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The joints have great influence on the strength of jointed rock mass and lead to the multiscale, nonhomogeneous, and anisotropic
characteristics. In order to consider these effects, a newmodel based on a genetic algorithm is proposed for locating the critical slip
surface (CSS) in jointed rock mass slope (JRMS) from its stress field. A finite element method (FEM) was employed to analyze the
stress field. A method of calculating the mechanical persistence ratio (MPR) was used. The calculated multiscale and anisotropic
characteristics of the MPR were used in the fitness function of genetic algorithm (GA) to calculate the factor of safety. The GA was
used to solve optimization problems of JRMS stability. Some numerical examples were given. The results show that the multiscale
and anisotropic characteristics of the MPR played an important role in locating the CSS in JRMS. The proposed model calculated
the CSS and the factor of safety of the slope with satisfactory precision.

1. Introduction

Slope stability analysis is important for assessing the safety
of earth dams and natural slopes. However, stability analysis
of JRMS is one of the important problems for geological
engineering. Locating the CSS of JRMS is the chief concern.
Because the rock masses consist of a large number of joints,
they have the multiscale, nonhomogeneous, and anisotropic
material characteristics. These reasons lead to the complex of
deformation and stress distributions in JRMS and make the
analysis of JRMS difficult. As a powerful tool, GAs are used
widely in the homogeneous slope stability analysis. Goh [1]
employed a GA to search for the minimum factor of safety of
homogeneous slope. Mccombie andWilkinson [2] presented
a simple GA to locate the CSS of a homogeneous layered
slope. Zolfaghari et al. [3] proposed a simple GA to locate the
critical noncircular failure surface of a homogeneous layered
slope. Sun et al. [4] applied a spline curve in conjunction with
a GA to locate the CSS in slope stability analysis. Sengupta
andUpadhyay [5] presented a GA to search for theminimum
factor of safety of a homogeneous slope. Li et al. [6] used a

real coded GA to search for the noncircular CSS of a homo-
geneous layered slope. However, these methods cannot solve
such problems in nonhomogeneous and anisotropicmaterial.
FEM, on the other hand, has been used for the analysis of
slope stability. In contrast to the simplified techniques, FEM
can solve the problem of the growth of inelastic zones with
time and a complex loading sequence. Some tests have to be
carried out according to the concept and application.Kimand
Lee [7] used FEM to locate the CSS of a slope. Cho and Lee [8]
proposed a FE flow-deformation coupled analysis program
for solving unsaturated slope stability problems. Wang et al.
[9] employed GA and FEM to locate the critical circular slip
surface. Zheng et al. [10] used FEM and strength reduction
techniques to calculate the safety factors for slopes. Others of
researchers focused on the influence of joints on the material
strength of jointed rock mass. Du et al. [11] analyzed the
mutual influences of joints and rock bridges. Chen et al. [12]
studied the influence of joints on the shape of the CSS in
JRMS and described the shape of CSS in JRMS as noncircular.
Zhang et al. [13] used theminimum joints frequency to locate
the CSS of JRMS.
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In this paper, based on the recent studies, a new model
based on GA was proposed to search for the CSS in JRMS
from its stress field. The studies on the influences of joints
onmultiscale and nonhomogeneous characteristics of jointed
rock masses were made. The methods for calculating the
factor of safety of slope based on the stress field, as calculated
by FEM, were proposed. Then the GA was used to locate
the CSS of JRMS. And then the numerical examples were
analyzed to verify the proposed model.

