 𝑡),
𝑝
󸀠
(𝑥, 𝑡)) is defined as

max{sup
𝑥

lim
𝑡→∞

ln 󵄨󵄨󵄨󵄨󵄨𝑢
󸀠
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑡
, sup
𝑥

lim
𝑡→∞

ln 󵄨󵄨󵄨󵄨󵄨𝑝
󸀠
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨

𝑡
} . (12)

The stability of the null solution of (4) (i.e., linear stability
of the constant solution) in the presence of solutions having
strictly positive or +∞ growth rate can be surprising. That
is because usually the stability of the null solution of the
infinite dimensional linear evolutionary equations is analyzed
in a function space in which the Hille-Yosida theory can
be applied [5, 6, 8, 13], that is, Banach space or locally
convex and sequentially complete topological vector spaces.
In the topological function space 𝑋

1
the origin possesses

neighborhoods which are not absorbing. This is the main
reasonwhile stability and strictly positive growth rate coexist.

For initial value perturbations from𝑋
1
, the very popular

Briggs-Bers stability analysis [14, 15], in case of the problem
(4), (8), cannot be applied. That is because in this context
dispersion relations cannot be derived (for an arbitrary solu-
tion, the Fourier transform with respect to 𝑥 and the Laplace
transform with respect to 𝑡 in this context do not exist). So,
it is impossible to analyze the imaginary parts of the zeros of
the dispersion relations as requires the Briggs-Bers stability
criterion.

We consider now source-produced permanent time har-
monic perturbations whose amplitudes belong to 𝑋

1
. More

precisely, perturbations for which the right-hand members
𝑄
1
, 𝑄
2
, appearing in (5), are of the form

𝑄
1 (𝑥, 𝑡) = 𝐹 (𝑥) ⋅ ℎ (𝑡) ⋅ sin𝜔𝑓𝑡,

𝑄
2
(𝑥, 𝑡) = 𝐺 (𝑥) ⋅ ℎ (𝑡) ⋅ sin𝜔

𝑓
𝑡.

(13)

Here, (𝐹, 𝐺) ∈ 𝑋
1
and represent the amplitude of the per-

turbation, ℎ(𝑡) is Heaviside function, and 𝜔
𝑓
> 0 is the

angular frequency. Such a perturbation will be denoted by
𝑃(𝐹, 𝐺, 𝜔

𝑓
).

For the perturbation 𝑃(𝐹, 𝐺, 𝜔
𝑓
) the couple of functions

𝐻
󸀠
(𝑥, 𝑡) = (𝑢

󸀠
(𝑥, 𝑡), 𝑝

󸀠
(𝑥, 𝑡)), given by

𝑢
󸀠
(𝑥, 𝑡) = ℎ (𝑡)

⋅ ∫

𝑡

0

[ (𝐹 [𝑥 − (𝑈
0
− 𝑐
0
) (𝑡 − 𝜏)]

+𝐹 [𝑥 − (𝑈
0
+ 𝑐
0
) (𝑡 − 𝜏)]) × (2)

−1

+ (𝐺 [𝑥 − (𝑈
0
+ 𝑐
0
) (𝑡 − 𝜏)]

−𝐺 [𝑥 − (𝑈
0
− 𝑐
0
) (𝑡 − 𝜏)]) × (2𝑐

0
𝜌
0
)
−1
]

⋅ sin𝜔
𝑓
𝜏𝑑𝜏,

𝑝
󸀠
(𝑥, 𝑡) = ℎ (𝑡)

⋅ ∫

𝑡

0

[𝑐
0
𝜌
0
⋅ (𝐹 [𝑥 − (𝑈

0
+ 𝑐
0
) (𝑡 − 𝜏)]

−𝐹 [𝑥 − (𝑈
0
− 𝑐
0
) (𝑡 − 𝜏)]) × (2)

−1

+ (𝐺 [𝑥 − (𝑈
0
+ 𝑐
0
) (𝑡 − 𝜏)]

+𝐺 [𝑥 − (𝑈
0
− 𝑐
0
) (𝑡 − 𝜏)]) × (2)

−1
]

⋅ sin𝜔
𝑓
𝜏𝑑𝜏

(14)

is continuously differentiable and verifies (5) and the condi-
tion

𝐻
󸀠
(𝑥, 𝑡) = (𝑢

󸀠
(𝑥, 𝑡) , 𝑝

󸀠
(𝑥, 𝑡)) = (0, 0) for 𝑡 ≤ 0. (15)

Proposition 5. In the class of the continuously differentiable
functions, the couple of functions (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)) given by
(14), is the unique point wise solution of the problem (5), (13),
and (15).

Proof. The proof of this proposition is similar to the proof of
Proposition 3.

In the following the couple of functions defined by (14) is
considered to be the solution of the problemof propagation of
the source-produced permanent time harmonic perturbation
in case of the function space𝑋

1
.

