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To overcome the drawback that fuzzy classifier was sensitive to noises and outliers, Mamdani fuzzy classifier based on improved
chaos immune algorithm was developed, in which bilateral Gaussian membership function parameters were set as constraint
conditions and the indexes of fuzzy classification effectiveness and number of correct samples of fuzzy classification as the subgoal
of fitness function. Moreover, Iris database was used for simulation experiment, classification, and recognition of acoustic emission
signals and interference signals from stope wall rock of undergroundmetal mines.The results showed thatMamdani fuzzy classifier
based on improved chaos immune algorithm could effectively improve the prediction accuracy of classification of data sets with
noises and outliers and the classification accuracy of acoustic emission signal and interference signal from stope wall rock of
underground metal mines was 90.00%. It was obvious that the improved chaos immune Mamdani fuzzy (ICIMF) classifier was
useful for accurate diagnosis of acoustic emission signal and interference signal from stope wall rock of underground metal mines.

1. Introduction

The mining damage of underground surrounding rock was
caused bymining, changing the balance of underground rock
[1, 2]; it was a common disaster that the impact of mining
led to the occurrence of rock burst in underground works.
Because evolution and formation of rock burst were a nonlin-
ear process, the nonlinearity was the root cause of rock burst
[3–6]. As shown in literature [3], the severities of roof fall
accidents had been attempted to predict based on somemajor
contributing parameters using the binary logistic regression
model.The results revealed that wider gallerywidthwasmore
prone to major and serious accidents than narrower gallery
width. As shown in literature [4], Liu et al. had divided the
roof caving hidden danger of roof area by roof structure
detection instrumentation and the results showed that the
division hidden danger of roof caving method based on the
roof structure detection and peek into the roof had a higher
similar rate to underground roof strata conditions. As shown
in literature [5], rock samples were collected from horizontal
stress-related roof fall material in coal mines for petrographic

characterization and compressive strength testing and the
results revealed that the great variability of strength, texture,
and mineralogy documented in these samples may be an
indication of their complexity and the need for specialized
methodology in the study of shale strength. As shown in
literature [6], a relative risk model for roof and side fall fatal
accidents was developed using log-linear analysis of two-way
contingency table. A few statistics such as potential fatalities
(PF), relative risk of fatalities (RRF), and safety measure
effectiveness (SME) were derived which can be used as key
safety performance indicators of roof and side fall accidents
in undergroundmines.The application reveals that themodel
and the statistics developed in this studywere generic and can
be applied to any industrial setting.

Thus, the view of traditional deterministic was used to
studymine roof fall which was a nonlinear dynamics process,
as a stationary view was used to look at the evolving and
changing problems [7–10]; Bobick et al. [7] had used a
weighted manikin mounted to generated against the top rail
and nine construction workers, who served as test subjects;
each built five different guardrail configurations. The study
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results revealed that it was possible and effective methods for
evaluation of guardrail systems for preventing falls through
roof and floor holes. As shown in literature [8], fuzzy clas-
sification using features selected for computational ease was
applied to the mine data. Both large roof fall events could be
predicted successfully using a roof fall index (RFI)metric cal-
culated from the results of the fuzzy classification. Zheng and
Cai [9] had introduced an ANN subsystem to ensure techno-
logical and scale efficiencies of the training samples for ANN.
The results revealed that the ANN subsystem was proved to
be very efficient. As shown in literature [10], an extension to
an established theory of cutoff grade was proposed herein
to determine the optimal production capacities based on
a stochastic framework relying on multiple grade-tonnage
curves derived from a set of simulated orebody realizations.
Application to an actual copper deposit demonstrates the
benefits of the proposed model. The error of understanding
and prediction even error were inevitable. Much information
contained in the process of rock burst in underground metal
mines was reflected by rock acoustic emission phenomenon
[1]. By analyzing acoustic emission characteristics of rock
rupture process in undergroundmetal mines to identify rock
fracture mechanism, theoretical basis would be provided for
the acoustic emissionmonitoring techniques of underground
metal mines rock. As a variety of sound and vibration led
by production operations of the underground metal mine,
such as drilling operations, blasting operations, locomotive
motion, unloading ore, and ore drawing [11], these sounds or
vibrationswere easily confusedwith acoustic emission signals
in rock fracture process; so the validity and accuracy of the
acoustic emission monitoring results were greatly affected
[12]; multiangle comparative study on acoustic emission
characteristics of undergroundmetal mines andmultifeature
integrated recognition technology theory which was different
from the noise signal were still worthy of further discussion
and study.