2. The Algorithm for Locating
the Multiscale CSS

2.1. The Factor of Safety in the Method of Slices. The factor of
safety 𝐹 in the method of slices is expressed as

𝐹 =

∫
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where 𝑐
𝑖
and 𝜑

𝑖
are the cohesion of a material of 𝑖th segment

of a slip surface and the friction angle of a material of 𝑖th
segment of a slip surface, respectively, 𝑐

𝑟
and 𝜑

𝑟
are the

cohesion and friction angle of rock bridges, respectively,
𝑐
𝑖
and 𝜑

𝑖
are the cohesion and friction angle of joints,

respectively, 𝜎
𝑛
is the stress acting normal to a specified slip

surface, 𝛼 is the angle of normal direction of slip surface to
the horizontal plane, 𝜎

𝑥
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, and 𝜏
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are the stresses on the

slip surface, and 𝑐
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and 𝜑
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are the function of the MPR of 𝑖th

segment of slip surface 𝑘
𝑖
.

2.2. The MPR 𝑘. Figure 1 shows rock bridges in jointed rock
masses which are present because of the nonpersistent nature
of the joints. In order to calculate the decrease in strength
of jointed rock masses in different directions, Wang et al.
[14] define the MPR of a rock mass as the ratio of the joint
network on the shear failure path when the jointed rock mass
is sheared to the damaged state in a certain direction. Figure 2
shows that the MPR 𝑘 is calculated by

𝑘
𝛽0
=

∑𝐽𝐿

∑ 𝐽𝐿 + ∑𝑅𝐵𝑅
, (3)
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Figure 2: The failure path of joints and rock bridges.

where 𝐽𝐿 and 𝑅𝐵𝑅 are the projection length of joints and
rock bridges in the shear failure path, respectively. As shown
in Figure 2, 𝐵 and 𝐿 are the projection width and projection
length, respectively. 𝛽

0
is the visual angle, which can be used

to express the direction of the joints.
From (3) and Figure 2, we can observe that the MPR 𝑘

is related to the projection width 𝐵 and projection length 𝐿.
Thus the MPR 𝑘 has the multiscale characteristics.

In the 2D joint network, there are many combinations
of forms of the joints and rock bridges. In order to simplify
the calculation, according to the research of Du et al. [11],
it is assumed that there are three basic combinations of the
joints and rock bridges, for which the shear resistances are
calculated as Figure 3.

The two adjacent joints overlap but do not intersect
as shown in Figure 3(a), and the shear resistant force 𝑅 is
expressed as

𝑅 = 𝜏
𝑗1
𝑙
1
+ 𝜎
𝑡
ℎ + 𝜏
𝑗2
𝑙
2
, (4)

where 𝜏
𝑗1
and 𝜏
𝑗2
are the sheared strength of the two joints,

respectively. 𝜎
𝑡
is tensile strength of the rock bridges. 𝑙

1
and

𝑙
2
are the length of the two joints along the shear plane,

respectively. ℎ is the length of the rock bridge along the
vertical component of the shear plane and 𝑑 is the length of
the rock bridge along the shear plane.
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Figure 3: The three basic combination forms of the joints and rock bridges.
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Figure 4: The program flow diagram for calculating 𝑘.

The two adjacent joints are neither overlapping nor
intersecting, as shown in Figure 3(b).The shear resistant force
𝑅 is expressed as [15]
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where 𝜏
𝑏
is the shear strength of the rock bridge along the

shear direction, 𝜃 is the angle between the failure plane of
the rock bridge and the shear direction, and 𝜎

𝑛
is the average

value of the normal stress.
The two adjacent joints are intersecting, as shown in

Figure 3(c). The shear resistant force 𝑅 is expressed as

𝑅 = 𝜏
𝑗1
𝑙
1
+ 𝜏
𝑗2
𝑙
2
. (7)

The dynamic programming method is used to search for
the failure path of the joints and rock bridges included in the
shear bandwidth and then calculate 𝑘. The coded program
flow diagram is shown in Figure 4.

From the aforementioned analysis, we can observe that 𝑘
has multiscale characteristics. When the bandwidth changes,
𝑘 also changes.

