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The paper by Liu (2010) introduces amethod termed the canonical least-squaresMonte Carlo (CLM)which combines amartingale-
constrained entropy model and a least-squares Monte Carlo algorithm to price American options. In this paper, we first provide
the convergence results of CLM and numerically examine the convergence properties.Then, the comparative analysis is empirically
conducted using a large sample of the S&P 100 Index (OEX) puts and IBM puts.The results on the convergence show that choosing
the shifted Legendre polynomials with four regressors is more appropriate considering the pricing accuracy and the computational
cost. With this choice, CLM method is empirically demonstrated to be superior to the benchmark methods of binominal tree and
finite difference with historical volatilities.

1. Introduction

Stutzer [1] has initially proposed the canonical valuation
method for valuing European options under an entropy
framework and due to its effective performance in pricing
European options, the canonical valuation was extended
to value American options by employing the least-squares
Monte Carlo algorithm (LSM, see [2–5]). However, neither
of them is analyzed on the convergence and no empirical
investigation is done on the former approach termed canon-
ical least-squares Monte Carlo (CLM) method. This paper
sets out to analyze the convergence properties for the CLM
method and to document the empirical performance of the
CLMmethod.

As is known, the crucial part of the LSM approach
is the approximation of a set of conditional expectation
functions and exactly due to this, it is necessary to explore
the convergence for the cross-sectional regressions and for
the estimated price. Clément et al. [6] prove that, for any
fixed number of basis functions, the conditional expectation
functions can be reached as the number of simulated paths

tends to infinity and then converges to the value function
of American option as the number of regressors tends to
infinity. A further study in Stentoft [7] provides the rate of
convergence of the conditional expectation approximation to
the true expectation function as well as that of the American
price estimate to the true price.

For the newly proposed CLM method, having generated
the canonical risk-neutral paths of the underlying price, it
uses the LSM algorithm to determine the optimal stopping
rule along each of the generated paths so as to ultimately
produce the price of theAmerican option.Therefore, the con-
vergence of CLM method is more like that of LSM method.
And for the purpose of examining the convergence, in this
paperwe conduct a numerical analysis by varying the number
of the paths and the number of regressors as well as the type
of regressors, each of which could influence the performance
of the method and hence affect the results obtained.

It needs to be noted that, to obtain the rate of convergence,
this paper slightly modifies the CLM in the following way:
when approximating the conditional expectation function,
a new set of independently simulated paths is used for the
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regressions at each time step, rather than using the same set
of paths at all the time points. See Section 3.1 for details.

Another purpose of this paper is to test the pricing per-
formance of the CLM method. Following a general tradition
(as the typical representatives of index option and equity
option, S&P 100 Index and IBM options are widely used in
many empirical studies when one new method is proposed.
For example, Harvey and Whaley [8, 9] are the first to treat
the S&P 100 Index options as American-style options in
their empirical studies. The effect of stochastic dividends
and volatility on the price and exercise boundary of the
American-style S&P 100 Index calls was studied by Broadie
et al. [10], who also investigated empirically the American-
style S&P 100 Index options [11]. The S&P 100 Index options
were also used in those studies [12–16]. For equity options,
American put options on four common stocks, including
IBM, were studied using the neural network approach by
Kelly and Shorish [17]. Stentoft [18] used IBM puts among
others to test his option pricing method based on GARCH
models and the normal inverse Gaussian distribution), we
choose the American-style S&P 100 Index (OEX) (OEX is
the ticker symbol for options on the S&P 100 Index with
American-style exercise and expiration on the third Friday.
In addition, there are weekly OEXOptions that expire within
several weeks but not on the third Friday, and OEX LEAPS
Options that last for two to three years and expire on the
third Friday. Further, CBOE offers XEO, the European-style
options on the S&P 100 Index) puts and IBM puts for the
empirical investigation. Unlike previous empirical work, the
current study seems to be also notable in four aspects: (1) data
of both IBM puts and OEX puts for a period which covers the
peak period of the 2008 US financial crisis are collected; (2)
all possible moneyness (heremoneyness for puts is defined as
the ratio of the strike price to the underlying asset’s price) are
considered; (3) dividend, an important factor for American-
style options [8, 10], is treated explicitly; (4) the risk-free
interest rate utilized is interpolated linearly from the daily US
Treasury yield curve. Meanwhile, CLM generates simulated
paths for the underlying process from a canonical risk-
neutral distribution, while Alcock-Carmichael [4] simulates
underlying paths directly from historical gross returns. As a
consequence, CLM can work with a much smaller set of his-
torical gross returns in obtaining the canonical distribution
and in simulating paths. In addition, when deriving the dis-
tributions, we use the previous 130 or 260 daily gross returns,
so are the paths simulated. The pricing results are collected
into twelve categories of moneyness maturity and compared
to those of the benchmarkmethods of binomial tree and finite
difference by using three well-known error statistics. Overall,
the CLM is found to be superior to the benchmarks.

The remainder of the paper is constructed as follows.
Section 2 introduces the CLM valuation framework with
detailed procedures. Section 3 discusses the convergence
properties of CLM and numerically examines the pricing
accuracy. Section 4 describes the methodology and the data
of our empirical examination as well as the treatment of
the important factors of dividend and interest rate. Also in
this section the results of our empirical study are reported.
Section 5 concludes.

2. Canonical Least-Squares Monte Carlo
Valuation of American Options

2.1. Canonical Risk-Neutral Distribution. Initially the task of
CLM valuation is to derive the “best” equivalent martingale
measure 𝜋∗, for the daily gross return 𝑅 of the underlying
asset, from a prior empirical probability distribution. Here
we use the principle of maximum entropy. Entropy is an
information theoretic concept that can be crudely interpreted
as “explanatory information contained within a sample.”
When sample data, say a sample of historical gross returns, is
transformed,much of the explanatory information contained
in the sample is lost due to the transformation process.Within
the context of entropy, the “best” measure transformation is
that which loses the least entropy during transformation.

Assume a sample of 𝑛 observations of historical daily
price ratios (or gross returns) of the underlying asset, {𝑅

𝑘
=

𝑆
𝑘−1

/𝑆
𝑘
: 𝑘 = 1, 2, . . . , 𝑛}, where 𝑆

𝑘
denotes that the 𝑘th

historical underlying price is given and the continuously
compounded risk-free interest rate is 𝑟 (the risk-free interest
rate varies from the trading date and the time to maturity.
Its treatment is discussed in Section 4.2). Denote the risk-
neutral (martingale) probability of𝑅

𝑘
by𝜋∗

𝑘
that is to be deter-

mined. The entropy pricing framework is given as follows:

𝜋̂
∗

= arg
𝜋
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365
) ,

(1)

where the constraint equation 𝐸
𝜋
∗(𝑅) = exp(𝑟/365) is the

martingale restriction and exactly the expectation under the
martingale measure 𝜋∗ can be expressed as follows:

𝐸
𝜋
∗ (𝑅) =

𝑛

∑
𝑘=1

𝜋
∗

𝑘
𝑅
𝑘
. (2)

This constrained minimization (1) can be solved using
the Duality Theorem (see, e.g., Theorem 1 in [19, pages 264,
268-269]) by constructing the Lagrangian function. Conse-
quently, the resultant risk-neutral martingale probability is

𝜋
∗

𝑘
=

exp (𝛾∗ (𝑅
𝑘
/ exp (𝑟/365)))

