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Analytical approaches for the characterisation of the compound channels in transparent multihop relay transmissions over
independent fading channels are considered in this paper. Compound channels with homogeneous links are considered first.
Using Mellin transform technique, exact expressions are derived for the moments of cascadedWeibull distributions. Subsequently,
two performance metrics, namely, coefficient of variation and amount of fade, are derived using the computed moments. These
metrics quantify the possible variations in the channel gain and signal to noise ratio from their respective average values and
can be used to characterise the achievable receiver performance. This approach is suitable for analysing more realistic compound
channelmodels for scattering density variations of the environment, experienced inmultihop relay transmissions.The performance
metrics for such heterogeneous compound channels having distinct distribution in each hop are computed and compared with those
having identical constituent component distributions. The moments and the coefficient of variation computed are then used to
develop computationally efficient estimators for the distribution parameters and the optimal hop count.Themetrics and estimators
proposed are complemented with numerical and simulation results to demonstrate the impact of the accuracy of the approaches.

1. Introduction

Precise channel models are of utmost importance in the
design ofwireless systems, as they influence power budgeting,
transceiver design, performance prediction, and so forth, of
the overall system. Cooperative relaying techniques enable
end-to-end network connectivity where traditional direct
link architectures are impractical due to location constraints.
In multihop cooperative relay communication, precise statis-
tical models for the compound channels between the source-
destination pair are unknown in some cases and too com-
plex for tractable performance analysis in other cases. In
cooperative multihop diversity networks, the possibility of
occurrence of distinct component distributions for the indi-
vidual hops of multihop transmission cannot be neglected,
for example, the situation where the source-relay link fol-
lows one distribution (say Rayleigh) while relay-destination
link follows another distribution (Rician) due to the power
boosting being done at relay node. The primary objective of
this paper is to characterize cascaded fading channels so that

multihop cooperative transparent or non-regenerative relay
communication can be designed to achieve their preset goals.

Uncertainty analyses of multihop cooperative commu-
nication under consideration can be accomplished by its
distribution, statistical moments such as mean, variance, and
other higher order moments. In most cases, the derivation
of exact probability density function (pdf) is a difficult task,
if not impossible because of the product forms involved in
distributions. In many cases, it is sufficient to estimate the
statistical moments to have an assessment of the system.
There are only a few channel models and metrics available
for characterising cascaded multihop relay transmissions as
compared to direct linkwireless systems. In diversity combin-
ing receivers, optimum performance is achieved by selecting
the branches with minimum symbol error rate (SER). Such
technique requires continuous estimation of the SER, leading
to evaluation of high complexity expressions or closed form
approximations for the SER calculations. Under deep fades,
the conventional performance measures like average SER
and outage probability used in direct link cellular system
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analysis may not necessarily reflect the fading effects in the
constituent channels. To combat the fading effect, associated
use of alternate paths are exploited in a diversity system
like cooperative communication network. Knowledge of
higher order moments and reliable performance metrics is
vital for improving the dynamic range of receivers in such
communication systems. Coefficient of variation (CV) [1] and
amount of fade (AF) are the two ratio measures used for
assessments under highly unpredictable statistical scenarios
where increase in transmitter power cannot reduce fading
induced fluctuations. These measures incorporate the vari-
ation in channel gain and variation in signal to noise ratio
(SNR), of the end to end channel that is compound in nature
due to multiplicative effects. They can be used to fix the
detector voltage level threshold and dynamic range of the
receiver measurement unit.

Parametrisation of the approximated empirical distribu-
tion at the receiver can also be done with the CVmeasure, for
a known family of cascaded distributions by using estimators
based on method of moments (MOM). Further, CV can be
used for estimating the hop count, by which the fundamental
question of how to select the best order of cascade for a
particular terrain from a given set of measurement data can
be dealt with.

Generation of moments from first kind characteristic
function for the compound channel models often require,
solutions of incomplete integrals. Alternately, characteristic
function of the second kind, derived using Mellin transform,
can be used to find the stochastic properties of nonnegative
random variables [1]. The Mellin transform approach [2] is
used for deriving the moments of the cascaded channels so
that it can be conveniently extended to various combinations
of component channels in a compound channel model.
Though Mellin transform approach had been used in many
of the previous works, the explicit use of its properties to find
the moments of SNR, especially for heterogeneous compound
channels, is not exploited yet.The convenience in usingMellin
transform is that it converts the exponentials to polynomials
so that convolution theorem can be applied easily for themul-
tiplicative scenarios. Another aspect is that the computations
of moments or the metrics do not require the probability
density function (pdf) of the end-to-end compound channel,
where as the derived moments can be used to find the pdf
of the end to end channel. Weibull distribution [3] can be
accounted as a terrain specific distribution providing greater
flexibility in describing the fading severity of a channel. This
is selected as a representative distribution for illustrating
the approach, as the exponentiated random variable (RV)
is powered by the fading parameter of the distribution.
The analyses are then conveniently extended to Rayleigh
distribution and their combinations also. For Nakagami-𝑚
distribution, the exponentiated RV is getting powered by two.
Hence, extension of the approach to other combinations of
terrain specific distributions like Nakagami-𝑚, Gamma, and
so forth (for which Mellin transform exists) can be done
easily.