2.3. The Stress Integration for a Slip Line within an Element.
As represented in (1), the line integral of stress along a slip
surface is required to calculate the factor of safety. The stress
at any point within an element is

𝜎 =

𝑛𝑛

∑
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𝜎
node
𝑏

, (8)

where 𝑛𝑛 is the number of nodes in the element,𝑁
𝑏
is a shape

function for a nodal point 𝑏, and 𝜎node
𝑏

is the nodal stress.
With simpliication of the theoretical formulations, as

shown in Figure 5, only one slip line segment is assumed
within an element. And the stress integration for a slip line
within an element can be calculated by
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where 𝑛int is the number of integration points in the local
coordinate system and 𝑠

𝑖
and 𝑊

𝑖
are the local coordinates

of the 𝑖th integration point and the weight value of the 𝑖th
integration point, respectively. P

1
and P

2
are intersection

point vectors between the boundary of an element and a slip
surface in the global coordinate system, and 𝐿 is the length
between P

1
and P

2
.

When the angle of the slip surface within an element is
identified, the 𝑘

𝑖
within an element can be also identified, and

(1) can be calculated.

2.4. GA Applied in Locating the CSS. Basically, GA [16] is
based on Darwin’s theory of survival of the fittest, which is
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Figure 6: The segments of the slip surface.

based on the principle that solutions to a problem can be
obtained through evolution. The algorithm starts with a set
of possible solutions.The set of possible solutions is called the
“population.” Each possible solution within the population is
called a “chromosome.” Associated with each chromosome is
a fitness value, which is found by evaluating the chromosome
with respect to the objective function. Solutions from one
population are taken and used to construct a new population
so that the new population (offspring) will be fitter than the
old one. This process is repeated until the best chromosome
representing the optimum solution is produced or some
termination criterion, such as a set number of generations,
is reached. The fundamentals of GA are described in the
following sections.

2.4.1. Fitness Function. The search for the CSS can be mathe-
matically expressed as theminimization of the factor of safety
𝐹. And the problem can be written as

min 𝐹

subject to 𝛼
1
≤ 𝛼
2
≤ ⋅ ⋅ ⋅ ≤ 𝛼

𝑖

≤ ⋅ ⋅ ⋅ ≤ 𝛼
𝑁
, 1 ≤ 𝑖 ≤ 𝑁,

(11)

where 𝛼
𝑖
is the angle of 𝑖th segment of the slip surface, which

is shown in Figure 6.𝑁 is the number of segmentsmaking up
the slip surface.

The constraint condition can be converted into a penalty
function 𝐺(𝛼

1
, . . . , 𝛼

𝑁
) and substituted into the objective

function, which can be rewritten as

min (𝐹 + 𝐺 (𝛼
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in which
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𝑁
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𝑖
> 𝛼
𝑖+1
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where 𝑓pun is the penalty factor. And 𝑓pun is adopted as a big
value, which is far more than 1.

2.4.2. Initialization. The GA starts with a population of 𝑁
possible solutions. Each solution is created by 𝑛 binary
encoding.

2.4.3. Selection. The selection operator is used to determine
which chromosomes are chosen as parents that will create
offspring for the next generation. In this study, the roulette
wheel selection is used in conjunction with elitism. This
usually involves retaining the best chromosome at each
generation to ensure that the best chromosome is not lost
if it is not selected in reproduction or if it is destroyed by
crossover or mutation.

2.4.4. Crossover and Mutation. The single-point crossover
operator is employed in this study and the randomly flipping
mutation procedure is also used.

2.5. The Main Idea of Proposed Model. The program flow
diagram for the proposed model is shown in Figure 7.

3. Numerical Results and Discussions

3.1. The Numerical Example for Calculating Multiscale Char-
acters of 𝑘. The distribution of joints was shown in Figure 8.
The parameters used in the numerical example were shown
in Table 1. The length and depth of model were both 100m.
The average normal stress and the tensile strength of the rock
bridges were 2.5MPa and 2.0MPa, respectively. The sheared
strengths of the joints were all 1.95MPa.The influences of the
projection length and projection width on the MPR 𝑘 were
shown in Figures 9 and 10.
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Figure 7: The program flow diagram for the proposed model.