∑
𝑛

𝑘=1
exp (𝛾∗ (𝑅

𝑘
/ exp (𝑟/365)))

, 𝑘 = 1, 2, . . . , 𝑛,

(3)

where 𝛾∗ is the Lagrangianmultiplier and can be obtained by
solving the following unconstrained problem:

𝛾
∗

= arg min
𝛾

𝑛

∑
𝑘=1

exp [𝛾(
𝑅
𝑘

exp (𝑟/365)
− 1)] . (4)

Thus 𝜋∗
𝑘
in (3) provides a risk-neutral distribution for

the daily underlying gross return and is termed here the
canonical risk-neutral distribution from which independent
random samples of gross returns can be drawn and hence
the underlying price paths generated. It should be noted that
although the canonical risk-neutral distributionwe derived is
for daily gross return 𝑅

𝑘
, it is exactly applicable to any interval

of length of gross return if 1/365 in (3) is replaced with the
length of such interval.
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2.2. Risk-Neutral Paths of the Underlying Price. According to
the risk-neutral distribution 𝜋∗

𝑘
given in (3), the independent

random sample of future gross returns can be drawn from
the set of historical gross returns. To be specific, starting with
the valuation date 𝑡

0
, each historical return 𝑅

𝑘
is associated

with a risk-neutral probability 𝜋∗
𝑘
and a sample of 𝑛 daily

returns {𝑅̃
1
, 𝑅̃

2
, . . . , 𝑅̃

𝑛
} is randomly drawn from the set

{𝑅
𝑘
, 𝑘 = 1, 2, . . . , 𝑛} according to 𝜋∗

𝑘
employing the inverse

transform method (Brandimarte [20, pages 230–232]). With
the sampled returns and the initial price 𝑆

𝑡
0

given, a risk-
neutral price path is then generated.We repeat this procedure
𝑁 times and obtain𝑁 risk-neutral price paths as follows:
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(5)

where 𝑅̃
(𝑘)

𝑖
is the 𝑖th random sample of the gross return

along the 𝑘th underlying path (note that, in this paper,
such generated price paths are only used at one time step.
To achieve the rate of convergence, the procedure needs
to be independently repeated 𝐾 (the number of potential
exercise points) times. The reason for this is that the same
set of simulated paths used at each step could result in the
dependence between the payoff paths. However, the paths
should be asymptotically independent since the conditional
expectation approximation converges to the true function.
This issue is discussed in Section 3.1).

Now with those generated risk-neutral price paths, the
LSM algorithm of Longstaff and Schwartz [2] is then applied
to determine the optimal stopping strategy for each path and
hence theAmerican option can be valued by discounting each
cash flow at the optimal exercise points back to time zero and
taking the average over all the paths.

2.3. Optimal Stopping Strategy Based on Least-Squares Algo-
rithm and the American Option Value. This subsection con-
siders the American option valuation as an optimal stopping
time problem (alternatively one can treat it as a problem
of “value function” by defining the value of the option at
potential exercise time 𝑡

𝑘
, 𝑉(𝑡

𝑘
) = max(𝑍(𝑡

𝑘
), 𝐸

𝜋
∗[𝑉(𝑡

𝑘+1
) |

𝑆(𝑡
𝑘
)]), and this can be solved by another algorithm not given

here) so as to use the least-squares algorithm to determine
the optimal stopping strategy. To fix notation, we let 𝑡

0
= 0,

𝑡
𝐾
= 𝑇, and 𝑟 denote the valuation date, maturity date, and

the risk-free interest rate, respectively, and assume that an
American option can only be exercised at a set of 𝐾 fixed
time points 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝐾
= 𝑇. In addition,

𝜔 denotes a sample path in the Monte Carlo simulation (or
specifically 𝜔

𝑛
stands for the 𝑛th path, 0 ≤ 𝑛 ≤ 𝑁) and

𝑆(𝜔, 𝑡
𝑘
) is the underlying price at time 𝑡

𝑘
along the path of

𝜔. We further denote by 𝑍(𝜔, 𝑡
𝑘
) an adapted payoff process;

for example, for the American put option with strike price𝐾,
𝑍(𝜔, 𝑡

𝑘
) = max(𝐾 − 𝑆(𝜔, 𝑡

𝑘
), 0). Finally we let 𝑇(𝑡

𝑘
) denote

the set of all stopping times with values in {𝑡
𝑘
, . . . , 𝑡

𝐾
} and

define the function 𝐶(𝜔, 𝜏(𝑡
𝑘
)) = 𝑒−𝑟(𝜏(𝑡𝑘)−𝑡𝑘)𝑍(𝜔, 𝜏(𝑡

𝑘
)) as the

cash flow of an option discounted back to 𝑡
𝑘
conditional on

the option not being exercised up to time and on following a
stopping strategy, written as 𝜏(𝑡

𝑘
), from 𝑡

𝑘
to 𝑇.

With these notations we can write the price of an
American option as follows:

𝑉 (0) = max
𝜏(0)∈𝑇(0)

𝐸
𝜋
∗ [𝐶 (𝜔, 𝜏 (0))] , (6)

where the maximization is over stopping times 𝜏(0) ∈ 𝑇(0)

and the expectation is under the risk-neutral measure 𝜋∗ =

(𝜋∗
1
, 𝜋∗

2
, . . . , 𝜋∗

𝑛
) in (3).

For theAmerican option pricing problem (6), the optimal
stopping times 𝜏(𝑡

𝑘
) can be generated iteratively according to

the following algorithm:
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(7)

Obviously, if the conditional expectations given by
𝐸
𝜋
∗[𝐶(𝜔, 𝜏(𝑡

𝑘+1
)) | 𝑆(𝜔, 𝑡

𝑘
)] are known, then the value

of the option in (6) can be expressed in terms of the optimal
stopping times in (7) as follows:

𝑉 (0) = 𝐸
𝜋
∗ [𝐶 (𝜔, 𝜏 (0))] . (8)

Although the conditional expectation function
𝐸
𝜋
∗[𝐶(𝜔, 𝜏(𝑡

𝑘+1
))|𝑆(𝜔, 𝑡

𝑘
)] cannot be calculated, as those

future cash flows are in general not known at time 𝑡
𝑘
,

LSM bypasses this problem by working backwards
and approximating this function, here we write it as
𝐻(𝜔, 𝑡

𝑘
) ≡ 𝐸

𝜋
∗[𝐶(𝜔, 𝜏(𝜔, 𝑡
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)) | 𝑆(𝜔, 𝑡
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)], by a linear sum

based on𝑀 terms
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where {𝜙
𝑚
(⋅)}

𝑀−1

𝑚=0
form a basis such as Monomials, Laguerre,

and Shifted Legendre polynomials. However, the coefficients
{𝑎

𝑚
(𝑡
𝑘
)}
𝑀−1

𝑚=0
at time 𝑡

𝑘
are generally unknown and need to

be estimated by a coefficient series, written as {𝑎𝑁
𝑚
(𝑡
𝑘
)}
𝑀−1

𝑚=0
,

using the least-squares regression when implementing the
procedure, where the coefficients {𝑎𝑁

𝑚
(𝑡
𝑘
)}
𝑀−1

𝑚=0
are calculated

as the solution to the following minimization problem:
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2

.