Therefore, in the paper, it was proposed that bilateral
Gaussian membership function parameters were made to
be constraints; the validity index [13] and the corrected
sample number [14] of fuzzy classification were made to be
subobjective of the fitness function; Mamdani fuzzy classifier
using improved chaos immune algorithm [15–17] to optimize
was established; the disadvantage which was adjusting the
weights of rule to change the parameters of fuzzy systems was
avoided; good technical support and theoretical support for
the monitoring signal classification identification of under-
ground metal mines rock were provided.

2. Design of Mamdani Fuzzy Classifier Based
on Improved Chaos Immune Algorithm

2.1. Establishment ofMamdani FuzzyClassifier. ForMamdani
fuzzy classifier with 𝑛 classified input samples and 𝑚 rules,
Mamdani fuzzy rule can be expressed by (1) as follows:

𝑅𝑘 : If 𝑥1𝑘 was 𝜇1𝑘, 𝑥2𝑘 was 𝜇2𝑘, . . . ,

𝑥𝑛𝑘 was 𝜇𝑛𝑘, then 𝑦𝑘 was 𝜇 (𝑛 + 1, 𝑐𝑘) ,

(1)

where 𝜇𝑗𝑘 was the membership of input sample 𝑥𝑗 (𝑗 =

1, 2, . . . , 𝑛) to be classified under the 𝑘th rule; 𝑦𝑘 (𝑘 =

1, 2, . . . , 𝑚) was the classified output variable under the 𝑘th
rule; 𝑐𝑘 was the output category number of Mamdani fuzzy
classifier under the 𝑘th rule.

To reach a better statistical property, Gaussian mem-
bership function with statistical nature was taken as the
membership function of rule antecedent; that is, bilateral
Gaussian membership function was used to represent the
membership function of the 𝑗th variable 𝑥𝑗𝑘 corresponding
to the 𝑘th rule as

𝜇𝑗𝑘 =

{
{
{
{
{

{
{
{
{
{

{

exp[−
𝑥𝑗𝑘 − 𝛿𝑗𝑘

𝛼𝑗𝑘

]

2

𝑥𝑗𝑘 ≤ 𝛿𝑗𝑘

exp[−
𝑥𝑗𝑘 − 𝛿𝑗𝑘

𝛽𝑗𝑘

]

2

𝑥𝑗𝑘 > 𝛿𝑗𝑘,

(2)

where 𝛿𝑗𝑘 (𝑗 = 1, 2, . . . , 𝑛), 𝛼𝑗𝑘 (𝑗 = 1, 2, . . . , 𝑛), and 𝛽𝑗𝑘 (𝑗 =
1, 2, . . . , 𝑛) denote the midpoint, the left width, and the right
width of bilateral Gaussian membership function of the 𝑗th
variable corresponding to the 𝑘th rule.

To make Mamdani fuzzy classifier have better classi-
fication capability, single point membership function was
adopted for the consequence of fuzzy rule as follows:

𝜇 (𝑛 + 1, 𝑐𝑘) = {

1 𝑦 = 𝑐𝑘

0 𝑦 ̸= 𝑐𝑘.

(3)

Assuming the total number of categories was 𝑀, it can
be known from the experiment that the output domain of
Mamdani fuzzy logic system was [1,𝑀], which was divided
into 𝑀 areas averagely and each area was a category. The
output category ofMamdani fuzzy classifier can be calculated
through (4) as

𝑐𝑘 = int [ 𝑀

𝑀 − 1

(𝜔 − 1)] , (4)

where 𝜔 was the output of Mamdani fuzzy logic system and
𝑀 was the total number of sample categories.

2.2. Indexes of Fuzzy Classification Effectiveness. For X =

{𝑥1, 𝑥2, . . . , 𝑥𝑛}, the cut set 𝑑𝑘 of fuzzy class 𝑐𝑘 under the 𝑘th
rule was set as

𝑑𝑘 = {𝑑1𝑘, 𝑑2𝑘, . . . , 𝑑𝑠𝑘}

= {𝑥𝑘 | 𝑥𝑘 ∈ 𝑋, and 𝑘 = arg max
1≤𝑘≤𝑐

{𝜇𝑘 (𝑥𝑘)}} ,

(5)

where argmax[𝜇𝑘(𝑥𝑘)] was the fuzzy class 𝑐𝑘 which was
assigned to the 𝑘th rule under mode 𝑥 according to the
principle of maximum membership; 𝑠 was the number of
effective samples under the 𝑘th rule.