In order to find the exact moments, the major challenge
is to find a proper variable transformation rule to represent
the overall pdf in a tractable and compact form, especially

in heterogeneous compound channel cases. Alternately, the
proposedmethod provides a feasible solution to this issue, by
using the product convolution property of Mellin transform,
without the knowledge of overall pdf.

Our major contributions in brief are listed here. (i) An
approach to analyse a heterogeneous compound channel
model that can precisely depict the heterogeneous scattering
environment for a multihop wireless communication system
is proposed. (ii) Exact expressions for moments of overall
distribution and performance metrics such as CV and AF
for such compound channels are derived. (iii) A comparison
study of these measures with that of homogeneous distribu-
tions is performed. (vi) Estimators for finding distribution
parameters (shape and scale parameters) of 𝑁-Weibull dis-
tributions are presented.

The rest of the paper is organised as follows. Section 2
presents the closely related works. Two cases of compound
channel models for amultihop relay network are presented in
Section 3. Section 4 deals with the computation of moments.
Using the computed moments, exact expressions for perfor-
mancemetrics are derived in Section 5, where the discussions
on the results are also included. Moment based estimators
for distribution parameters are presented with results in
Section 6, and Section 7 concludes the paper.

2. Related Works

Most of the previous works on the product of independent
random variables deal with product pdf computation based
on the moments generated by random variable exponentia-
tion. In [4, 5] the pdf for the product of independent random
variables was derived in terms of the H-function, which
includes most of the commonly used distributions as special
cases. In [6], the pdf for the product of Rayleigh random
variables was derived in terms of the Meijer-G function, as
well as in terms of infinite series. An approximate product
pdf expression for various identical distributions is derived
in [7], and good accuracy is achieved in comparison to exact
expression by incorporating approximation to the transform
integral. Using approximations for the exponential moment
generating function, BER expressions are derived in [8] for
the product of K-function distributions. The product pdf for
Weibull distribution in [9] uses central limit theorem to the
logarithm of a product of a large number of RVs, where
the basic Weibull pdf is used instead of the generic Weibull
pdf that is considered in our proposed work. In [10], the
end to end SNR of Weibull distributed cascaded channel is
computed using Pade approximant method. In this case also,
the density function used is specific for the given relation-
ship between the scale and shape parameters. Performance
metrics for homogeneous cascaded Weibull distribution are
considered in [1]. Despite these contributions, a unified
characteristic function based method for the computation
of exact moments and performance measures, which can
be conveniently extended to other combinations of distinct
component distributions, is not available in the literature.
An estimator for channel parameters, with simple imple-
mentation, based on method of moments is proposed and
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the fundamental question of how to select the best order of
cascade 𝑁 for a particular topology, for a given set of meas-
urement data, is also dealt with.

3. Compound Channel Model

We focus on quantifying the end to end performance of
multihop relay transmissions in the context of collaborative/
cooperative wireless communication systems, where relaying
is used to overcome the effects of highly shadowed or deeply
faded links. In particular, we consider one multihop branch
of the multihop, multibranch cooperative diversity network.
A multihop branch with 𝑁 − 1 serial relays in between the
transmitter and receiver (destination) is considered.

For such a system, with RV𝑊 representing the compound
channel gain and 𝑁 independent RV𝑠𝑋

𝑖
representing the

individual channel gains, we have

𝑊 =

𝑁

∏

𝑖=1

𝑋
𝑖
, (1)

where 𝑋
𝑖
’s are non negative RV𝑠 that can have any distri-

bution depending on the nature of the radio propagation
environment.

We consider two types of compound channels: assuming
Weibull distribution on individual component channels but
with variable scaling factors for the components, we can
effectively model 𝑊 as a single product distribution, which
we refer to as homogeneous compound channel case.Weibull
distribution that efficiently depict the amplitude and power
statistics of a channel in highly unpredictable scenarios is
selected for the component channels [11]:

𝑓
𝑋𝑖
(𝑥; 𝛼, 𝛽) =

𝛽

𝛼

(

𝑥

𝛼

)

𝛽−1

𝑒
−(𝑥/𝛼)

𝛽

𝑈 (𝑥) ; 𝛼 > 0, 𝛽 > 0, (2)

where 𝑈(𝑥) is unit step function, 𝛼 is the scale parameter
related to nonlinearity of the environment, and 𝛽 is the
shape parameter which alters distribution properties more
fundamentally than the scale parameter. In this modified
expression, the exponentiated scaled RV is raised to a power
equal to the shape parameter 𝛽. Rayleigh and exponential
distributions can be obtained from this Weibull distribution
by setting 𝛽 = 2 and 𝛽 = 1, respectively.

As mentioned earlier, the assumption of homogeneous
scattering environment for all the constituent links is def-
initely an approximation. In many practical scenarios, cas-
caded channel is often characterised by heterogeneous envi-
ronments due to scattering density variations.

Figure 1 explains this scenario with a two-hop system
where the relay to destination link experiences heavy scatter-
ing density as compared to the source to relay link, forming
a heterogeneous compound channel of Weibull × Rayleigh
distributions. This is the second type of compound channel
which is referred to as heterogeneous compound channel
case. Using the Mellin transform of Nakagami-𝑚 distribu-
tion, fading statistics of other combinations like Weibull ×
Nakagami-𝑚, Rayleigh × Weibull × Nakagami-𝑚, and so
forth can be obtained.
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Figure 1: Heterogeneous compound channel formation due to envi-
ronmental (scattering) variations in each hop.