(10)

From this, an approximation 𝐻̃𝑁

𝑀
(𝜔, 𝑡

𝑘
) to 𝐻(𝜔, 𝑡

𝑘
) can be

constructed as follows:
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Then an approximation 𝜏𝑁
𝑀
(𝑡
𝑘
) to the optimal stopping time

algorithm 𝜏(𝑡
𝑘
) in (7) can be derived as follows:

𝜏
𝑁

𝑀
(𝑡
𝐾
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𝐾
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𝜏
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𝑘
1
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+ 𝜏
𝑁

𝑀
(𝑡
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̃
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(12)

where 1
{⋅}
is the indicator function.

Using (10) and (11) yields the best linear approximation
to 𝐻

𝑀
(𝜔, 𝑡

𝑘
) based on the 𝑁 simulated paths and then the

option value in (8) can be estimated as follows:

𝑉
𝑁

𝑀
(0) =

1

𝑁

𝑁

∑
𝑛=1

𝐶 (𝜔
𝑛
, 𝜏

𝑁

𝑀
(0)) . (13)

3. Convergence of Canonical
Least-Squares Monte Carlo

As described in Section 2, having simulated the risk-neutral
paths for the underlying, the CLM method employs the
least-squares regression to determine the optimal stopping
strategy. Therefore the convergence of CLM is dependent
on the least-squares algorithm. This section presents the
convergence results and conducts numerical simulations to
examine the convergence properties.

3.1. Convergence Results. From (13), it seems reasonable
that the estimated price converges to the true price of the
American option if the approximation of the conditional
expectation converges to the true expectation function. The
following proposition verifies this with the proof of which can
be found in [7].

Proposition 1. Assume that (i) the simulated underlying paths
are independent and (ii)𝑃𝑟(𝑍(𝜔, 𝑡

𝑘
) = 𝐻(𝜔, 𝑡

𝑘
)) = 0, (0 ≤ 𝑘 ≤

𝐾). Then 𝑉𝑁

𝑀
(0) → 𝑉(0) in probability, if 𝑎𝑁

𝑀
(0) → 𝑎(0) as

𝑁 → ∞.

This proposition allows us to focus on the convergence of
the conditional expectation approximations when examining
the convergence of the algorithm. Belowwe provide a conver-
gence theorem for the conditional expectation approximation
in LSM algorithm.

Theorem 2. If𝑀 = 𝑀(𝑁) is increasing in𝑁 such that𝑀 →

∞ and𝑀3/𝑁 → ∞ as𝑁 → ∞, then 𝐻̃𝑁

𝑀
(𝜔, 𝑡

𝑘
) converges

to𝐻(𝜔, 𝑡
𝑘
) in probability for 𝑘 = 1, 2, . . . , 𝐾.

Proof. See Stentoft [7] for the proof and the necessary
assumptions.

Together with Proposition 1, this theorem shows that the
LSM price estimate converges to the true price under certain
regularity assumptions when 𝑀 (as a function of 𝑁) tends
to infinity but 𝑀3/𝑁 tends to zero as 𝑁 tends to infinity. It
should be noted that Theorem 2 clearly shows that both the
number of paths and the number of regressors should tend to

infinity to achieve convergence of the American option price
estimate from the LSM method. Furthermore, an essential
requirement is that the speed with which the number of
regressors increases is not so fast since 𝑀3/𝑁 → 0. In
this paper we choose 𝑀 ∝ 𝑁1/4 (𝑀 = 0.4𝑁1/4) when
implementing CLMmethod in Section 4.

On the rate of convergence for such method based on
least-squares regression, Stentoft [7] provides a result for
convergence of the conditional expectation approximation in
a two-period setting, stated as below.

Theorem 3. If 𝑀 = 𝑀(𝑁) is increasing in 𝑁 such that
𝑀 → ∞ and 𝑀

3/𝑁 → ∞ as 𝑁 → ∞, then the
estimator 𝐻̃𝑁

𝑀
(𝜔) is mean square convergent to 𝐻(𝜔, 𝑡

𝑘
) with

∫(𝐻(𝜔) − 𝐻̃𝑁

𝑀
(𝜔))

2

𝑑𝐹(𝑠) = 𝑂
𝑝
(𝑀/𝑁 + 𝑀−2𝑑), where 𝐹(𝑠)

denotes the cumulative distribution function of 𝑠 and 𝑑 is the
number of continuous derivatives of the conditional expectation
function that exits.

From this theorem, the optimal rate of convergence can
be obtained as long as both 𝑀/𝑁 and 𝑀−2𝑑 have the same
rate of convergence (i.e., 𝑀 is proportional to 𝑁1/(1+2𝑑)) for
the LSMalgorithm in the two-period setting.Theoptimal rate
is then given by𝑁−2𝑑/(1+2𝑑). In amultiperiod setting, however,
the rate of convergence may be difficult to achieve due to the
dependence between the payoff paths in the regressions.Thus
to obtain such a rate, a new set of independently simulated
paths is used for the regressions at each time step so as to
allow us to use Theorem 3, but obviously this increases the
computational cost.

3.2. Numerical Assessing. From (12) and the resulting option
price formula in (13), it is obvious that the estimate depends
on the number of regressors used in the cross-sectional
regressions, 𝑀, as well as the number of paths used in
the simulations, 𝑁. Furthermore, the convergence theorems
above show that both the number of paths and the number
of regressors should tend to infinity in order to estimate the
conditional expectation arbitrarily well. In this section, prior
to the empirical examination of CLM method, we conduct
some numerical tests using a number of artificial put options
under the Black-Scholes framework and report the results for
the estimated conditional expectations and for the estimated
option prices as the number of regressors,𝑀, and the number
of paths,𝑁, increase.

3.2.1. Initial Setting. To provide a reference for the empirical
study in Section 4, the numerical tests here use two sets
of parameter values as given in Table 1, which match the
corresponding values used in the empirical study when
pricing IBM and OEX put options. To be specific, in the
empirical section, when pricing an IBM put option traded
on October 17, 2008, we use the parameter values with
stock price being 88.91, strike price 90, time to maturity
182 days, historical volatility 27.78%, and interest rate 1.27%;
when pricing an OEX put traded on January 16, 2009, the
parameter values are stock index price of 400.96, strike price
400, time to maturity 336 days, historical volatility 37.89%,
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Table 1: Two sets of parameter values in the numerical tests.

Initial price Strike price Maturity date Interest rate Volatility
𝑆
0

𝐾 𝑇 𝑟 𝜎

First 89 90 0.5 1.3% 28%
Second 401 400 1.0 0.4% 38%
Note.This table gives two sets of parameter values for corresponding American put options. Both underlying assets are assumed to pay no dividends and the
trading date 𝑡

0
is set to be time 0 so that the time to maturity is 𝑇.

Table 2: Polynomial families used in the numerical experiment.

Constant term First term Second term 𝑛th term
Monomials 𝑀

0
(𝑥) = 1 𝑀

1
(𝑥) = 𝑥 𝑀

2
(𝑥) = 𝑥2 𝑀

𝑛
(𝑥) = 𝑥𝑛

Weighted Laguerre 𝑊
0
(𝑥) = 1 𝑊

1
(𝑥) = 1 − 𝑥 𝑊

2
(𝑥) =

1

2!
(𝑥2 − 4𝑥 + 2) 𝑊

𝑛
(𝑥) =

𝑒𝑥

𝑛!