Proposition 6. For 𝑇 > 0, 𝜀 > 0, and 𝛿 = 𝛿(𝜀, 𝑇) = 𝜀/2𝑇
max (1 + 𝑐

0
𝜌
0
, 1 + (1/𝑐

0
𝜌
0
)) > 0 if 𝐻 = (𝐹, 𝐺) ∈ 𝑉

𝛿

0
, then

𝐻
󸀠
(∘, 𝑡) ∈ 𝑉

𝜀

0
, for any 𝑡 ∈ [0, 𝑇].

Proof. The proof of this proposition is similar to the proof of
Proposition 4.

This means that in this function space the propagation
problem (5) and (13), of the source-produced permanent time
harmonic perturbation, is well posed on [0, 𝑇], for any 𝑇 > 0.

Concerning the linear stability of the constant flow, the
following statement holds.
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Proposition 7. In the case of source produced permanent time
harmonic perturbations whose amplitude belongs to the func-
tion space 𝑋

1
the constant flow is linearly unstable.

Proof. The linear instability of the constant flow 𝑈
0
, 𝑝
0
, 𝜌
0

means that there exists 𝜀 > 0 such that for any𝛿 > 0 there exist
𝐻 = (𝐹, 𝐺) ∈ 𝑉

𝛿

0
and 𝑡 ≥ 0 such that the corresponding

solution𝐻󸀠(𝑥, 𝑡) (given by (14)) satisfies𝐻󸀠(⋅, 𝑡) ∉ 𝑉𝜀
0
.

The instability can be seen considering for instance 𝜀 = 1,
the perturbation𝑃

𝛿
(𝐹, 𝐺, 𝜔

𝑓
)= ℎ(𝑡)⋅(𝛿⋅sin 𝑥⋅sin𝜔

𝑓
𝑡, 0)where

𝛿 > 0 is an arbitrary real number and 𝜔
𝑓
= 𝑐
0
− 𝑈
0
. Note that

by choosing 𝛿 small, the above perturbation can be made as
small as we wish. According to (14), the propagation of this
perturbation is given by

𝑢
󸀠
(𝑥, 𝑡) = ℎ (𝑡) ⋅

𝛿

4

⋅ { − 𝑡 ⋅ cos (𝑥 + 𝜔
𝑓
𝑡) +

sin 2𝜔
𝑓
𝑡

2𝜔
𝑓

⋅ cos (𝑥 + 𝜔
𝑓
𝑡) +

sin2𝜔
𝑓
𝑡

𝜔
𝑓

⋅ sin (𝑥 + 𝜔
𝑓
𝑡)

+ [

sin 2 (𝜔
𝑓
− 𝑐
0
) 𝑡

2 (𝜔
𝑓
− 𝑐
0
)

−
sin 2𝑐
0
𝑡

2𝑐
0

]

⋅ cos (𝑥 + (𝜔
𝑓
− 2𝑐
0
) 𝑡)

+ [

sin2 (𝜔
𝑓
− 𝑐
0
) 𝑡

2 (𝜔
𝑓
− 𝑐
0
)

+
sin2𝑐
0
𝑡

𝑐
0

]

⋅ sin (𝑥 + (𝜔
𝑓
− 2𝑐
0
) 𝑡)} ,

𝑝
󸀠
(𝑥, 𝑡) = ℎ (𝑡) ⋅

𝑐
0
𝜌
0
𝛿

4

⋅ {𝑡 ⋅ cos (𝑥 + 𝜔
𝑓
𝑡) −

sin 2𝜔
𝑓
𝑡

2𝜔
𝑓

⋅ cos (𝑥 + 𝜔
𝑓
𝑡) −

sin2𝜔
𝑓
𝑡

𝜔
𝑓

⋅ sin (𝑥 + 𝜔
𝑓
𝑡)

+ [

sin 2 (𝜔
𝑓
− 𝑐
0
) 𝑡

2 (𝜔
𝑓
− 𝑐
0
)

−
sin 2𝑐
0
𝑡

2𝑐
0

]

⋅ cos (𝑥 + (𝜔
𝑓
− 2𝑐
0
) 𝑡)

+ [

sin2 (𝜔
𝑓
− 𝑐
0
) 𝑡

2 (𝜔
𝑓
− 𝑐
0
)

+
sin2𝑐
0
𝑡

𝑐
0

]

⋅ sin (𝑥 + (𝜔
𝑓
− 2𝑐
0
) 𝑡)} .

(16)

Hence, for a given 𝛿, if 𝑡 is sufficiently large, then𝐻󸀠(⋅, 𝑡) ∉ 𝑉1
0

(that is because (𝑢󸀠(⋅, 𝑡), 𝑝󸀠(⋅, 𝑡)) is as large as we wish).

The Briggs-Bers stability analysis [14, 15], with respect
to source-produced permanent time harmonic perturbation
whose amplitude belongs to 𝑋

1
, cannot be applied. That is

because in this context dispersion relations cannot be derived
(there exist perturbations whose amplitude has no Fourier
transform; for instance 𝐹(𝑥) = 𝐺(𝑥) = exp(𝑥)). So, it is
impossible to analyze the imaginary parts of the zeros of
the dispersion relations as requires the Briggs-Bers stability
criterion.