4. Computation of Moments for
Compound Channels

We propose the use of second kind characteristic function
[12], based on Mellin transform, to reduce the complexity
associated with compound channel modelling. The main
advantage of the proposed technique is that, instead of expo-
nentiation of RV𝑠, only powers of them are required for com-
putation of moments. This approach can readily be applied
to find the moments of compound channel with distinct
component distributions in a simple and tractable form.
Since the approach is to be extended to other terrain specific
distributions also, a short description of homogeneous case
considered in [1] is given below.

4.1. Homogeneous Case. In the case of Weibull distribution,
the 𝑝th moment becomes

𝑚
𝑝
= ∫

∞

0

𝑥
𝑝𝛽

𝛼

(

𝑥

𝛼

)

𝛽−1

𝑒
−(𝑥/𝛼)

𝛽

𝑑𝑥. (3)

With proper variable substitution and reduction techniques
[1], this can be expressed in a compact form in terms of
gamma function as

𝑚
𝑝
= 𝛼
𝑝
Γ(1 +

𝑝

𝛽

) , (4)

where Γ(𝑡) = ∫

∞

0
𝑥
𝑡−1
𝑒
−𝑥
𝑑𝑥. Considering the multiplicative

effects in a multihop branch, the moments of the compound
channel gain𝑊 are given by

𝑚
𝑝𝑁

= 𝐸[(

𝑁

∏

𝑖=1

𝑋
𝑖
)

𝑝

] = 𝛼
𝑁𝑝

[Γ
𝑁
(1 +

𝑝

𝛽

)] , (5)

where 𝑋
𝑖
’s have independent and identical distributions

because of the homogeneous assumption. However, proper
variable transformations are often quite tedious and moment
computations by the above conventional method become
complex. Alternately, using Mellin transform and its proper-
ties, such calculations can be made simpler, resulting in com-
pact expressions even for nonidentical, dissimilar component
distributions. The Mellin transform of a probability density
function 𝑓

𝑋𝑖
(𝑥) is given as [13]

𝑀(𝑓
𝑋𝑖
(𝑥) , 𝑠) = ∫

∞

0

𝑥
𝑠−1

𝑓
𝑋𝑖
(𝑥) 𝑑𝑥, (6)
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where 𝑠 = 𝑎 + 𝑗𝑏 ∈ 𝐶 is a complex transform variable. By
setting 𝑠 = 𝑝 + 1, moments can be generated from (6) as

𝑚
𝑝
= 𝑀[(𝑓

𝑋𝑖
(𝑥) , 𝑠)]

𝑠=𝑝+1
. (7)

Using (2) and (6), the Mellin transform of Weibull distribu-
tion can be written as

𝑀(𝑓
𝑋𝑖
(𝑥) , 𝑠) =

𝛽

𝛼
𝛽
∫

∞

0

𝑥
(𝑠+𝛽−1)−1

𝑒
−(𝑥/𝛼)

𝛽

𝑑𝑥. (8)

Using certain properties of the Mellin transform pairs [1, 13],
we get the transform in terms of the gamma function as

𝑀(𝑓
𝑋𝑖
(𝑥) , 𝑠) =

1

𝛼
𝛽
𝛼
𝑠+𝑡
Γ(

𝑠 + 𝑡

𝛽

) , (9)

where 𝑡 = 𝛽 − 1. This transform operator represents the
second kind characteristic function 𝑄

2𝑋
(𝑠) of the Weibull

distribution expressed in a general compact form as

𝑄
2𝑋 (

𝑠) = 𝑀[𝑓
𝑋𝑖
(𝑥) , 𝑠] = 𝛼

𝑠−1
Γ(

𝑠 + 𝛽 − 1

𝛽

) . (10)

Therefore, moments of Weibull distribution can be obtained
from (10) by setting 𝑠 = 𝑝 + 1; that is,

𝑚
𝑝
= 𝑄

2𝑋
(𝑠) |𝑠=𝑝+1

= 𝛼
𝑝
Γ(

𝑝 + 𝛽

𝛽

) . (11)

For the computation of themoments of a dual hop compound
channel pdf, the usual techniques of conditioning on RV𝑠
or Jacobian transformations are no longer required if Mellin
transform properties are exploited. The Mellin convolution
between the pdfs 𝑓X1(𝑥1) and 𝑓

𝑋2
(𝑥
2
) can be extended

to 𝑁 number of pdfs. Therefore, Mellin transform of the
compound pdf of an𝑁-hop cascaded branch, in terms of the
transforms of the component channel pdfs, is given by

𝑀[(𝑓
𝑊 (

𝑤) , 𝑠)] =

𝑁

∏

𝑖=1

𝑀[(𝑓X𝑖 (𝑥𝑖) , 𝑠)] = 𝑄
2𝑊

(𝑠) . (12)

Assuming identical parameters for the component distribu-
tions, the transform of the compound pdf is obtained as

𝑀[(𝑓
𝑊 (

𝑤) , 𝑠)] = 𝛼
(𝑠−1)𝑁

[Γ
𝑁
(

𝑠 + 𝛽 − 1

𝛽

)] . (13)

This being the second kind characteristic function of the
compound pdf, we can find the various first kind moments
of the compound channel gain by setting 𝑠 = 𝑝 + 1:

𝑚
𝑝𝑁

= 𝐸 [𝑊
𝑝
] = 𝛼
𝑁𝑝

[Γ
𝑁
(1 +

𝑝

𝛽

)] . (14)

This is the same as (5) obtained using conventional method,
where the proper variable transformations are often quite
tedious. These results are very useful in practical scenarios,
where the distribution parameters are estimated from the
various sample moments obtained from the collected data.