𝑑𝑛

𝑥𝑛
(𝑥𝑛𝑒−𝑥)

Shifted Legendre 𝑆
0
(𝑥) = 1 𝑆

1
(𝑥) = 2 (2𝑥 − 1) 𝑆

2
(𝑥) = 4 (6𝑥

2

− 6𝑥 + 1) 𝑆
𝑛
(𝑥) =

(−1)
𝑥

2𝑛𝑛!

𝑑𝑛

𝑥𝑛
([1 − (2𝑥 − 1)

2

]
𝑛

)

Note. This table gives three orthogonal polynomial families. The first three polynomials plus the constant term of each family are used in this numerical
experiment.

and interest rate 0.41%. This section is just to numerically
examine the convergence; so for simplicity, we assume that
the underlying asset pays no dividends and is traded at time 0,
and we conduct this simulation test under the Black-Scholes
framework as did in [2, 3].

To simulate the risk-neutral paths of the underlying asset,
we assume a geometric Brownian motion (GBM) for the
underlying price process (the drift rate is set to be risk-free
interest rate; hence the resultant underlying asset price is risk-
neutral). Consider

𝑑𝑆 (𝑡) = 𝑟𝑆 (𝑡) + 𝜎𝑆 (𝑡) 𝑑𝐵 (𝑡) , (14)

where 𝑟 is the risk-free interest rate, 𝜎 the constant volatility,
and 𝐵(𝑡) a standard Brownian motion. The well-known
solution of the above GBM is

𝑆 (𝑡) = 𝑆
0
exp{𝑟 − 𝜎

2

2
𝑡 + 𝜎𝐵 (𝑡)} , (15)

which can be discretized as a sequence of values at the
potential exercise points 0 = 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ < 𝑡

𝐾
= 𝑇:

𝑆 (𝑡
𝑖
) = 𝑆

𝑖−1
exp{𝑟 − 𝜎

2

2
(𝑡
𝑖
− 𝑡

𝑖−1
) + 𝜎√𝑡

𝑖
− 𝑡

𝑖−1
𝜀
𝑖
} , (16)

where 𝜀
𝑖
indicates the 𝑖th random draw from the standard

normal distribution.
Following formula (16), 𝑁 number of underlying price

paths are generated at each time step for the regressions; thus
totally 𝐾 × 𝑁 prices are simulated. With these risk-neutral
paths, the optimal stopping strategy can then be determined
so that the option value can be calculated as described in
Section 2.3.

The convergence results in Section 3.1 guarantee the con-
vergence of estimated price to the true price and show that the
number of regressors used in the cross-sectional regressions,
𝑀, and the number of paths used in the simulations, 𝑁,

have an influence on the convergence results. In addition,
the choice of the type of regressors is also of importance. To
investigate the convergence results, several numerical tests
are conducted with different number of paths and regressors
and different type of regressors. This investigation provides a
reference for the empirical pricing using CLM. We here use
the prices obtained from binomial tree method as the “true”
prices of the American puts. In this binomial model, the up
and down factors are calculated by 𝑢 = 𝑒

𝜎√Δ𝑡 and 𝑑 = 𝑒
−𝜎√Δ𝑡

where 𝜎 represents the volatility given in Table 1 and Δ𝑡 is
the length of time interval of one step. We use 8,000-period
binomial tree and 4,000-period tree, respectively, for pricing
the first put option and the second put.

The numerical tests vary the number of regressors, 𝑀,
from 2 to 5 and the number of simulated (risk-neutral) paths,
𝑁, from 5,000 to 30,000. Meanwhile we also use three types
of polynomial families for the regressions in the numerical
experiment: Monomials, weighted Laguerre polynomials,
and Shifted Legendre polynomials which are listed in Table 2,
where the elements of the Laguerre family have the property
of being mutually orthogonal with respect to the weighting
function 𝜔(𝑥) = 𝑒

−𝑥, and the Shifted Legendre polynomials
have another advantage of no computationally intensive
weights having to be calculated since the weighting function
𝜔(𝑥) = 1.

3.2.2. Result Analysis. The benchmark with which we com-
pare, as mentioned earlier, is the binomial tree method, and
the parameters of two American put options are given in
Table 1. The results for American puts with various combi-
nations of number of paths, number of regressors, and type
of regressors are reported in Table 3.

From Table 3, several observations can be made. First
of all, compared with the binomial tree method, the least-
squares algorithm CLM method used produces a negative
pricing bias at most of all the combinations with only four
exceptions. It is understandable for this finding, since the
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least-squares algorithm provides lower bounds for American
puts. Another obvious thing to note is that the bias for the
second American put option is larger than the corresponding
bias for the first put.This may be due to the fact that the basis
point (i.e., the “true” price from BT) of the second put option
is 59.038, which is much greater than that of the first put,
7.298.

Second, for all the types of regressor, the absolute value
of bias basically decreases with the increase of the number
of regressors, as well as the number of simulated paths, and
the smallest bias even reaches −0.057 for the first option
and −0.190 for the second one by using the type of Shifted
Legendre polynomials. It means that the convergence could
be guaranteed when the numbers of regressors and paths
are increased. Meanwhile, the standard error has a similar
tendency with the bias when the numbers of regressors and
paths increase. The findings are consistent with the conver-
gence theorems presented earlier and we can image that the
bias potentially vanishes as both numbers of regressors and
simulated paths increase. It should also be noted that for each
of type of regressor, the bias is overall larger in the case of
𝑀 = 2 or 3 than that in the case of 𝑀 = 4 or 5, but
there is no big difference between the cases of 𝑀 = 4, 5.
With considering the computational cost, this suggests that a
reasonable number of regressors may be𝑀 = 4 when empir-
ically implementing the CLMmethod in the next section.

Third, based on the number of simulated paths, one
observation can be obtained. Although the bias for both
options, as mentioned above, decreases with the number of
paths given the number of regressors, it is easy to observe that
no significant difference is found among four cases of 𝑁 =

5000, 10000, 20000, and 30000, especially when the number
of paths 𝑁 is greater than 5000. Again, considering the
computational burden in the empirical pricing investigation,
we generate 10000 underlying price paths.

Fourth, with regard to the type of regressor, from the bias
and standard error, using weighted Laguerre polynomials
has a little bit advantage over the Monomials polynomials.
But choosing the Shifted Legendre polynomials as regressors
obviously outperforms other choices. It is not difficult to
find that the standard errors become smaller when the
Shifted Legendre polynomials are used, especially for the
large number of regressors and only two exceptions appear
among 32 cases when comparing the Shifted Legendre with
weighted Laguerre polynomials. Besides, given the number
of regressors, overall the bias from the Shifted Legendre poly-
nomials is also smaller compared with those from two other
polynomials. Therefore, the Shifted Legendre polynomials
seem to be a better choice than either of the other types
of polynomials and this encourages us to use this type of
polynomials as the regressors in the empirical test of CLM.

In summary, through the comparison of bias and stan-
dard errors, it suggests that the algorithm in CLM method
is able to ensure that the price estimate can converge to
the actual option values at a rate given in the convergence
theorems. Meanwhile, we also show that it is better to choose
the Shifted Legendre polynomial as the specification of the
cross-sectional regressors. In addition, using four numbers

of regressors and 10000 simulated underlying paths is more
appropriate.