Table 1: Occurrence geometry parameters of the joints.

Distribution form Dip (∘) Dip angle (∘) Spacing (m) Trace length (m)
Normal Uniform Normal Negative exponential

Average value 129.25 28.62 2.71 3.7
Standard deviation 36.88 11.29 6.03 0.58

Example 1 was used to describe the multiscale character-
istics of theMPR 𝑘.Through observing the results in Figure 8
to Figure 10, they showed that the MPR 𝑘 was related to the
projection width 𝐵 and projection length 𝐿. Thus the MPR 𝑘
had the multiscale characteristics. Thus when calculating the
CSSs of JRMS, it was necessary to consider the relationship
between MPR 𝑘 and the length of each segment of the slip
surface.

3.2. Numerical Example: AHomogeneous Slope. This example
was a homogeneous slope. The geometry and FE meshes
of the slope were shown in Figures 11 and 12, respectively.
The coefficient of cohesion 𝑐 and friction angle 𝜑 of the

slope were 9.8 KPa and 10∘, respectively. The elastic modulus
𝐸 and Poisson ratio ] of the slope were 200MPa and 0.3,
respectively. The density of the slope 𝜌 was 1764 kg/m3. The
distribution of von Mises stress in the slope was shown in
Figure 13.TheCSS of slope was shown in Figure 14.The factor
of safety of slope𝐹 = 1.3228. And other results of the CSS and
factor of safety of slope were shown in Figure 14 and Table 2.

Example 2 was given for verifying the proposed model.
The slope was homogeneous. And the results calculated by
proposed model were compared with those calculated by
other models in related literatures. In Figure 14, Kang et al.
used an artificial bee colony algorithm (ABC) to locate the
CSS of slopes and the factor of safety 𝐹 was calculated by the
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Table 2: Statistics of the results of Example 2.

𝐹 calculated by Kang et al. [17] 𝐹 calculated by Sun et al. [4] 𝐹 calculated by proposed model Min. Max. Mean. SD.
1.3206 1.3210 1.3228 1.3206 1.3228 1.3215 1.172 × 10

−3

Min.: minimum value; Max.: maximum value; Mean.: mean value; SD.: standard deviation.
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Figure 8: The distribution of joints.
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Spencer method. Sun et al. used a Spline-based GA to locate
the CSS of slopes.

Through observing the results shown in Figure 11 to
Figure 14 and Table 2, they showed that the mean value,
minimum value, and maximum value of 𝐹 are 1.3215, 1.3206
and 1.3228, respectively. The standard deviation of the factor
of safety 𝐹 of the slope calculated by the proposed model
and those used elsewhere was 0.1172%. And the value of 𝐹
calculated by proposed model based on GA was greater than
that calculated by the model based on ABC and the model
based on Spline-based GA. The reason was mainly that the
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Figure 11: The geometry of the slope.

methods to calculate the factor of safety 𝐹 and to locate the
CSS of slopes are different.Theproposedmodel used the FEM
to analyze the stress field near the CSS, which considered the
effects of the deformation on the stress in the slope. However,
the values of 𝐹 calculated by different models were close.
These results showed that the proposedmodel could calculate
the factor of safety 𝐹 and the CSS of homogeneous slope well.

3.3. Numerical Example: A Homogeneous Layered Slope. This
example was a homogeneous layered slope. The geometry
and FE meshes of the slope were shown in Figures 15 and
16, respectively.The physical parameters for the layered slope
were shown in Table 3. The distribution of von Mises stress
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Figure 12: FE meshes of the slope.
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Figure 13: The distribution of von Mises stress of slope.

Table 3: Physical parameters for layered slope.

Layers 𝑐 (KPa) 𝜑 (∘) 𝜌 (kg/m3) 𝐸 (MPa) ]
1 15.0 20.0 1900 200 0.3
2 17.0 21.0 1900 200 0.3
3 5.0 10.0 1900 200 0.3
4 35.0 28.0 1900 200 0.3

in the slope was shown in Figure 17.The CSS of the slope was
shown in Figure 18. The factor of safety of slope 𝐹 = 1.3418.
And other results of the CSS and factor of safety of slope were
shown in Figure 18 and Table 4.