Similarly, extending the above approach to Nakagami-
𝑚 distribution, the 𝑝th moment of 𝑁-cascaded compound
channel can be derived as

𝑚
𝑝𝑁

= 𝐸 [𝑌
𝑝
] =

Γ
𝑁
(𝑚 + 𝑝/2)

Γ
𝑁
(𝑚)

(

Ω

𝑚

)

𝑝𝑁/2

, (15)

where 𝑌 represents the product RV of Nakagami-𝑚 distribu-
tions having scaling factorΩ and fading figure𝑚.

4.2. Heterogeneous Case. Theenvironmental effects like vari-
ation in local scattering density as described in Figure 1 can
result in RV𝑠 having distinct density function for each hop. If
Weibull distribution is used for approximatemodel, the order
to which the exponentiated RV is raised for each component
channel will be different. The average power or the scaling
will also be different in each component channel. For an
accurate model, each channel needs to be characterized with
separate distribution and not as special cases of one distri-
bution. Computation of compound channel pdf using the
conventional method of successive application of Jacobian
transformation or conditioning of RV𝑠 becomes difficult as
the number of hops 𝑁 becomes larger, even for the case of
same distribution family but with nonidentical parameters.
In the case of distinct or nonidentical distributions, this
conventional method may lead to intractable mathematical
formulations. But it is possible to derive the moments using
the proposed Mellin transform approach in a convenient
way. Consider a dual hop compound channel with one
hop characterised by Weibull distribution and the other by
Rayleigh distribution with pdf given by

𝑓
𝑅
(𝑥; 𝛼
1
) = 2(

𝑥

𝛼
2

1

) 𝑒
−(𝑥/𝛼1)

2

𝑈 (𝑥) , (16)

where 𝛼
2

1
/2 denotes the variance. The Mellin transform of

Rayleigh distribution is given by

𝑀[(𝑓
𝑅 (
𝑥) , 𝑠)] = 𝛼

𝑠−1

1
Γ (

𝑠 + 1

2

) . (17)

Let 𝐻 represents the heterogeneous compound channel
gain. Using the individual Mellin transforms of distinct
distributions and the product convolution property of Mellin
transform, the transform of the heterogeneous compound
pdf, 𝑓

𝐻
(ℎ), is

𝑀[(𝑓
𝐻 (

ℎ) , 𝑠)] = 𝛼
𝑠−1

1
Γ (

𝑠 + 1

2

) 𝛼
𝑠−1

2
Γ(

𝑠 + 𝛽 − 1

𝛽

) . (18)

Setting 𝑠 = 𝑝 + 1 in this second kind characteristic function
of the compound channel, the exact moments for such a
heterogeneous channel can be obtained as

𝑚
𝑝
= 𝛼
𝑝

1
Γ (

𝑝 + 2

2

) 𝛼
𝑝

2
Γ(1 +

𝑝

𝛽

) . (19)
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This can be extended to other combinations of distributions
and also to different number of hops. In conventional
approaches,moments are found from themoment generating
function (MGF), which requires the computation of overall
pdf. However, in many cases, the compound channel pdf
for nonidentical and heterogeneous cases will not be in a
mathematically tractable form to compute the MGF of the
overall channel, and hence approximations are to be made
for. Whereas in our approach, since the component channel
distributions are expressed in the transformdomain itself, the
involved mathematical complexity is reduced.

5. Performance Metrics for
Compound Channels

Performance measures based on moments can be effectively
used to characterize the channel in the context of cooperative
relay communication systems. The data received over a
compound channel with widely dispersed distribution is
more difficult to detect. The possible deviation of the data
from the average value can be used as a critical performance
measure. We derive two such measures for the compound
channels, which are useful for capturing the effect of fading
induced fluctuations that cannot be compensated just by
increasing the transmitted power. Here we derive two impor-
tant parameters that are capable of providing deep insight
into the channel pdfs.

5.1. Coefficient of Variation (CV). Coefficient of variation
is a normalized measure of dispersion of the probability
distribution and is defined as the ratio of standard deviation
(SD) to mean (𝜇). Considering the attenuation effect on data
signal by channel gain, CV is a useful metric to analyse
the range of variation of signal relative to the mean size
of the observation. During the design and validation of the
receiver unit, an assessment of data variability by measures
such as SD or CV is critical in determining whether the signal
can be detected within the specified confidence interval. In
many comparison applications, SD becomes meaningless as
it depends on the units of variables and the mean values
about which they occur. Since CV is a unitless measure, the
regularity/variability of the channel induced fading effects
at signal level can be assessed effectively. By this method,
the characterisation of individual branches of a multibranch
multihop transmission system becomes more reliable and
accurate.