4. Empirical Comparison Based on IBM
and OEX Puts

To investigate the performance of canonical least-squares
Monte Carlo (CLM) valuation approach, this section makes
several comparisons using IBM put option data and OEX put
data.The empirical investigation involves three pricingmeth-
ods including CLM method and two benchmark methods
of Crank-Nicolson finite difference (FD) and binomial tree
(BT).

One should note that it is impossible to empirically
compare the proposed CLM with the pure least-squares
Monte Carlo of Longstaff-Schwartz (LSM, see [2]) using
actualmarket data; the reason is as follows. Although the LSM
method is applicable toAmerican options, prior to estimating
the option price via LSM method, it requires a sample of
already simulated risk-neutral paths of the underlying price.
In other words, with the market data, one has to take some
technique to generate the price paths for the underlying
asset and then he/she can use the least-squares algorithm
to estimate the price American option. It is exactly due
to this that CLM uses the canonical method (Stutzer, [1])
to obtain the risk-neutral distribution with which the risk-
neutral underlying paths are generated and then prices the
American option using the least-squares algorithm.

4.1. Methodologies

4.1.1. CLM and Computational Details. The implementation
of CLMmethod is fully detailed in Section 2 and according to
the numerical assessing in Section 3.2, we use the first three
terms of the Shifted Legendre polynomial plus a constant
term as basis functions. Recall that 𝑀 = 0.4𝑁

1/4 in
Section 3.1; the number of underlying paths used in this
empirical study is 10,000.

For each reported price in this study, three indepen-
dent Monte Carlo runs are carried out and the resultant
prices averaged. In every Monte Carlo run, 10,000 paths
are simulated, with each path made up of one-day gross
returns sampled from the empirically estimated risk-neutral
distribution derived in CLM.

Each path is further divided into a number of possible
exercising steps according to the following rule: if the days to
maturity are less than 50, the size of the exercising step is one
day; otherwise, the number of days in one step is the integer
part of the number of days to maturity divided by 50. Note
that the last stepmay cover fewer days than all the other steps,
and thus it has to be handled separately.

As for the treatment of interest rate and the dividends,
Section 4.2 presents a specified description.

4.1.2. FD and Computational Details. Finite difference meth-
ods price options by solving the Black-Scholes (BS) partial
differential equation numerically (see Hull [21]). At least
three variations, namely, explicit finite difference, implicit
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finite difference, and Crank-Nicolson finite difference, are
available. By averaging the implicit and explicit methods,
Crank-Nicolson converges faster, and due to this, the Crank-
Nicolsonfinite difference (FD)method is chosen in this study.

Follow [21] here. Let 𝑍 = ln 𝑆. The well-known BS
equation is then as follows:

𝜕𝑓

𝜕𝑡
+ V

𝜕𝑓

𝜕𝑍
+
1

2
𝜎
2
𝜕2𝑓

𝜕𝑍2

= 𝑟𝑓,

V = 𝑟 − 𝑞 − 0.5𝜎2,

(17)

where 𝑟 is the risk-free rate, 𝑞 the dividend yield, 𝜎 the
volatility, and 𝑓 the value of a derivative.

The time to maturity 𝑇 is divided into 𝑁 intervals of
length Δ𝑡 = 𝑇/𝑁. A sufficiently large 𝑍, 𝑍max, is chosen and
define Δ𝑍 = 𝑍max/𝑀, where𝑀+1 is the number of prices to
be used.Then one has the following finite difference equation
(see [22]):

𝑝
𝑢
(𝑓

𝑖,𝑗+1
+ 𝑓

𝑖+1,𝑗+1
) + 𝑝

𝑚
(𝑓

𝑖,𝑗
+ 𝑓

𝑖+1,𝑗
)

+ 𝑝
𝑑
(𝑓

𝑖,𝑗−1
+ 𝑓

𝑖+1,𝑗−1
) = 2𝑓

𝑖+1,𝑗
,

𝑝
𝑢
= −

Δ𝑡

4
(

𝜎
2

Δ𝑍2

+
V
Δ𝑍

) ,

𝑝
𝑚
= 1 +

Δ𝑡

2
(

𝜎
2

Δ𝑍2

+ 𝑟) ,

𝑝
𝑑
= −

Δ𝑡

4
(

𝜎
2

Δ𝑍2

−
V
Δ𝑍

) ,

(18)

where 𝑖 indicates time steps and 𝑗 price points. The system of
(18) is solved backwards from 𝑇 − 1 to the valuation date 𝑡

0
,

while taking suitable boundary conditions into considera-
tion. Values of 𝑓

𝑖,𝑗
obtained at each time step are updated

by checking against early exercise (if applicable).
The price of a derivative is obtained by interpolating 𝑓

0,𝑗
,

given 𝑆
0
at 𝑡

0
.

Here FD, applicable to American options, is utilized as
a benchmark for CLM. For any meaningful comparison,
pricing of different methods should be done with exactly the
same input information. Since the same set of daily gross
returns is used to estimate the historical volatility used in FD
as well as the risk-neutral measure (3) used in CLM, FD with
historical volatility solving the BS equation is with no doubt
the right benchmark for CLM in specific or any new pricing
method in general.

The computations of FD use as default a time step of
one day and a stock price spacing of Δ𝑍 = 𝜎√3Δ𝑡. (This
is the convergence condition for the explicit finite difference
method (Clewlow and Strickland [22]). For simplicity of
programming, however, this price spacing is used for all finite
differencemethods, including Crank-Nicolson, for which the
condition is of course unnecessary.) Thus the optimal early
exercising is checked daily. Within each day, the diffusion is
repeated for 125 to 6 times, which is the integer part of 2000
divided by the number of days to maturity (between 16 and

300 days). A big number of 2000 is chosen to ensure the
convergence of FD. Again, the issues on the interest rate and
dividends are discussed in Section 4.2.

4.1.3. BT and Computational Details. In addition to FD
method, this study uses another widely used benchmark of
the binomial tree method (Cox et al. [23]).

In this binomialmodel, we use the up and down step sizes
calculated by 𝑢 = 𝑒

𝜎√Δ𝑡 and 𝑢 = 𝑒−𝜎
√Δ𝑡 where 𝜎 refers to

the historical volatility estimated using the observed closing
prices of the underlying asset, and Δ𝑡 is the length of time
interval of one step. Considering the computational cost but
without loss of the convergence, we use 4,000-step tree for
each option pricing.

Due to the dividend payments, the pricing issue becomes
trickier. With a known dividend yield 𝑞, if the time point
is prior to the exdividend date, keep the usual underlying
price at the corresponding node on the tree; otherwise the
usual price is multiplied by a factor (1 − 𝑞). With a known
cash dividend, on the exdividend date, the underlying price is
reduced by the amount of the dividend payment. Please refer
to Hull [20, pages 417-418] for full details.

4.2. Treatment of Dividends and Risk-Free Interest Rate. The
dividend paid by the underlying asset of a derivative may be
a complex problem, due to tax issues and the often stochastic
nature of the dividend payment (either the amount or timing
of the payment or both). To simplify this matter, several
common assumptions are usually made in pricing exchange-
traded options, which typically last for less than one year. For
example, it is assumed that on the exdividend date the stock
price is reduced by the amount of the dividend payment (see
Hull [21]). Note that the resultant stock price will be called the
dividend-adjusted stock price hereafter.