Example 3 was also given for verifying the proposed
model. This example was a homogeneous layered slope. And
the results calculated by the proposed model were compared
with those calculated by othermodels in related literatures. In
Figure 19, Kang et al. used an artificial bee colony algorithm
(ABC) to locate the CSS of slopes and the factor of safety 𝐹
was calculated by the Spencer method. Li et al. used a real-
coded genetic algorithm (RCGA) to locate the CSS of slopes.

Through observing the results of Figure 15 to Figure 18
and Table 4, they showed that the mean value, minimum
value, andmaximumvalue of𝐹were 1.3232, 1.2917, and 1.3418,
respectively. The standard deviation of the factor of safety 𝐹
of the homogeneous layered slope calculated by the proposed
model and those used elsewhere was 2.740%. And the value
of 𝐹 calculated by proposed model was also greater than
that calculated by the model based on ABC and the model
based on RCGA. The reason was mainly that the methods to
calculate the factor of safety 𝐹 of the CSS of the slope were
different. The proposed model used the FEM to analyze the
stress in the layered slope, which considered the effects of the
deformation on the stress in the layered slope. However, the
values of 𝐹 calculated by different models were close. These
results showed the proposed model could calculate the factor
of safety 𝐹 and the CSS of layered slope well.
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Figure 15: The geometry of the layered slope.

3.4. Numerical Example: Homogeneous Layered Earth Rockfill
Dam. This example was a homogeneous layered earth rock-
fill dam. The geometry and FE meshes of the earth rockfill
dam were shown in Figures 19 and 20, respectively. The
physical parameters for the layered earth rockfill dam were
shown in Table 5. The distribution of von Mises stress in
the earth rockfill dam was shown in Figure 21. The CSS for
the earth rockfill dam was shown in Figure 22. The factor of
safety of the earth rockfill dam 𝐹 = 1.3868. And other results
of the CSS and factor of safety of earth rockfill dam were
shown in Figure 22 and Table 6.

Example 4 was also given for verifying the proposed
model. This example was a homogeneous layered slope. And
the results calculated by proposedmodel were comparedwith
those calculated by other models in related literatures. In
Figure 22, Kang et al. used an artificial bee colony algorithm
(ABC) to locate the CSS of slopes and the factor of safety
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Table 4: Statistics of the results of Example 3.

𝐹 calculated by Kang et al. [17] 𝐹 calculated by Li et al. [6] 𝐹 calculated by proposed model Min. Max. Mean. SD.
1.2917 1.3360 1.3418 1.2917 1.3418 1.3232 2.740 × 10

−2

Figure 16: FE mesh of the layered slope.
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Figure 17: The distribution of von Mises stress of layered slope.

Table 5: Physical parameters for layered slope.

Layers 𝑐 (KPa) 𝜑 (∘) 𝜌 (kg/m3) 𝐸 (MPa) ]
1 49.0 29.0 2038 200 0.3
2 0.0 30.0 1764 200 0.3
3 7.84 20.0 2038 200 0.3
4 0.0 30.0 1764 200 0.3

𝐹 was calculated by the Spencer method. Sun et al. used a
Spline-based GA to locate the CSS of slopes.

Through observing the results of Figure 19 to Figure 22
and Table 6, they showed that the mean value, minimum
value, and maximum value of 𝐹 were 1.3865, 1.3776, and
1.3950, respectively. The standard deviation of the factor of
safety 𝐹 of the earth rockfill dam calculated by the proposed
model and those used elsewhere was 0.8705%. And the value
of 𝐹 calculated by proposed model was more close to the
mean value. The reason was mainly that the methods to
calculate the factor of safety 𝐹 of the CSS of the earth rockfill
dam were different. The proposed model used the FEM to
analyze the stress in the earth rockfill dam, which considered
the effects of the deformation on the stress in the earth rockfill
dam. However, the values of 𝐹 calculated by different models
were close. These results showed that the proposed model
could calculate the factor of safety 𝐹 and the CSS of the earth
rockfill dam well.