It follows that the above instability cannot be obtained by
Briggs-Bers stability analysis.

4. The Second Function Space

The set 𝑋
2
of the perturbations of the initial value is the

normed space [16] of the couples𝐻 = (𝐹, 𝐺) of continuously
differentiable and bounded functions 𝐹, 𝐺 : 𝑅

󸀠
→ 𝑅
󸀠 with

respect to the usual algebraic operations and norm defined
by

‖𝐻‖ = max{sup
𝑥∈𝑅
󸀠

|𝐹 (𝑥)| , sup
𝑥∈𝑅
󸀠

|𝐺 (𝑥)|} . (17)

The set 𝑉𝜀
0
, defined by:

𝑉
𝜀

0
= {𝐻 = (𝐹, 𝐺) ∈ 𝑋

2
: ‖𝐻‖ < 𝜀} , (18)

is a neighborhood of the origin and the meaning of the
concept “the perturbation 𝐻 = (𝐹, 𝐺) ∈ 𝑋

1
is small” is that

there exists 𝜀 > 0 small such that𝐻 ∈ 𝑉
𝜀

0
.

For an initial data 𝐻 = (𝐹, 𝐺) ∈ 𝑋
2
the couple of

functions 𝐻󸀠(𝑥, 𝑡) = (𝑢
󸀠
(𝑥, 𝑡), 𝑝

󸀠
(𝑥, 𝑡)), given by (7), is the

unique bounded classical solution of (4) and (8).
If a sequence of initial data𝐻

𝑛
= (𝐹
𝑛
, 𝐺
𝑛
) ∈ 𝑋
2
converges

in 𝑋
2
to 𝐻 = (𝐹, 𝐺) ∈ 𝑋

2
, then for any 𝑡 ≥ 0 (fixed) the

sequence of the corresponding solutions𝐻󸀠
𝑛
(⋅, 𝑡) converges in

𝑋
2
to the solution𝐻󸀠(⋅, 𝑡) corresponding to𝐻.
This means that for the set of initial data 𝑋

2
, the initial

value problem (4) and (19)

(𝑢
󸀠
(𝑥, 0) , 𝑝

󸀠
(𝑥, 0)) = 𝐻

󸀠
(𝑥, 0) = 𝐻 (𝑥) = (𝐹 (𝑥) , 𝐺 (𝑥))

(19)

is well posed in sense of Hadamard [5, 6] on [0, 𝑇], for any
𝑇 > 0.

In the following the couple of functions defined by (7) is
considered to be the solution to the problem of propagation
of the initial value perturbation for data in𝑋

2
.

The linear stability of the constant flow 𝑈
0
, 𝑝
0
, 𝜌
0
would

mean that for any 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such that for any
𝐻 ∈ 𝑋

2
if ‖𝐻‖ < 𝛿(𝜀) the corresponding solution 𝐻󸀠(𝑥, 𝑡)

(given by (7)) satisfies ‖𝐻󸀠(⋅, 𝑡)‖ < 𝜀 for any 𝑡 ≥ 0.
Concerning the linear stability, the following statement

holds.

Proposition 8. For any 𝜀 > 0 and𝐻 ∈ 𝑋
2
if ‖𝐻‖ < 𝜀/2max

(1 + 𝑐
0
𝜌
0
, 1 + 1/𝑐

0
𝜌
0
), then ‖𝐻󸀠(⋅, 𝑡)‖ < 𝜀 for 𝑡 ≥ 0.
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Proof. The proof is similar to that of Proposition 4.

This means that the null solution of (4) is stable, that is,
the constant solution 𝑢 = 𝑈

0
, 𝑝 = 𝑝

0
, 𝜌 = 𝜌

0
of (1), is linearly

stable, with respect to the initial value perturbation with data
from𝑋

2
.

For initial data from 𝑋
2
the exponential growth rate,

given by (12), of the solution of the initial value problem (4)
and (19) is equal to zero. However, for initial values from 𝑋

2

the Briggs-Bers stability analysis, in case of the problem (4)
and (19), cannot be applied. That is because, for instance, the
Fourier transformwith respect to 𝑥 of the initial value 𝐹(𝑥) =
𝐺(𝑥) ≡ 1 does not exist. So, dispersion relations cannot be
derived and the stability criterion cannot be used. Therefore,
the above stability results cannot be obtained by Briggs-Bers
stability analysis.

For source-produced permanent time harmonic pertur-
bations, whose amplitudes belong to 𝑋

2
, the right-hand

members𝑄
1
,𝑄
2
, appearing in (5), are those given by (13) with

(𝐹, 𝐺) ∈ 𝑋
2
.