As of September 30, 2009, eighty-nine stocks in the S&P
100 Index paid dividends (data available from CBOE). For
example, during the period of July 2008 through January
2009 covering the most dramatic part of the US financial
crisis, those dividend payments amount to an annualized
continuous yield of about 3%, which are consistently higher
than the one-year risk-free interest rates over the same
period. Clearly, the price of a put would be underestimated
if dividends were not taken into consideration. Thus for a
credible empirical test, the effect of dividends from the S&P
100 Index should not be ignored.

In derivatives pricing, a stock index is typically assumed
to be an underlying asset paying a known constant yield (see
[21]). Under the Black-Scholes framework, the price process
of the underlying is further assumed to follow a geometric
Brownian motion (GBM). Together, these assumptions lead
to the well-known BS equation (17), which can be solved
numerically by FD. CLMdoes not have to assume a particular
form for the underlying process, but instead simulates paths
for the price of the underlying asset directly using the
empirically estimated risk-neutral distribution (3).With risk-
neutral paths given, the effect of a continuous dividend yield
can then be handled trivially: the risk-neutral price for the
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Table 4: Data description of OEX and IBM puts.

Mean Standard deviation Minimum Maximum

OEX

Market price 55.72 58.46 0.05 412.00
Days to maturity 69.25 58.68 16 360

Moneyness 1.08 0.31 0.41 2.23
Number of puts 208,130

IBM

Market price 16.82 21.25 0.05 104.33
Days to maturity 119.33 70.67 16 357

Moneyness 1.01 0.29 0.44 2.13
Number of puts 72,421

Note. In this table, market price refers to the closing price of the underlying, that is, the OEX index price for OEX puts and IBM stock price for IBM puts, and
each option price is considered as the midvalue of bid-ask quotations. Moneyness is defined as strike price divided by underlying price.

first day along a path is reduced by a factor of exp(𝑞/365),
price for the second day by exp(2𝑞/365), and so on.

The IBM stock instead pays regular quarterly cash divi-
dends, which makes the dividend actually more difficult to
handle than the dividend yield. To simplify the matter, it is
assumed that the amount and timing of the dividend are
both known in advance when pricing IBM options. Finite
difference for IBM options now solves (17) with 𝑞 being set to
zero. Since the stock price points are fixed in the backwards
induction of FD, the option value on the exdividend date
is adjusted downward by quadratic interpolation to reflect
the effect of dividend payment. This then corresponds to
the option value for the dividend-adjusted stock price. If the
dividend-adjusted stock price is less than the second lowest
stock price on the grid, however, the corresponding option
value is reset to that of the lowest stock price in the grid, and
no further interpolation is done.

With CLM for IBM options that takes cash dividends
into consideration on the other hand, the simulated risk-
neutral price for every path on exdividend date is reduced
exactly by the dividend amount. If the resultant dividend-
adjusted stock price turns out to be less than zero, it is reset to
zero. Regarding BT, this issue can be settled according to the
discussion earlier in Section 4.1.3.

As for the risk-free interest rate, unlike what is done in
many previous studies, the risk-free interest rates for each
valuation date are obtained from the daily US Treasury yield
curve (from one month to 30 years). The yield curve was
obtained directly from the Web site of the US Department
of the Treasury (http://www.ustreas.gov/offices/domestic-
finance/debt-management/interest-rate/). If a maturity does
not fall on any date given by the yield curve, the corre-
sponding risk-free rate is interpolated linearly from the yield
curve. From the valuation date to maturity, the continuously
compounded risk-free interest rate is then assumed to be flat.

4.3. Data Description. The American-style S&P 100 Index
(OEX) puts and the equity puts on the IBM common stock
(traded on NYSE with the symbol IBM) are chosen for
this empirical study. The daily data (including last ask and
bid prices) of OEX and IBM put options are collected for
the period January 2, 2006, through October 31, 2012 (this
not easily obtained data acquired from a database was

kindly provided by one friend in UNSW, Australia.), with
a total of 1721 trading days. The daily prices for both S&P
100 Index and IBM stock are downloaded from the CBOE
(http://www.cboe.com/DelayedQuote/QuoteTableDown-
load.aspx), and the closing price is treated as the underlying
price for S&P 100 Index as well as IBM stock.

Only puts with amaturity of 16 (effectively, themajority of
puts expiring in the current month are excluded) to 360 days
are included in this study. According to Coval and Shumway
[15], the average of bid and ask prices of options is treated as
its market price, andmarket prices below $0.05 are discarded.
The prices of put options should theoretically increase with
strike prices. Data violating this rule are discarded. For
example, on July 30, 2008, the OEX puts expiring in August
2008 show the following average quote (strike): 0.525 (535),
0.325 (530), and 0.35 (525). So 0.325 is discarded. Once these
filter rules are applied, we are left with the total valid number
of market prices for OEX puts turns being 208, 130 and for
IBM puts 72,421. Table 4 briefly describes the filtered data. In
addition, optionswith negative implied volatility are removed
from the sample (“negative” here refers to the situation when
a numerical search failed to find a positive solution for the
implied volatility).

Both CLM and the estimation of the historical volatility
for FD and BT use the observed closing prices of the
underlying asset as inputs. It is not obvious unfortunately how
many observations will be included in either case; intuitively,
one should compare the two cases using the same set of
inputs. On the other hand, one could also argue that while
CLM may need more data points due to its statistical nature,
relatively fewer closing prices will be used for the estimation
of the historical volatility (see [21]). To be conservative then,
two sets of pricing were carried out for comparison for any
trading date; one uses the immediate previous 130 closing
prices (roughly half a year in calendar days) of the underlying
asset as inputs and the other 260 prices.

For the S&P 100 Index, a continuous constant annual
dividend yield for each valuation date is assumed, which is
between 2.18 and 3.92 percent, with an average of 3.01%,
over the whole period. For IBM for the period covered,
depending on the valuation date, the dividend payment dates
are assumed to be on February 6, 2006, until August 6,
2012, with one payment every quarter, and the corresponding
quarterly dividends are actually $0.5 according to the data.
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Table 5: OEX put prices computed using the previous 130 daily closing prices of the S&P 100 Index.

Moneyness ↓ Maturity Short Medium Long
Method CLM FD BT CLM FD BT CLM FD BT

DOTM

RMSE 2.102 3.132 2.985 2.854 3.087 3.052 6.260 5.720 6.053
MPE −0.813 −1.521 −1.334 −0.462 −1.930 −1.847 3.123 1.381 2.394

MAE (%) 40.602 54.780 50.641 36.230 44.035 41.875 36.372 35.322 36.024
Number of puts 30113 19535 3721

OTM

RMSE 4.208 4.970 5.203 5.603 4.282 5.203 13.483 10.444 12.356
MPE 0.029 −2.030 0.093 2.147 −1.179 −2.305 10.081 5.743 8.215

MAE (%) 17.625 26.530 28.030 17.523 17.738 16.936 22.873 20.331 21.658
Number of puts 26243 15392 3630

ITM

RMSE 4.008 4.520 4.238 8.053 5.052 5.965 17.073 13.234 14.354
MPE 1.139 1.183 1.256 5.617 2.481 3.250 14.651 10.213 11.032

MAE (%) 9.655 13.284 12.359 11.403 6.278 8.216 20.393 13.421 18.310
Number of puts 26066 14624 3692

DITM

RMSE 2.030 2.134 2.165 6.265 4.753 5.034 22.680 15.360 18.235
MPE 0.342 −0.043 −0.061 4.389 2.793 3.240 18.019 12.282 15.201

MAE (%) 1.356 1.450 1.531 4.357 2.942 4.023 11.920 8.403 10.326
Number of puts 35458 22315 7341

Note.This table reports the empirical results for OEX puts using the previous 130 daily closing prices as inputs. Each cell represents a particular combination
of moneyness and time to maturity. The last row reports the number of options with corresponding combination. The remaining rows show the error statistic
results of RMSE, MPE, and MAE.