5.1.1. Homogeneous Case. In a multihop transparent relay
network, the transmitted signal as well as the noise will
be experiencing cumulative multiplication by the channel
gain of the constituent links. The CV measure is quite
useful in this scenario as the standard deviation must always
be understood in the context of the mean of the data.
Using the moments computed by (14) in Section 4.1 for the
homogeneous compound channel with 𝑁 identical Weibull
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Figure 2: Coefficient of variation against 𝛽 for various number of
hops.

distributions, the mean 𝜇 and variance ] of the compound
channel gain𝑊 can be readily computed as

𝜇 = 𝛼
𝑁
[Γ
𝑁
(1 +

1

𝛽

)] ,

] = 𝛼
2𝑁

[Γ
𝑁
(1 +

2

𝛽

)] − 𝜇
2
.

(20)

Hence CV is

CV =

√𝛼
2𝑁
Γ
𝑁
(1 + 2/𝛽) − 𝛼

2𝑁
Γ
2𝑁

(1 + 1/𝛽)

𝛼
𝑁
Γ
𝑁
(1 + 1/𝛽)

.
(21)

The coefficient of variation as a function of the number
of hops 𝑁 and the shape parameter for fading severity 𝛽

is plotted in Figure 2. The channel for which the CV is
large indicates that the channel gains have more variability.
As 𝛽 increases, the fading severity decreases, resulting in
reduced variability for the channel coefficients and hence CV
measure also decreases. For a single hop, CV shows the least
measure for all values of 𝛽, indicating more regularity of the
distribution function, where as the CV measure for 𝑁 = 5

denotes less regular distributions due to cascading effects.
It is to be noted that the CV becomes equal to unity, for
𝑁 = 1 and 𝛽 = 1, as the distribution reduces to exponential,
and the CV for exponential distribution is unity. Similarly,
for 𝑁 = 1 and 𝛽 = 2, CV = 0.5227, which is the CV
measure of a Rayleigh distribution. This shows the accuracy
of the general expressions we have derived for 𝑁-Weibull
distributions. In this way, based on the CV value at the
receiver, computed from sample moments, the distributions
can be identified and hence outage probability can be derived.
Thus, a comparison of variability of two or more branches
(of possibly varying hop counts) of a multihop multibranch
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cooperative communication system can be done based on
these graphs.

5.1.2. Heterogeneous Case. Asmentioned earlier, in the study
of multiple scattering in mobile radio channels, the envi-
ronmental conditions producing severe fading need to be
considered and must be modelled properly. More impor-
tantly, situations are encountered for which none of the
known distributions seem to adequately fit experimental data
[11]. The exact pdf of a heterogeneous compound channel
with distinct distributions (e.g., Weibull × Rayleigh) is not
available in simple mathematical functions but involves
special functions. As we have shown earlier, for our proposed
Mellin transform based approach, only the transforms of the
individual component channels are required instead of the
compound channel pdf for computing the overall moments.
Using the moments given by (19) and denoting 𝛼

1
𝛼
2

=

𝛼, the expected value for the two-hop Rayleigh × Weibull
heterogeneous channel is given by

𝑚
1
= 𝛼

√𝜋

2

Γ(1 +

1

𝛽

) . (22)

Second moment of the channel is given by

𝑚
2
= 𝛼
2
Γ(1 +

2

𝛽

) (23)

from which the variance ] and coefficient of variance CV are
computed as

] = 𝛼
2
Γ(1 +

2

𝛽

) −

𝜋

4

𝛼
2
Γ
2
(1 +

1

𝛽

) ,

CV = √

4Γ (1 + 2/𝛽)

𝜋Γ
2
(1 + 1/𝛽)

− 1.

(24)

Figure 3 displays a comparison of distribution variability
of a homogeneous and a heterogeneous compound channel
with 𝑁 = 2 for various shape parameter (𝛽) values. This
inference regarding the variability of channel gain with
respect to 𝛽 may not be obviously obtained from a pdf plot
of the distributions. It may be noted that when 𝛽 = 2, the
heterogeneous channel becomes homogeneous two-Rayleigh
channel with CV = 0.7881, which is the same value that
we get from the general expression for CV for 𝑁-Weibull
distribution for𝑁 = 2. A lower value of CV for a distribution
translates to statistical robustness and good SNR as the
dispersion is small. Note that the homogeneous compound
channel is more regular (lower CV value) for 𝛽 > 2, and, for
𝛽 ≤ 2, it is the heterogeneous compound channel that is more
regular.This is due to the fact that, for larger𝛽 values, fading is
less forWeibull distributions and the expected values become
exponential in nature for a Weibull × Weibull distribution.
This results in reduced CV values. But for smaller values
of 𝛽, channel gain fading severity is more for a Weibull
distribution, while Rayleigh distribution is independent of 𝛽
variations. So the effect of channel attenuation is reflected as
fixed scaling to the Weibull distribution in this region.
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Figure 3: Channel variability comparison for heterogeneous and
homogeneous compound channels.