For the perturbation 𝑃(𝐹, 𝐺, 𝜔
𝑓
)((𝐹, 𝐺) ∈ 𝑋

2
) the couple

of functions𝐻󸀠(𝑥, 𝑡) = (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)), given by (14), is the
unique solution of the problem (5), (13), and (15) satisfying

𝐻
󸀠
(𝑥, 𝑡) = (𝑢

󸀠
(𝑥, 𝑡) , 𝑝

󸀠
(𝑥, 𝑡)) = (0, 0) for 𝑡 ≤ 0. (20)

Concerning the continuous dependence on the amplitude of
the perturbation, the following statement holds.

Proposition 9. For any 𝑇 > 0, 𝜀 > 0 and 𝛿 = 𝛿(𝜀, 𝑇) = 𝜀/2𝑇
max (1+ 𝑐

0
𝜌
0
, 1 + (1/𝑐

0
𝜌
0
)) > 0 if ‖𝐻‖

𝑋
2

< 𝛿, then ‖𝐻󸀠(⋅, 𝑡)‖
𝑋
2

< 𝜀 for any 𝑡 ∈ [0, 𝑇].

Proof. The proof is similar to the proof of Proposition 6.

This means that the problem (5) and (20) is well posed on
[0, 𝑇], for any 𝑇 > 0.

When the amplitude of the source-produced perturba-
tion belongs to the function space𝑋

2
the couple of functions

defined by (14) is considered to be the solution of the problem
of propagation of the source-produced permanent time har-
monic perturbation.

Concerning the linear stability of the constant flow, the
following statement holds.

Proposition 10. The constant flow of (1) is linearly unstable
with respect to the source-produced permanent time harmonic
perturbations whose amplitude belongs to the function space
𝑋
2
.

Proof. It turns that the perturbations 𝑃
𝛿
(𝐹, 𝐺, 𝜔

𝑓
) = ℎ(𝑡) ⋅

(𝛿 ⋅ sin𝑥 ⋅ sin𝜔
𝑓
𝑡, 0) considered in the function space𝑋

1
are

appropriate to show the above statement.

The Briggs-Bers stability analysis [14, 15], with respect
to source-produced permanent time harmonic perturbation
whose amplitude belongs to 𝑋

2
, can not be applied. That

is because in this context dispersion relations can not be
derived (there exist perturbations whose amplitude has no
Fourier transform; for instance, the perturbation ℎ(𝑡) ⋅ (sin 𝑥 ⋅

sin𝜔
𝑓
𝑡, 0) has no Fourier transform with respect to 𝑥). So, it

is impossible to analyze the imaginary parts of the zeros of
the dispersion relations as requires the Briggs-Bers stability
criterion. Therefore, the above instability result cannot be
obtained by Briggs-Bers stability analysis.

5. The Third Function Space

In this case the set 𝑋
3
of the initial data is the normed space

of the couples 𝐻 = (𝐹, 𝐺) of functions 𝐹, 𝐺 ∈ 𝐿
2
(𝑅
󸀠
) [17]

with respect to the usual algebraic operations and the norm
defined by

‖𝐻‖𝑋
3

= max{(∫
𝑅
󸀠

|𝐹 (𝑥)|
2
𝑑𝑥)

1/2

, (∫

𝑅
󸀠

|𝐺 (𝑥)|
2
𝑑𝑥)

1/2

} .

(21)

It has to be emphasized that the functions 𝐹, 𝐺 ∈ 𝐿2(𝑅󸀠) are
defined up to addition of a measure zero function.

Themeaning of the concept “the perturbation𝐻 = (𝐹, 𝐺)

∈ 𝑋
3
is small” is that there exists 𝜀 > 0 small such that

‖𝐻‖
𝑋
3

< 𝜀.
For an initial data 𝐻 = (𝐹, 𝐺) ∈ 𝑋

3
the couple of func-

tions𝐻󸀠(𝑥, 𝑡) = (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)), given by (7), is called gen-
eralized solution of (4). A generalized solution is unique up
to addition of a measure zero solution. In general,𝐻󸀠(𝑥, 𝑡) is
not differentiable but 𝐻󸀠(⋅, 𝑡) ∈ 𝑋

3
and 𝐻󸀠(𝑥, 0) satisfy the

condition

𝐻
󸀠
(𝑥, 0) = (𝑢

󸀠
(𝑥, 0) , 𝑝

󸀠
(𝑥, 0)) = (𝐹, 𝐺) . (22)

When 𝐹, 𝐺 are continuously differentiable, then𝐻󸀠(𝑥, 𝑡) sat-
isfies (4) in classical sense.

It has to be noted that there exist continuous functions
𝐹, 𝐺 which are not differentiable at every point [17]. The
generalized solution which corresponds to an initial data of
this type is continuous but it is not differentiable at every
point.

Concerning the continuous dependence on the initial
data, we remark that for 𝑡 fixed𝐻󸀠(⋅, 𝑡) satisfies

󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠
(⋅, 𝑡)

󵄩󵄩󵄩󵄩󵄩𝑋
3

≤ max{1 + 𝑐
0
𝜌
0
, 1 +

1

𝑐
0
𝜌
0

} ⋅
󵄩󵄩󵄩󵄩󵄩
𝐻
󸀠
(⋅, 0)

󵄩󵄩󵄩󵄩󵄩𝑋
3

.