4.4. Empirical Results. The results of pricing are summarized
and compared using the twelve categories of moneyness and
maturity suggested by Barone-Adesi et al. [24]. Specifically,
moneyness is divided into four segments: less than 0.85
(deep out-of-the-money or DOTM), 0.85 to 1.00 (out-of-the-
money or OTM), 1.00 to 1.15 (in-the-money or ITM), and
more than 1.15 (deep in-the-money or DITM). Maturity is
classified into three groups: 16 to 60 days (Short), 61 to 160
days (Medium), or 161 to 360 days (Long). Hereafter, the cate-
gories ofmoneyness andmaturity will be referred to asOTM-
Short, as an example, for the category of puts withmoneyness
between 0.85 and 1.00 and maturity between 16 and 60 days.

Three statistic measures, namely, RMSE, MPE, andMAE,
are utilized for pricing comparison, which are again similar to
[24]. RMSEor the dollar root-mean-square error is the square
root of the averaged squared deviations between calculated
prices 𝑝

𝑐

𝑗
and market prices 𝑝𝑚

𝑗
, √(1/𝑁)∑𝑁

𝑗=1
(𝑝𝑐

𝑗
− 𝑝𝑚

𝑗
)
2.

MPE or the dollar mean pricing error is the average of the
pricing errors, (1/𝑁)∑𝑁

𝑗=1
(𝑝𝑐

𝑗
− 𝑝𝑚

𝑗
). MAE or the percentage

mean absolute error is the average of the absolute pricing
errors expressed in percentage, (1/𝑁)∑𝑁

𝑗=1
|𝑝𝑐

𝑗
/𝑝𝑚

𝑗
− 1.0|.

From a trader’s point of view, MAE is probably the best
indicator for the overall accuracy of a pricing model; it then
seems reasonable to prefer a pricing model with a smaller
overall percentage mean absolute error.

Table 5 shows the summarized result for OEX put prices
using the immediate previous 130 daily closing prices of
the S&P 100 Index as inputs. From the number of each
combination, although the four categories with all the longest
maturities have fewer puts traded, even the smallest number
among the four categories, 3630 for OTM-Long, it is still
adequate for drawing meaningful statistical conclusions.

In terms of RMSE, FD overall performs better, especially
for ITM-Medium, DITM-Medium, and all the four longest
maturity categories, but BT is comparable to CLM. With
respect to MPE, CLM outperforms FD and BT for DOTM-
Short, DOTM-Medium, and OTM-Short but underperforms
for all the DITM, and the four longest maturity categories.
From the most important MAE measure, CLM outperforms
FD in MAE for DOTM-Short and DOTM-Medium but
does poorly for ITM-Short, ITM-Medium, DITM-Medium,
and all the four longest maturity categories. Overall, CLM
underperforms FD or BT.The percentage pricing errors from
all the methods are not small with an exception of DITM,
especially for the case of OTM; the MAE errors are even up
to 54.78%. Thus, it is not appropriate to use only 130 closing
prices for CLM, FD, and BT.

OEXput prices using the previous 260 daily closing prices
of the S&P 100 Index as inputs are shown in Table 6. CLM
does poorly inRMSE for three out of the four longestmaturity
categories. In terms ofMPE,CLMoutperformsFDandBT for
all three DOTM cases but underperforms either BT or FD for
four combinations of moneyness and maturity in other nine
combinations. With respect to MAE, CLM outperforms FD
in most categories but three categories of OTM-Long, ITM-
Long, and DITM-Long. Meanwhile, CLM outperforms BT
for all six out-of-money categories and ITM-Medium,DITM-
Short, and DITM-Medium categories.

Going from 130 to 260 days, CLM yields better statistics
in 33 combinations of moneyness and maturity out of 36
combinations for three measures, while the situations for
FD and BT are mixed. For FD, it overall improves the
pricing results but produces worse results when the option
is DOTM-Medium, DOTM-Long, OTM-Short, or OTM-
Medium, measured by the most important indicator MAE.
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Table 6: OEX put prices computed using the previous 260 daily closing prices of the S&P 100 Index.

Moneyness ↓ Maturity Short Medium Long
Method CLM FD BT CLM FD BT CLM FD BT

DOTM

RMSE 2.273 2.719 2.756 3.135 4.433 4.398 3.261 4.353 4.686
MPE −1.259 −1.801 −2.047 −2.137 −3.126 −3.043 −0.790 −3.202 −2.189

MAE (%) 38.729 46.864 45.730 33.700 48.657 46.497 20.886 36.821 37.523
Number of puts 30113 19535 3721

OTM

RMSE 3.246 4.750 4.983 3.139 5.769 6.690 4.920 4.939 6.851
MPE −2.171 −3.731 −1.601 −1.445 −3.732 −4.858 3.392 −2.135 0.337

MAE (%) 22.300 33.979 35.479 23.264 22.936 22.134 13.171 12.950 14.277
Number of puts 26243 15392 3630

ITM

RMSE 2.509 3.341 3.059 3.269 3.956 4.869 6.754 5.018 6.138
MPE −0.266 −1.674 −1.601 1.221 −0.930 −0.161 4.661 2.160 1.979

MAE (%) 5.893 6.079 5.154 5.750 5.793 7.731 10.857 6.550 9.439
Number of puts 26066 14624 3692

DITM

RMSE 1.926 2.192 2.223 2.225 2.404 2.685 9.713 7.389 8.264
MPE −0.778 −0.776 −0.794 0.388 0.452 0.899 7.732 5.886 8.805

MAE (%) 1.071 1.179 1.260 1.243 1.429 2.510 4.320 3.786 3.809
Number of puts 35458 22315 7341

Note.This table reports the empirical results for OEX puts using the previous 260 daily closing prices as inputs. Each cell represents a particular combination
of moneyness and time to maturity. The last row reports the number of options with corresponding combination. The remaining rows show the error statistic
results of RMSE, MPE, and MAE.

The situation for BT is similar to that for FD. Further,
CLM with 260 days provides better or comparable pricing
performance in terms of MAE in almost all the categories
of moneyness and maturity with an exception of OTM-Short
and is reasonably accurate (MAEunder 10%) for all six in-the-
money categories, while neither of the situations for FD and
BT is the case. In addition, BT is comparable to FD and they
make no big difference. In conclusion, CLMworks betterwith
260 closing prices and outperforms FD as well as BT overall
in pricing OEX puts.

Three more observations can be made. First, for all three
methods in most of the categories, the pricing errors increase
with the decrease of moneyness as well as maturity. Second,
for ITM-Long and DITM-Long, CLM, FD, and BT are fairly
accurate and FD slightly outperforms CLM. These results
are not surprising however, since the market seems to have
been put a premium on the out-of-money puts ever since the
1987 market crash, but not on the in-the-money or longer
maturity options according to Black-Scholes. MAE errors
from three methods are quite large for most of six out-of-
the-money categories, which is also consistent with previous
studies and the well-known phenomenon of volatility smile
or smirk (Hull, [21]).