5.2. Amount of Fade (AF). In a diversity combining system,
the distribution of received SNR is of primary importance
than the received signal distribution. A performancemeasure
that is utilised to parametrise SNR distribution is more
suitable than other types of performance measures [14].
AF is a unified measure of severity of SNR fading in a
communication system, defined as [15, 16]

AF =

var (𝑍2)

(𝐸 [𝑍])
2
, (25)

where 𝑍 is the instantaneous SNR which can be expressed in
terms of the channel gain𝑋 and SNR per bit, 𝐸

𝑏
/𝑁
0
, as

𝑍 = 𝑋
2 𝐸𝑏

𝑁
0

, (26)

where 𝐸
𝑏
is the average energy of the transmitted symbol

(bit) and 𝑁
0
is the additive white Gaussian noise power

spectral density. To compute the statistical moments of SNR,
a pdf transformation according to (26) is required. Using the
transformed pdf and the Mellin transform approach through
(6)–(9), for theWeibull distribution that we have considered,
the expression for AF can be derived as follows: (since AF is
the ratio given by (25), 𝐸

𝑏
/𝑁
0
is dropped in the derivation).

5.2.1. Homogeneous Case. By applying the pdf transforma-
tion rule [14] to the given generic-Weibull pdf, the SNR
distribution of each channel is derived as

𝑓
𝑍 (
𝑧) =

𝛽

2𝛼
2
(

𝑧

𝛼
2
)

𝛽/2−1

𝑒
−(𝑧/𝛼

2
)
𝛽/2

. (27)

Mellin transform of this is obtained as

𝑀(𝑓
𝑍 (
𝑧) , 𝑠) = 𝛼

2(𝑠−1)
Γ(

2𝑠 + 𝛽 − 2

𝛽

) . (28)
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Using the variable transformation 𝑠 = 𝑝 + 1, the 𝑝th order
moment for the 𝑍 is

𝑚
𝑝 (
𝑧) = 𝐸 [𝑍

𝑝
] = 𝛼
2𝑝
Γ(1 +

2𝑝

𝛽

) . (29)

Defining 𝛾 as the end to end SNR, given by

𝛾 =

𝑁

∏

𝑖=1

𝑋
2

𝑖

𝐸
𝑏

𝑁
0

, (30)

the moments for the end to end SNR, 𝐸[𝛾𝑝], are given by

𝑚
𝑝
(𝛾) = 𝛼

2𝑝𝑁
Γ
𝑁
(1 +

2𝑝

𝛽

) . (31)

Substituting 𝑝 = 1 and 𝑝 = 2, respectively, in (31), the first
and second order moments of SNR are computed as

𝐸 [𝛾] = 𝛼
2𝑁
Γ
𝑁
(1 +

2

𝛽

) ,

𝐸 [𝛾
2
] = 𝛼
4𝑁
Γ
𝑁
(1 +

4

𝛽

) .

(32)

Using the definition for AF from (25) the 𝐴𝐹 for the 𝑁-
Weibull compound channel can be obtained as

𝐴𝐹 =

Γ
𝑁
(1 + 4/𝛽)

Γ
2𝑁

(1 + 2/𝛽)

− 1. (33)

The expression reveals the dependency of SNR fading severity
on the shape parameter 𝛽 and the number of hops𝑁. A larger
value indicatesmore severe fading, which translates to greater
degradation in system performance [17]. The computation of
AF for compound channels lends insights to the changes in
the average SNR distribution due to multiplicative effects in
𝑁-hop systems. In a multibranch switched diversity system
[18], this value can be used to track the diversity branch
quality. Figure 4 explains the variations in SNR (in terms
of AF) for the𝑁-Weibull homogeneous compound channel,
with respect to 𝛽, for various hop counts. As the number
of hops increases, the AF also increases indicating fading
severity experienced for the Weibull compound channel due
to cascading. Note that, being a ratio, 𝐴𝐹 is independent
of the parameter 𝛼 of the Weibull distribution, though the
various moments depend on it.

5.2.2. Heterogeneous Case. The novelty and convenience of
our approach is explicit in the computation of the moments
of SNR distribution of heterogeneous channel case. Instead
of using the pdf transform approach, the general techniques
available with Mellin transform approach for variable trans-
formation can be conveniently applied to find the moments
of the SNR distribution. The Mellin transform of the trans-
formed variable 𝑍, 𝑀(𝑓

𝑍
(𝑧), 𝑠), denoted as 𝑀

𝑍
(𝑠), can be

conveniently computed as

𝑀
𝑍 (
𝑠) = 𝐸 [𝑍

𝑠−1
] = 𝑀

𝑋 (
2𝑠 − 1) . (34)
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Figure 4: Amount of fade for𝑁-Weibull compound channel.

Using this technique, for the given Weibull × Rayleigh
heterogeneous channel, themoments of SNRdistribution can
be obtained as

𝑚
𝑝
= 𝛼
2𝑝
Γ (1 + 𝑝) Γ (1 +

2𝑝

𝛽

) (35)

fromwhich first and secondmoments of the SNRdistribution
are, respectively,

𝐸 [𝛾] = 𝛼
2
Γ (2) Γ (1 +

2

𝛽

) ,

𝐸 [𝛾
2
] = 𝛼
4
Γ (3) Γ (1 +

4

𝛽

) .