(23)

Inequality (23) implies that if the sequence of initial data𝐻
𝑛
=

(𝐹
𝑛
, 𝐺
𝑛
) ∈ 𝑋

3
converges in 𝑋

3
to 𝐻 = (𝐹, 𝐺) ∈ 𝑋

3
, then for

any 𝑡 ≥ 0 the sequence of the corresponding solutions𝐻󸀠
𝑛
(⋅, 𝑡)

converges in 𝑋
3
to 𝐻󸀠(⋅, 𝑡), corresponding to 𝐻 = (𝐹, 𝐺) ∈

𝑋
3
.
This means continuous dependence on the initial data.
Therefore, in the case of the set of initial data 𝑋

3
, the

initial value problem (4) and (22) is well posed in sense of
Hadamard on [0, 𝑇] for every 𝑇 > 0.

In the following the couple of functions defined by (7) up
to addition of a measure zero solution, is considered to be
the solution to the problem of propagation of the initial value
perturbation for data in𝑋

3
.

As concerns stability, the following statement holds.
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Proposition 11. For any 𝜀 > 0 and𝐻 ∈ 𝑋
3
if ‖𝐻‖ < 𝜀/2max

(1 + 𝑐
0
𝜌
0
, 1 + 1/𝑐

0
𝜌
0
), then ‖𝐻󸀠(⋅, 𝑡)‖ < 𝜀 for 𝑡 ≥ 0.

Proof. The proof is similar to that of Proposition 8.

This means that the null solution of (4) is stable; that is,
the constant solution = 𝑈

0
, 𝑝 = 𝑝

0
, 𝜌 = 𝜌

0
of (1) is linearly

stable with respect to the initial value perturbation with data
from𝑋

3
.

For initial data from 𝑋
3
the exponential growth rate,

given by (12), of the solution of the initial value problem (4)
and (22), is equal to zero.

For every generalized solution the Laplace transform is
defined for Re 𝑧 > 0 and the Fourier transform with respect
to 𝑥 exists. So, dispersion relation can be derived and the
stability can be analyzed by analyzing the imaginary parts
of the zeros of the dispersion relation. This means that both
steps of the Briggs-Bers stability analysis can be undertaken.
However, the above stability result was obtained directly not
by Briggs-Bers stability analysis.

What can be strange for engineers in this function space
is the presence of solutions which are continuous but are not
differentiable at every point.Which kind of propagation does
represent such a solution?

For source-produced permanent time harmonic per-
turbation, whose amplitudes belong to 𝑋

3
, the right-hand

members𝑄
1
,𝑄
2
, appearing in (5), are those given by (13) with

(𝐹, 𝐺) ∈ 𝑋
3
.

For the perturbation 𝑃(𝐹, 𝐺, 𝜔
𝑓
)((𝐹, 𝐺) ∈ 𝑋

3
) the couple

of functions𝐻󸀠(𝑥, 𝑡) = (𝑢󸀠(𝑥, 𝑡), 𝑝󸀠(𝑥, 𝑡)), given by (14) up to
addition of a measure zero solution will be called generalized
solution of the propagation problem (5) and (24)

𝐻
󸀠
(𝑥, 𝑡) = (𝑢

󸀠
(𝑥, 𝑡) , 𝑝

󸀠
(𝑥, 𝑡)) = (0, 0) for 𝑡 ≤ 0. (24)

Concerning the continuous dependence on the amplitude of
the perturbation, the following statement holds.

Proposition 12. For any 𝑇 > 0, 𝜀 > 0 and 𝛿 = 𝛿(𝜀, 𝑇) = 𝜀/2𝑇
max(1+𝑐

0
𝜌
0
, 1+(1/𝑐

0
𝜌
0
)) > 0 if ‖𝐻‖

𝑋
3

< 𝛿, then ‖𝐻󸀠(⋅, 𝑡)‖
𝑋
3

<

𝜀 for any 𝑡 ∈ [0, 𝑇].

Proof. The proof is similar to the proof of Proposition 6.

This means that the problem (5) and (24) is well posed on
[0, 𝑇] for any 𝑇 > 0.

The linear instability of the constant flow of (1) with
respect to this kind of perturbations can be shown similarly
as in the function space𝑋

1
, by considering the perturbations

𝐹(𝑥) = 𝛿 sin𝑥/1 + 𝑥2, 𝐺(𝑥) = 0 and 𝜔
𝑓
= 𝑐
0
− 𝑈
0
.

Since the Fourier transform with respect to 𝑥 and the
Laplace transform with respect to 𝑡 of any solution exist,
dispersion relation can be derived, and the stability analysis
could be undertaken by analyzing the imaginary parts of
zeros of dispersion relations (both steps of the Briggs-Bers
stability analysis can be undertaken in this function space).
However, in this paper the instability was derived directly.