Next, turn to the results for IBM puts. The IBM puts are
distributed more evenly than OEX puts among the twelve
categories, with 3527 for OTM-Long being the lowest. Table 7
shows the summarized result for put prices using the previous
130 daily closing prices of the IBM common stock as inputs.
RMSE errors are comparable among CLM, FD, and BT, so
are MPE errors. In terms of MAE, similar to the situation
for OEX, three methods yield lager errors for all the six
out-of-money categories, but apparently CLM dominantly

outperforms both FD and BT in these cases. When options
are in-the-money, each of the methods produces a low MAE
error, especially for the puts being DITM.

IBMput prices using the previous 260 daily closing prices
of the corresponding common stock as inputs are shown
in Table 8. CLM is totally superior to BT for RMSE errors
and performs better than FD since it underperforms only in
the cases of ITM-Long and DITM-Medium out of all twelve
categories. In terms of MAE, CLM outperforms FD and BT
once again formost categories; it only slightly underperforms
both FD and BT for ITM-Long and DITM-Long put options
and also underperforms FD for DTIM-Medium puts.

From Tables 7 and 8, it is not difficult to observe that
CLM and FD with either 130 or 260 closing prices produce
reasonably accurate prices (MAE is around or under 10%) for
all the six in-the-money categories of IBM puts; this is unlike
the situation for OEX puts. Further, the pricing results are
overall improved by using 260 daily prices instead of 130 data
for both IBM and OEX puts.

In summary, even though CLM, FD, and BT generate
quite large pricing errors for the six out-of-the-money cat-
egories, CLM outperforms both FD and BT in pricing overall
with 260 closing prices of the underlying as inputs for both
the American-style S&P 100 Index puts and IBM puts. This
naturally leads to the following two inferences, considering
that CLM and Black-Scholes were shown previously to
yield nearly identical prices for GBM (see [3]). First, the
empirically observed underlying prices for both the S&P 100
Index and the IBM stock did not follow GBM processes.
Second, CLM with enough prices as inputs can handle non-
GBM processes better than Black-Scholes in terms of options
pricing.
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Table 7: IBM put prices computed using the previous 130 daily closing prices of the IBM common stock.

Moneyness ↓ Maturity Short Medium Long
Method CLM FD BT CLM FD BT CLM FD BT

DOTM

RMSE 0.523 0.582 0.576 0.785 1.076 0.964 0.946 1.201 1.352
MPE −0.343 −0.405 −0.386 −0.601 −0.837 −0.812 −0.346 −0.978 −1.025

MAE (%) 50.542 61.532 58.125 47.394 57.690 55.328 41.266 55.452 57.023
Number of puts 6156 7852 5230

OTM

RMSE 1.050 1.281 1.303 1.185 1.788 1.536 1.786 1.929 1.953
MPE −0.492 −0.935 −0.985 −0.575 −1.475 −1.432 0.049 −1.340 −1.029

MAE (%) 28.508 38.416 39.852 20.634 33.875 31.652 18.775 25.875 24.851
Number of puts 4966 4824 3527

ITM

RMSE 0.901 0.982 0.975 1.236 1.302 1.403 2.188 1.890 2.065
MPE 0.042 −0.460 −0.421 0.258 −0.722 −0.627 0.928 −0.534 −0.865

MAE (%) 8.233 8.216 8.202 7.286 8.766 9.013 10.316 10.016 10.287
Number of puts 5171 5011 3676

DITM

RMSE 0.459 0.950 0.926 0.941 0.537 0.621 2.197 1.330 1.853
MPE 0.152 −0.080 −0.126 0.608 0.120 0.356 1.501 0.519 1.026

MAE (%) 1.026 1.213 1.326 1.653 1.266 1.401 5.133 4.266 4.813
Number of puts 8033 9864 8111

Note.This table reports the empirical results for IBM puts using the previous 130 daily closing prices as inputs. Each cell represents a particular combination
of moneyness and time to maturity. The last row reports the number of options with corresponding combination. The remaining rows show the error statistic
results of RMSE, MPE, and MAE.

Table 8: IBM put prices computed using the previous 260 daily closing prices of the IBM common stock.

Moneyness ↓ Maturity Short Medium Long
Method CLM FD BT CLM FD BT CLM FD BT

DOTM

RMSE 0.564 0.615 0.609 0.980 1.189 1.077 1.001 1.478 1.629
MPE −0.386 −0.428 −0.419 −0.708 −0.885 −0.862 −0.772 −1.272 −1.319

MAE (%) 52.825 64.323 60.354 47.885 59.715 52.893 41.816 62.002 65.120
Number of puts 6156 7852 5230

OTM

RMSE 1.064 1.336 1.358 1.346 1.917 1.666 1.185 1.915 1.939
MPE −0.562 −0.993 −1.043 −0.651 −1.554 −1.511 −0.262 −1.603 −1.292

MAE (%) 25.841 36.074 36.359 16.701 31.191 28.563 11.458 22.366 23.765
Number of puts 4966 4824 3527

ITM

RMSE 0.888 1.011 1.004 1.230 1.416 1.517 1.511 1.474 1.649
MPE −0.039 −0.525 −0.486 0.194 −0.795 −0.702 0.621 −0.810 −1.141

MAE (%) 7.856 8.407 8.324 8.169 8.364 8.536 9.391 7.216 10.137
Number of puts 5171 5011 3676

DITM

RMSE 0.401 1.189 1.165 0.607 0.523 0.617 1.310 0.771 1.293
MPE 0.075 −0.145 −0.191 0.310 −0.038 0.197 0.860 0.088 0.595

MAE (%) 0.751 1.279 1.028 0.828 0.817 0.905 3.216 3.025 3.149
Number of puts 8033 9864 8111

Note.This table reports the empirical results for IBM puts using the previous 260 daily closing prices as inputs. Each cell represents a particular combination
of moneyness and time to maturity. The last row reports the number of options with corresponding combination. The remaining rows show the error statistic
results of RMSE, MPE, and MAE.

5. Conclusions

Prior to the empirical investigations of the CLM valuation
approach, this paper presents the convergence results of CLM
and numerically examines the convergence properties. The
numerical results show that the algorithmCLMmethod used
is able to ensure the convergence of the estimated price
approximating to the actual option value at a rate. A better

choice on the type of basis function, the number of regressors,
and the number of simulated paths, when implementing
CLMmethod, is also suggested.

Using the American-style S&P 100 Index puts as a
representative for index options with known dividend yields
and IBM puts as a representative for equity options with
known cash dividends, the paper investigated the empirical
performance of the recently proposed CLMmethod.
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Even though the three methods of CLM, FD, and BT
yield reasonably accurate prices for in-the-money OEX and
IBM puts (MAE under 10%), they do not price out-of-
the-money puts accurately. Among the twelve categories of
moneyness and maturity, CLM does an overall better job for
pricing American puts than the benchmark methods of finite
difference and binomial tree, when 260 daily closing prices of
the underlying are used as inputs. It is therefore reasonable
to conclude that CLM is a useful alternative for pricing
American options. Meanwhile, the empirical results also
show that the benchmarks of finite difference and binomial
tree can price the American put options with a similar
accuracy. This finding is consistent with the assertion on the
relation between finite difference and binomial tree methods
(see Hull [21, pages 443-444] for the relation).
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