Then, using the cut set of fuzzy class 𝑐𝑘 corresponding to
the 𝑘th rule and fuzzy membership matrixU, the probability
𝑃(𝑐𝑘) of the 𝑘th fuzzy class can be calculated by

𝑃 (𝑐𝑘) =

∑
𝑑𝑗𝑘∈𝑑𝑘

𝜇𝑘 (𝑑𝑗𝑘)

∑
𝑐

𝑘=1
∑
𝑑𝑗𝑘∈𝑑𝑘

𝜇𝑘 (𝑑𝑗𝑘)

, (6)

where 𝑐 was the number of fuzzy classification.
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Probability 𝑃(𝑑𝑗𝑘) of mode 𝑑𝑗𝑘 can be expressed as

𝑃 (𝑑𝑗𝑘) =

𝑐

∑

𝑘=1

𝑃 (𝑐𝑘) 𝜇𝑘 (𝑑𝑗𝑘) . (7)

The probability 𝑃(𝑐𝑘 | 𝑑𝑘) of the cut set 𝑑𝑘 of fuzzy class
𝑐𝑘 corresponding to the 𝑘th rule can be expressed as

𝑃 (𝑐𝑘 | 𝑑𝑘) =

𝑠

∏

𝑗=1

𝑃 (𝑐𝑘) 𝜇𝑘 (𝑑𝑗𝑘)

𝑃 (𝑑𝑗𝑘)

. (8)

The occurring probability of fuzzy classification can be
measured through the mean value of all the occurring
probabilities of cut sets of fuzzy classes; then, the index
𝑓(U, 𝑐) of fuzzy classification effectiveness can be expressed
as

𝑓 (U, 𝑐) =
𝑐

∑

𝑘=1

𝑠

∏

𝑗=1

𝑃 (𝑐𝑘) 𝜇𝑘 (𝑑𝑗𝑘)

∑
𝑐

𝑖=1
𝑃 (𝑐𝑘) 𝜇𝑘 (𝑑𝑗𝑘)

. (9)

The greater the value of𝑓(U, 𝑐)was, the greater occurring
probability of this fuzzy classification was. When its value
reaches the maximum, the classification number it corre-
sponds to was the optimal number 𝑐∗ of data set.

2.3. Optimization of the Fitness Function by Improved Chaos
Immune Algorithm. The midpoint 𝛿𝑗𝑘, left width 𝛼𝑗𝑘, and
right width 𝛽𝑗𝑘 of the bilateral Gaussian membership func-
tion of Mamdani fuzzy classifier can be optimized by
improved chaos immune algorithm. Considering that the
key to improved chaos immune algorithm was to determine
the fitness function, in this study, the fitness function was
expressed as follows:

𝐹 (𝛿𝑖𝑘, 𝛼𝑖𝑘, 𝛽𝑖𝑘) = 𝑤1

𝑓 (U, 𝑐)
𝑓0 (U, 𝑐)

+ 𝑤2

𝑁

𝑁0

, (10)

where 𝑓0(U, 𝑐) was the initial value of fuzzy classification
effectiveness index before optimization, 𝑁 was the number
of samples which were fuzzy classified correctly after opti-
mization, and 𝑁0 was the number of samples with correct
fuzzy classification before optimization. 𝑤1 was the weight
coefficient corresponding to the index of fuzzy classification
effectiveness, 𝑤2 was the weight coefficient corresponding to
the number of samples which were fuzzy classified correctly,
and 𝑤1 + 𝑤2 = 1.

Figure 1 showed flow chart of optimizing parameters of
Mamdani fuzzy classifier using improved chaos immune
algorithm, and the specific steps were expressed as follows.

Step 1. Input 𝑘th antigens {𝐴𝑔1𝑘, 𝐴𝑔2𝑘, . . . , 𝐴𝑔𝑙𝑘, . . . , 𝐴𝑔𝐿𝑘}

(𝑘 = 1, 2, . . . , 𝑚) and carry out the standardization process.

Step 2. Select the logistic model 𝑥𝑟+1 = 4𝑥𝑟(1 − 𝑥𝑟)

as 𝑅 chaotic variables of the 𝑘th initialization antibodies
{𝐴𝑏1𝑘, 𝐴𝑏2𝑘, . . . , 𝐴𝑏𝑟𝑘, . . . , 𝐴𝑏𝑅𝑘} (𝑘 = 1, 2, . . . , 𝑚) in interval
(0, 1), which were generated randomly by chaotic model.

Step 3. For each antigen 𝐴𝑔𝑙𝑘 (𝑙 = 1, 2, . . . , 𝐿; 𝑘 =

1, 2, . . . , 𝑚), it was operated as follows.