6. The Fourth Function Space

The set𝑋
4
of the perturbations of the initial data is the locally

convex vector space of the couples 𝐻 = (𝐹, 𝐺) of tempered
distributions 𝐹, 𝐺 ∈ 𝑆󸀠(𝑅󸀠) [8] with respect to the usual alge-
braic operations and seminorms 𝑞

𝐵
defined by

𝑞
𝐵
(𝐻) = max {𝑞

𝐵
(𝐹) , 𝑞

𝐵
(𝐺)} , (25)

where 𝐵 are bounded sets in the space of the rapidly decreas-
ing functions 𝑆(𝑅󸀠) and 𝑞

𝐵
is the seminorm on 𝑆󸀠(𝑅󸀠) defined

by 𝑞
𝐵
(𝐹) = sup

𝜑∈𝐵
|𝐹(𝜑)|.

The set 𝑉𝜀,𝑞𝐵
0

defined by

𝑉
𝜀,𝑞
𝐵

0
= {𝐻 = (𝐹, 𝐺) ∈ 𝑋

4
: 𝑞
𝐵
(𝐻) < 𝜀} (26)

is a neighborhood of the origin and the meaning of the con-
cept “the perturbation𝐻 = (𝐹, 𝐺) ∈ 𝑋

4
is small” is that there

exists 𝜀 > 0 small and 𝐵 bounded such that 𝐻 = (𝐹, 𝐺) ∈

𝑉
𝜀,𝑞
𝐵

0
.
If the initial value perturbation is a couple of tempered

distributions 𝐻 = (𝐹, 𝐺) ∈ 𝑋
4
, then a solution of (4) is a

family𝐻󸀠(𝑡) = (𝑢󸀠(𝑡), 𝑝󸀠(𝑡)) of couples of tempered distribu-
tions which satisfies (4) for 𝑡 ≥ 0 and the initial condition

𝐻
󸀠
(0) = (𝑢

󸀠
(0) , 𝑝

󸀠
(0)) = 𝐻 = (𝐹, 𝐺) ∈ 𝑋

4
. (27)

Proposition 13. If the initial value problem (4) and (27) has a
solution𝐻󸀠(𝑡) = (𝑢󸀠(𝑡), 𝑝󸀠(𝑡)), then its Fourier transform with
respect to 𝑥 is a family of couples of tempered distributions
𝐻̂
󸀠
(𝑡) = (𝑢̂

󸀠
(𝑡), 𝑝
󸀠
(𝑡)), 𝑡 ≥ 0 which satisfies the following equa-

tions:
𝜕𝑢̂
󸀠

𝜕𝑡
+ 𝑖𝑘𝑈

0
⋅ 𝑢̂
󸀠
+ 𝑖𝑘

1

𝜌
0

⋅ 𝑝
󸀠
= 0,

𝜕𝑝
󸀠

𝜕𝑡
+ 𝛾𝑝
0
𝑖𝑘 ⋅ 𝑢̂
󸀠
+ 𝑖𝑘𝑈

0
⋅ 𝑝
󸀠
= 0

(28)

and the initial condition

𝑢̂
󸀠
(0) = 𝐹, 𝑝

󸀠
(0) = 𝐺. (29)

Proof. By computation.

Remark, that the problem (4) and (27) is well posed if and
only if the problem (28) and (29) is well posed.

Concerning the problem (28) and (29) the following state-
ment holds.

Proposition 14. The problem (28) and (29) is well posed on
any finite interval and its solutions is given by

𝑢̂
󸀠
(𝑡) =

𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡
+ 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

2

⋅ 𝐹 +
𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

2𝑐
0
𝜌
0

⋅ 𝐺,

𝑝
󸀠
(𝑡) = 𝑐

0
𝜌
0

𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

2

⋅ 𝐹 +
𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡
+ 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

2
⋅ 𝐺.

(30)



8 Abstract and Applied Analysis

Proof. The existence and uniqueness are easy to see. We will
show only the continuous dependence on the initial data
in case of the problem (28) and (29). For that, consider
𝑇 > 0, 𝜀 > 0 and a semi norm 𝑞

𝐵
in 𝑋
4
. After that, con-

sider a bounded set 𝐵󸀠 ⊂ 𝑆(𝑅󸀠), which contains the following
bounded sets:

𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡
+ 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

2
⋅ 𝐵;

𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

2𝑐
0
𝜌
0

⋅ 𝐵;

𝑐
0
𝜌
0

𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

2
⋅ 𝐵

(31)

for any 𝑡 ∈ [0, 𝑇]; the semi norm 𝑞
𝐵
󸀠 in 𝑋

4
and 𝛿 = 𝜀/(1 +

𝑞
𝐵
󸀠(𝐹, 𝐺)) > 0. Remark that for any (𝐹, 𝐺) ∈ 𝑋

4
with 𝑞

𝐵
󸀠

(𝐹, 𝐺) < 𝛿 we have 𝑞
𝐵
(𝑢̂
󸀠
(𝑡), 𝑝
󸀠
(𝑡)) < 𝜀 for 𝑡 ∈ [0, 𝑇].

Proposition 15. The problem (4) and (27) is well posed.