(36)

Therefore, using the gamma function identity Γ(3) = 2, the
𝐴𝐹 for Weibull × Rayleigh channel is given by

𝐴𝐹 = 2

Γ (1 + 4/𝛽)

Γ
2
(1 + 4/𝛽)

− 1 (37)

and is plotted in Figure 5.
Also, plotted in this figure is the two-hop Weibull

homogeneous case for comparison. Compared to pdf,more
inferences regarding the SNR statistics with respect to 𝛽

variation can be obtained from this figure. It may be noted
that the rate of decrease of AF with respect to 𝛽 is smaller
for the heterogeneous channel. This is due to the fact that
the amplitude distribution of Rayleigh is independent of 𝛽
variations. But, for two-Weibull distribution, the variability of
average SNR is less (lower AF value) for higher values of 𝛽 as
the attenuation gets reduced in this region. At 𝛽 = 2, the two
component channels become the same and the compound
channel becomes product of two Rayleigh channels. We get
𝐴𝐹 = 3 for 𝛽 = 2 from the graph, which is equal to the
value reported in [6]where theAF for𝑁-Rayleigh compound
channel is given as equal to 2𝑁 − 1.
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Figure 5: Amount of fade for Rayleigh × Weibull heterogeneous
compound channel.

6. Coefficient of Variation: Applications

Two applications of CV in the context ofmultihop compound
channel are discussed in this section. The first one is the use
of CV and moments in the parametrisation of the empirical
distribution function defined by the collected data. Second
one is the use of CV in estimating the number of hops for a
multihop that can be supported by the destination receiver
for a given standard deviation of the collected data.

6.1. Estimators for the Channel Parameters. Given a set of
observations, an important task is the calibration of the
distribution parameters so that the samples can be prop-
erly represented. In many such cases, maximum likelihood
estimator (MLE) is typically considered as the best possible
technique for estimating the channel parameters. However,
MLE requires the knowledge of pdf in simple mathematical
functions. But for a cascaded multihop scenario, exact pdf
is normally available in the form of special functions like
Meijer-G or H-functions only. Method of moments [19] can
provide an estimator for distribution parameters, which is
easy to determine and simple to implement, without using
the pdf.

In the method of moments approach, the 𝑝th order
moments (for different values of 𝑝) of the distribution whose
parameters are to be estimated are equated to the corre-
sponding empirical moments of the observed data. As higher
order moments are exceedingly difficult to be estimated
accurately due to their large variance, a computationally
efficient technique based on method of moments, using
only lower order moments, is developed. This can be used
to estimate the parameters of a broad class of compound
channel models of varying cascading order. These estimates
have low variance because they involve only lower order
moments (=2), which can be obtained with better accuracy.

Using the method of moments approach for direct link
transmission, in [20], 4th order moments of the samples
of Nakagami-𝑚 distribution are used for the estimation of
the fading parameter 𝑚. As a representative illustration, we
consider identical two-parameter (𝛼, 𝛽)Weibull distribution
for each hop of a multihop channel. The scale parameter 𝛼
determines the scale (unit) of measurements in the range
of distribution. A change in 𝛼 compresses or expands the
associated distribution without altering its basic form. The
receiver dynamic range selection can be done based on this
parameter and the CV value. The shape parameter 𝛽 deter-
mines the basic form or shape of the distribution within the
general family of distributions of interest. Let the transmitted
data be V

1
, V
2
, . . . , V

𝐾
which is assumed to be deterministic

with unit energy, and let the corresponding received samples
at destination after 𝑁 hop transmission be 𝑤

1
, 𝑤
2
, . . . , 𝑤

𝐾
.

From the noise filtered data, an unbiased estimator for the
𝑝
th moment of the channel gain can be designed as

𝑚
𝑝
=

1

𝐾

𝐾

∑

𝑙=1

𝑤
𝑝

𝑙
, (38)

where𝑚
𝑝
denotes the estimate of𝑚

𝑝
. Using (14), the first and

second order moments of 𝑁-cascaded Weibull distribution
are obtained as

𝑚
1
= 𝛼
𝑁
[Γ(1 +

1

𝛽

)]

𝑁

, (39)

𝑚
2
= 𝛼
2𝑁
[Γ(1 +

2

𝛽

)]

𝑁

. (40)

These two moments can be empirically obtained as

𝑚
1
=

1

𝐾

𝐾

∑

𝑙=1

𝑤
𝑙
,

𝑚
2
=

1

𝐾

𝐾

∑

𝑙=1

𝑤
2

𝑙
.

(41)

Hence, the empirical coefficient of variation CV
𝑒
computed

from the received data is

CV
𝑒
= √

𝑚
2

𝑚
1

2
− 1. (42)

The population CV obtained earlier in (21) is

CV = √

Γ(1 + 2/𝛽)
𝑁

Γ(1 + 2/𝛽)
2𝑁

− 1. (43)

Note that CV is a function of 𝛽 only and is independent of
𝛼. This population CV can be tabulated for various values of
𝛽 and the hop count 𝑁. In fact, Figure 2 if viewed in linear
scale represents this and therefore can be used as a reference
table. CV

𝑒
can be equated to CV values (in Figure 2) for
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a given 𝑁, and the corresponding ̂
𝛽 can be obtained. Using

this estimated ̂
𝛽 and (39), 𝛼 can be estimated as

𝛼̂ =

𝑚
1

1/𝑁

Γ (1 + 1/
̂
𝛽)

. (44)

Scale parameter 𝛼 determines the scale (unit) ofmeasure-
ments in the range of distribution. A change in 𝛼 compresses
or expands the associated distribution without altering its
basic form.The receiver dynamic range selection can be done
based on this parameter and the CV value.