Step 3.1. Calculate the affinity 𝛽𝑟𝑙 of each antibody 𝐴𝑏𝑟𝑘 and
antigen 𝐴𝑔𝑙𝑘, respectively, using (11) as follows:

𝛽𝑟𝑙 =
√

𝑚

∑

𝑘=1

(𝐴𝑏𝑟𝑘
− 𝐴𝑔𝑙𝑘

)

2

. (11)

Step 3.2. Select 𝑅0 antibodies with highest affinity as network
cells and clone them and then obtain the corresponding
number of clonal antibody cells 𝐶0.

Step 3.3. For the clonal cells, equation 𝐶𝑖+1 = 𝐶𝑖 − 𝛼(𝐶𝑖 − 𝑋)

(𝑖 = 1, 2, . . . , 𝑅0) was used for their mutation, where 𝐶𝑖 was
the number of clonal antibody cells, 𝑋0 was the number of
clonal antigen cells, and 𝛼 was the mutation rate.

Step 3.4.Recalculate the affinity𝛽𝑟𝑙 of each antibody𝐴𝑏𝑟𝑘 and
antigen 𝐴𝑔𝑙𝑘 after mutation using (11).

Step 3.5. Select 30% of the cells with highest affinity as the
memory cell data set𝑀𝑝.

Step 3.6. Calculate the similarity degree 𝜆𝑟(𝑅−𝑟) (𝑟 ̸= 𝑅 − 𝑟)
between each antibody 𝐴𝑏𝑟 and 𝐴𝑏(𝑅−𝑟) using (12); eliminate
the individuals whose similarity degree 𝜆𝑟(𝑅−𝑟) was greater
than the threshold value 𝜎𝑠 in the data set𝑀𝑝 as follows:

𝜆𝑟(𝑅−𝑟) =
√

𝑚

∑

𝑘=1

[𝐴𝑏𝑟𝑘
− 𝐴𝑏(𝑅−𝑟)𝑘

]

2

. (12)

Step 4. Insert the memory cell data set𝑀𝑝 into the memory
dataset𝑀.

Step 5. Select better antibody and antigen individuals for
chaotic search.

Select 10% of the individuals whose fitness value was
relatively large for chaotic fine search and set optimum
individual as 𝑇 = (𝑇1, 𝑇2, . . . , 𝑇𝑘); the search interval of
chaotic variables was narrowed as follows:

𝑎
󸀠

𝑖
= 𝑇𝑖 − 𝜙 (𝑏𝑖 − 𝑎𝑖)

𝑏
󸀠

𝑖
= 𝑇𝑖 + 𝜙 (𝑏𝑖 − 𝑎𝑖) ,

(13)

where 𝜙 was the shrinkage factor and 𝜙 ∈ (0, 0.5).
To ensure that the new range is not out of bound, deal

with it as follows: if 𝑎󸀠
𝑖
< 𝑎𝑖, 𝑎

󸀠

𝑖
= 𝑎𝑖; if 𝑏

󸀠

𝑖
> 𝑏𝑖, 𝑏

󸀠

𝑖
= 𝑏𝑖.

Therefore, vector 𝑌𝑖 of 𝑇𝑖 after reduction in the new
interval [𝑎󸀠

𝑖
, 𝑏
󸀠

𝑖
] can be determined by (14) as follows:

𝑌𝑖 =

𝑇𝑖 − 𝑎
󸀠

𝑖

𝑏
󸀠

𝑖
− 𝑎
󸀠

𝑖

. (14)

Set the linear combination of𝑌𝑖 and𝑇𝑖,𝑛+1 as a new chaotic
variable and use it for search. Consider

𝑇
󸀠

𝑖,𝑛+1
= (1 − 𝛿𝑖) 𝑌𝑖 + 𝛿𝑖𝑇𝑖,𝑛+1, (15)

where 𝛿𝑖 was the adaptive control coefficient and 0 < 𝛿𝑖 < 1.
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Figure 1: Flow chart of optimizing parameters of Mamdani fuzzy classifier using improved chaos immune algorithm.

Adaptive control coefficient 𝛿𝑖 was determined adaptively
as follows:

𝛿𝑖 = 1 − (

𝐾 − 1

𝐾

)

𝜃

, (16)

where 𝜃was a positive integer and was determined according
to the objective function (in this paper, it was taken as 2.5);𝐾
was the evolutional generation.

Eliminate the individuals whose similarity was greater
than 𝜎𝑠 in 10% of individuals with larger fitness value in the
memory base.