Proof. The inverse Fourier transform of (𝑢̂󸀠(𝑡), 𝑝󸀠(𝑡)) = 𝐻̂󸀠(𝑡)
given by (30) is the unique solution of (4) and (27). The
continuous dependence of the solutions of (4) and (27) is a
corollary of the continuous dependence on the initial data
of the solution of (28) and (29) and of the continuity of the
Fourier and inverse Fourier transforms.

So, the problem (4) and (27) is well posed.

Concerning the stability, the following statement holds.

Proposition 16. The null solution of (28) is unstable.

Proof. The instability of the null solution of (28) means that
there exist 𝜀

0
> 0 and a semi norm 𝑞

𝐵
0

such that for any real
number 𝛿 > 0 and any semi norm 𝑞

𝐵
in 𝑋
4
there exist 𝐻 =

(𝐹, 𝐺) ∈ 𝑉
𝛿,𝑞
𝐵

0
and 𝑡 ≥ 0 such that the corresponding solution

𝐻
󸀠
(𝑡) (given by (30)) satisfies𝐻󸀠(𝑡) ∉ 𝑉𝜀0 ,𝑞𝐵0

0
. Let us consider

now 𝜀
0
= 1, 𝐵

0
—a bounded set of rapidly decreasing func-

tions which contains the function 𝜑
0
(𝑘) = exp(−𝑘2), and

the tempered distribution defined by 𝐹
0
(𝜑) = 𝜑

󸀠
(0). Remark

that for an arbitrary real number 𝛿 > 0 and an arbitrary
bounded set 𝐵 of rapidly decreasing functions, there exists a
real number 𝜀 > 0 such that 𝑞

𝐵
(𝜀 𝐹
0
) < 𝛿 (𝑉𝛿,𝑞𝐵

0
is absorbing).

It follows that (𝜀 ⋅ 𝐹
0
, 0) ∈ 𝑉

𝛿,𝑞
𝐵

0
. On the other hand, for the

solution (𝑢̂󸀠(𝑡), 𝑝󸀠(𝑡)) of the initial value problem (28), (29)
with 𝐹 = 𝜀𝐹

0
and 𝐺 = 0, the following relations hold:

𝑢̂
󸀠
(𝑡) = −𝑖𝜀𝑈

0
𝑡𝜑 (0) + 𝜑

󸀠
(0) ,

𝑝
󸀠
(𝑡) = −𝑖𝜀𝑐

2

0
𝜌
0
𝑡𝜑 (0) ,

𝑞
𝐵
0

(𝑢̂
󸀠
(𝑡)) = 𝜀 ⋅ sup

𝜑∈𝐵
0

󵄨󵄨󵄨󵄨󵄨
𝑢̂
󸀠
(𝑡) (𝜑)

󵄨󵄨󵄨󵄨󵄨
≥ 𝜀

⋅
󵄨󵄨󵄨󵄨󵄨
𝑢̂
󸀠
(𝑡) (𝜑
0
)
󵄨󵄨󵄨󵄨󵄨
= 𝜀𝑈
0
𝑡,

𝑞
𝐵
0

(𝑝
󸀠
(𝑡)) = 𝜀 ⋅ sup

𝜑∈𝐵
0

󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(𝑡) (𝜑)

󵄨󵄨󵄨󵄨󵄨
≥ 𝜀

⋅
󵄨󵄨󵄨󵄨󵄨
𝑝
󸀠
(𝑡) (𝜑
0
)
󵄨󵄨󵄨󵄨󵄨
= 𝜀𝑐
2

0
𝜌
0
𝑡,

𝑞
𝐵
0

(𝑢̂
󸀠
(𝑡) , 𝑝
󸀠
(𝑡)) ≥ 𝜀𝑡max {𝑈

0
, 𝑐
2

0
𝜌
0
} .

(32)

Therefore, for 𝑡 sufficiently large, we have 𝑞
𝐵
0

(𝑢̂
󸀠
(𝑡), 𝑝
󸀠
(𝑡)) >

1 = 𝜀
0
.

Hence, the null solution of (28) is unstable. Since the
inverse Fourier transform is continuous, the null solution of
(4) is also unstable in𝑋

4
.

For source-produced permanent time harmonic pertur-
bations, whose amplitudes belong to 𝑋

4
, the right-hand

members 𝑄
1
, 𝑄
2
, appearing in (5) are given by

𝑄
1
= ℎ (𝑡) ⋅ 𝑒

𝑖𝜔
𝑓
𝑡
⋅ 𝐹, 𝑄

2
= ℎ (𝑡) ⋅ 𝑒

𝑖𝜔
𝑓
𝑡
⋅ 𝐺, (33)

where𝐻 = (𝐹, 𝐺) ∈ 𝑋
4
.