3.5. Numerical Example: JRMS. This example was a JRMS.
The geometry and FE meshes of the slope were the same as
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Figure 18: The CSSs for a layered slope [6, 17].
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Figure 19: The geometry of the earth rockfill dam.

those used in Example 2. The coefficient of cohesion 𝑐 and
friction angle 𝜑 of the rock bridges in the slope were 9.8 KPa
and 10∘, respectively, which were the same as those used in
Example 2. The coefficients of cohesion 𝑐 and friction angle
𝜑 of the joints of slope were 3.0 KPa and 7∘, respectively.
The elastic modulus 𝐸, Poisson ratio ], and density 𝜌 of the
slope were the same as those used in Example 2. Thus, the
distribution of von Mises stress of slope was the same as that
in Example 2. The MPR 𝑘 using different projection lengths
was shown in Figure 23. The CSS of JRMS was shown in
Figure 24. And the results of the CSS and factor of safety of
JRMS were shown in Figure 24 and Table 7.
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Table 6: Statistics of the results of Example 4.

𝐹 calculated by Kang et al. [17] 𝐹 calculated by Sun et al. [4] 𝐹 calculated by proposed model Min. Max. Mean. SD.
1.3776 1.3950 1.3868 1.3776 1.3950 1.3865 8.705 × 10

−3

Table 7: Statistics of the results of Example 5.

𝐹 for homogeneous slope 𝐹 for JRMS in projection length = 100m 𝐹 for JRMS in multiscale projection length
1.3228 1.255 1.302

Figure 20: FE mesh of the earth rockfill dam.
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Figure 21: The distribution of von Mises stress in the earth rockfill
dam.
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Figure 22: The CSSs for the earth rockfill dam [4, 17].

Example 5 was used to analyze a JRMS. This example
firstly used the model, which did not consider the multiscale
characteristics of the MPR 𝑘. In other words, the MPR 𝑘

did not change when the length of any segment of the
slip surface was different. Then the material parameters of
joints and rock bridges such as cohesion and friction angle
remained constant.Then this example used themodel, which
considered the multiscale characteristics of the MPR 𝑘. In
other words, the MPR 𝑘 changed when the length of segment
of slip surface was different. Then the material parameters of
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Figure 23: The rose diagram of 𝑘 using a multiscale projection
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Figure 24: The CSS of the JRMS.

joints and rock bridges such as cohesion and friction angle
also changed. And through observing the results of Figure 24
and Table 7, they showed that the multiscale characteristics
of the MPR 𝑘 had great influence on the CSS and factor of
safety of JRMS. The factors of safety of JRMS calculated by
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different models were both less than that of homogeneous
slope. And if the distribution of the MPR 𝑘 changed much
in different projection length, the CSS and factor of safety
of JRMS would vary significantly. The factor of safety of the
JRMS as calculated by the proposedmodel, which considered
the multiscale characteristics of the MPR, was 3.75% more
than that calculated by the proposed model, which did not
consider the multiscale characteristics of the MPR. It showed
that the multiscale characteristics of the MPR played an
important role in the stability of the JRMS.

4. Conclusion

A model based on a GA for locating the multiscale CSSs in
a statistical JRMS from the stress field was proposed. The
proposed model could consider the influence of different
sets of joints on the material strength of a jointed rock mass
and the multiscale characteristics of the MPR 𝑘. The results
showed that the MPR was related to the projection width
and projection length. Thus the MPR had the multiscale
characteristics and these played an important role in locating
the CSS in a JRMS.The results also showed that the proposed
model could calculate CSSs and factors of safety of slopes
accurately.
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