6.2. Simulation and Numerical Results. In this section, we
provide numerical and simulation results for the proposed
estimators for channel parameters and hop count. The sam-
ples of Weibull fading channel coefficients for each hop
were generated [21], for fixed values of 𝛼 and 𝛽 parameters,
from which the product channel coefficients were developed
according to the order of cascade. Specifically, we have gener-
ated samples with fixed parameter values of 𝛽 = 3 and 𝛼 = 1.
TheWeibull samples were verified for the mean and variance
as per the standard equations. For the above parameter
values, sample mean and analytical mean were obtained as
0.8935 and 0.8940, respectively. Similarly, a sample variance
of 0.1050 and an analytical variance of 0.1053 were obtained.
This shows the accuracy of the samples generated. 106 data
samples were generated for each simulation corresponding to
the various hop counts.

The distribution parameters were estimated using the
empirical moments and CV

𝑒
for various hop counts and

the results are presented in Table 1. For example, from
the generated Weibull samples for 𝑁 = 1, the first and
second order moments were computed (using (41)) as 𝑚

1
=

0.8935 and 𝑚
2
= 0.9036. Substituting these values in (42)

gives CV
𝑒
as 0.3631. Equating this to the population CV

as given in Figure 2, the corresponding ̂
𝛽 is obtained as

3.0001. Comparison of Table 1 and Figure 2 reveals that the
empirical coefficient of variation CV

𝑒
computed from sample

moments is very close to the populationmeasures. Also, these
values increase with the number of hops. Using the estimated
moment 𝑚

1
= 0.8935 and ̂

𝛽 = 3.0001 in the estimator given
by (44) yields 𝛼̂ = 1.0006. Similarly, for other hop counts,
product of samples is found first and the respective empirical
moments, CV

𝑒
and the estimated parameters are computed

and tabulated in Table 1. To evaluate the performance of
the estimators, for 𝛽 and 𝛼, normalised deviation (ND) is
computed. For each hop count, the total deviation (TD) of
the estimates is computed from the ND of each parameter as

TD =

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

̂
𝛽 − 𝛽

𝛽

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝛼̂ − 𝛼

𝛼

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

. (45)

The total deviation of the estimated shape and scale param-
eters for each order of cascade is calculated and tabulated in
Table 2. It is found that the maximum TD is 7 × 10

−4 only.
This means that in the worst case the estimated parameters
are within 0.07% of their actual values. It is evident that the
CV value is sensitive to hop count 𝑁, and hence for a fixed

Table 1: Computation table for CV
𝑒
, ̂𝛽, and 𝛼̂.

𝑁 𝑚
1

𝑚
2

CV
𝑒

̂
𝛽 𝛼̂

1 0.8935 0.9036 0.3631 3.0001 1.0006
2 0.7983 0.8176 0.5319 2.9998 1.0006
3 0.7103 0.7326 0.6723 2.9999 0.9995
4 0.6357 0.6623 0.7992 3.0000 0.9999
5 0.5704 0.6050 0.9269 3.0001 1.0009

Table 2: Deviation of the parameter estimates.

𝑁 ND of ̂𝛽 ND of 𝛼̂ TD
1 0.00003 0.00060 0.00063
2 0.00010 0.00060 0.00070
3 0.00003 0.00050 0.00053
4 0.00000 0.00010 0.00010
5 0.00003 0.00020 0.00023

𝛽 and CV value an optimum value of𝑁 is obtained from the
CV plot.

7. Conclusion

Exact analyses for the characterisation of compound chan-
nels in nonregenerative cooperative relay transmissions are
carried out in this work. The proposed techniques provide
effective tools to assess the statistical properties of Weibull
compound channel models in a convenient way. This ana-
lytical approach has been successfully pursued upon for
the evaluation of a more realistic, heterogeneous compound
channel model, having distinct distribution for each link,
that adequately depicts the variations of the environment
for a multihop wireless communication system. In situations
where none of the known distributions seem to adequately fit
the observed data, a better fit can be obtained by considering
the proposed approach to the channel modeling. The statis-
tical properties of the cascaded channels are investigated by
computing the mean, coefficient of variation (CV), amount
of fade (AF), and other higher order moments.Themoments
were computed using Mellin transform and it was found that
the method can be conveniently applied for cases where ana-
lytical determination of the MGF is hard or even impossible.
The computedmeasures such asCV andmoments are of great
importance in the design and validation of multihop wireless
receivers with diversity combiner. Another unique feature
of the proposed method is the computation of moments of
SNR usingMellin transform techniques, which can be conve-
niently extended to combinations of other distributions with-
out using themethod of pdf transformation. A comparison of
the channel gain and SNR variability for homogeneous and
heterogeneous channel models is also carried out, which can
be effectively used for assessing the distribution and selection
of branches in a diversity combining receiver. The proposed
estimators for distribution parameters are demonstrated to
have good accuracy and can be used for the calibration of
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the density function from the observed samples and selection
of appropriate hop count for a particular terrain.
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