The unknown tempered distributions 𝑢󸀠(𝑡), 𝑝󸀠(𝑡) have to
satisfy (5) and the condition

𝑢
󸀠
(𝑡) = 0, 𝑝

󸀠
(𝑡) = 0, for 𝑡 ≤ 0. (34)

If the problem (5) and (34) has a solution 𝐻󸀠(𝑡) = (𝑢
󸀠
(𝑡),

𝑝
󸀠
(𝑡)) ∈ 𝑋

4
, then the Fourier transforms 𝑢̂󸀠(𝑡), V̂󸀠(𝑡) are tem-

pered distributions and satisfy

𝜕𝑢̂
󸀠

𝜕𝑡
+ 𝑖𝑘𝑈

0
⋅ 𝑢̂
󸀠
+ 𝑖𝑘

1

𝜌
0

⋅ 𝑝
󸀠
= ℎ (𝑡) ⋅ 𝑒

𝑖𝜔
𝑓
𝑡
⋅ 𝐹,

𝜕𝑝
󸀠

𝜕𝑡
+ 𝛾𝑝
0
𝑖𝑘 ⋅ 𝑢̂
󸀠
+ 𝑖𝑘𝑈

0
⋅ 𝑝
󸀠
= ℎ (𝑡) ⋅ 𝑒

𝑖𝜔
𝑓
𝑡
⋅ 𝐺,

𝑢̂
󸀠
(𝑡) = 0, 𝑝

󸀠
(𝑡) = 0 for 𝑡 ≤ 0.

(35)

Hence, we got

𝑢̂
󸀠
(𝑡) =

ℎ (𝑡)

2

× [
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
− 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

+
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
+ 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

] ⋅ 𝐹

+
ℎ (𝑡)

2𝑐
0
𝜌
0

[
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
+ 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

−
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
− 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

] ⋅ 𝐺,
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𝑝
󸀠
(𝑡) =

𝑐
0
𝜌
0
⋅ ℎ (𝑡)

2

× [
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
+ 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

−
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
− 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

] ⋅ 𝐹

+
ℎ (𝑡)

2
[

𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
+𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
+ 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

+
𝑒
𝑖𝜔
𝑓
𝑡
− 𝑒
−𝑖(𝑈
0
−𝑐
0
)𝑘𝑡

𝑖 [(𝑈
0
− 𝑐
0
) ⋅ 𝑘 + 𝜔

𝑓
]

] ⋅ 𝐺.

(36)

It can be seen that for arbitrary 𝐹, 𝐺 ∈ 𝑆
󸀠
(𝑅
󸀠
), 𝑢̂󸀠(𝑡), V̂󸀠(𝑡),

given by (36), are not necessarily tempered distributions.
This contradiction shows that the problem (5) and (34) is ill
posed.

7. Conclusions

(i) The obtained results show that the well-posedness and
linear stability concepts of the constant gas flow in 1D flow
model are highly dependent on the function space. There
exists function space in which the constant gas flow is stable
and another function space inwhich the same flow is unstable
with respect to the initial value perturbations. There exists
function space in which the propagation problem of the
source produced perturbation is well posed and another
function space in which the propagation problem is ill posed.

(ii) For the stability of the constant gas flow with respect
to the initial value perturbations it is not necessary that the
set of the exponential growth rate of the solutions of the
homogeneous linearized Euler equations be bounded from
above. There exists function space in which the constant gas
flow is stable with respect to the initial value perturbations
although the set of the exponential growth rate of the
solutions of the homogeneous Euler equations is the whole
real axis. So, the stability of the null solution cannot be denied
just because the set of the exponential growth rate of the
solutions is not bounded from above.

(iii) The stability of the constant gas flow with respect to
the initial value perturbations is not a sufficient condition for
the stability of the same solution with respect to source pro-
duced permanent time harmonic perturbations. There exists
function space in which the constant gas flow is stable with
respect to the initial value perturbations and it is unstable
with respect to the source produced perturbations.

(iv) In two of the considered function spaces the Briggs-
Bers stability analysis cannot be applied, because dispersion
relations cannot be derived. So, the stability or instability
results obtained directly in this function spaces cannot be
obtained by Briggs-Bers stability analysis.

(v) Continuous dependence on the initial data (on the
source amplitude, resp.) is an expression of stability on a finite

interval of time and stability means continuous dependence
on the infinite interval of time [0, +∞). In practice, the
duration of the propagation is finite. For the eight situations
considered in this paper, the continuous dependence on any
finite interval of time in seven situations is valid.The stability
on [0, +∞) is valid only in three situations. So, the continuous
dependence on any finite interval of time is less dependent
on the function space. Taking into account the above facts,
from practical point of view, the question is: the continuous
dependence or the stability is important?

(vi) When theoretical results are tested against experi-
mental results, the computed mathematical variable has to
correspond to the experimentally measured quantity. For
instance, in this paper there are four different mathematical
variables for expressing that the perturbation and the corre-
sponding solution of the propagation problem are small, that
is, close to zero. Which one of them does correspond to an
experimentally measured quantity when the duct is infinitely
long?

(vii) The results obtained could be useful in a better un-
derstanding of some apparently strange results published in
the literature concerning the sound propagation in a gas flow-
ing through a lined duct, since there are neither set rules nor
understanding of the “right” way to model the phenomenon.
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