Step 6. Select 𝑥𝑟+1 = 4𝑥𝑟(1−𝑥𝑟) for generating𝑁
󸀠 individuals

in (0, 1) to replace the individuals with poor affinity; then,
they were set as the antibodies for next immune computing
together with the memory dataset 𝑀𝑝 which was obtained
from last immune computing; return to Step 3 until the
network reaches convergence.

Step 7. Use the fitness function 𝑓(𝛿𝑗𝑘, 𝛼𝑗𝑘, 𝛽𝑗𝑘) to evaluate
𝛿
∗

𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
and calculate the corresponding 𝑓(𝛿∗

𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
);

if 𝑓(𝛿∗
𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
) > 𝑓(𝛿𝑗𝑘, 𝛼𝑗𝑘, 𝛽𝑗𝑘), then 𝑓(𝛿𝑗𝑘, 𝛼𝑗𝑘, 𝛽𝑗𝑘) =

𝑓(𝛿
∗

𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
); or else, abandon 𝛿∗

𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
.

Step 8. If the fitness function was the maximum which was
greater than 1.0, then stop searching and output the optimal
solution 𝛿∗

𝑗𝑘
, 𝛼
∗

𝑗𝑘
, 𝛽
∗

𝑗𝑘
; otherwise, return to Step 1.

2.4. Simulation Experiment of Mamdani Fuzzy Classifier
Based on Improved Chaos Immune Algorithm. To validate the
robustness of the Mamdani fuzzy classifier (denoted by C1)
based on improved chaos immune algorithm to noises and
outliers, Iris database was used for simulation experiment
and its classification result was compared with those of the
Mamdani fuzzy classifier (denoted by C2) in [14] based on
improved genetic algorithmand the classifier (denoted byC3)
in [18].

150 groups of Iris data were a very typical classification
data proposed by the famous British statistician Fisher R.
A. and can be used as evaluation criteria of various clas-
sification algorithms. Iris data was composed of 150 four-
dimensional (pental length, pental width, sepal length, and
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Table 1: Parameter values of the optimized three kinds of fuzzy
classifiers.

Classifier Rule 𝛿𝑗𝑘 𝛼𝑗𝑘 𝛽𝑗𝑘 Category

C1
1 0.5844 0.4218 0.6656 1
2 1.367 0.6789 0.9706 2
3 2.4655 0.8996 0.1646 3

C2
1 0.5732 0.4312 0.6472 1
2 1.283 0.6472 0.9493 2
3 2.325 0.9493 0.1592 3

C3
1 0.5823 0.4224 0.6627 1
2 1.335 0.6753 0.9675 2
3 2.452 0.8956 0.1629 3

Table 2: Comparison of classification accuracy of three kinds of
fuzzy classifiers.

Name of classifier C1 C2 C3
Number of variables 1 1 2
Number of rules 3 3 12
Number of samples correctly classified 147 144 146
Classification accuracy/% 98.00 96.00 97.33

sepal width) samples and consists of a total of three categories
(1-Iris-setosa, 2-Iris-versicolor, and 3-Iris-virginica), with 50
samples in each category. Category 1 was completely separate
from the other 2 categories, while some cross exists between
Category 2 and Category 3.

Parameters 𝛿𝑗𝑘, 𝛼𝑗𝑘, and 𝛽𝑗𝑘 of fuzzy classifiers C1, C2,
and C3 after optimization were shown in Table 1 and the
classification accuracy was compared in Table 2.

The results in Table 2 indicate that, for fuzzy classifier
C3 after optimization, the number of variables was 2, the
number of rules was 12, the number of samples correctly
classified was 146, that is, the number of samplesmisclassified
was 4, and the classification accuracy was 97.33%; for fuzzy
classifier C2 after optimization, the number of variables was
1, the number of rules was 3, the number of samples correctly
classified was 144, that is, the number of samplesmisclassified
was 6, and the classification accuracy was 96.00%; for fuzzy
classifier C1 after optimization, the number of variables was
1, the number of rules was 3, the number of samples correctly
classified was 147, that is, the number of samples misclassified
was 3, and the classification accuracy was 98.00%. It can
be concluded that the Mamdani fuzzy classifier based on
improved chaos immune algorithm proposed in this paper
has higher classification accuracy for Iris data.

The computational complexity measured by CPU time
was also compared with three kinds of fuzzy classifiers. As
shown in Table 3, compared with the CPU time of the fuzzy
classifier C2 and the fuzzy classifier C3, the CPU time of
the fuzzy classifier C1 was the shortest. Obviously, it was
easy to simply conclude that the fuzzy classifier C1 was less
computationally expensive than the fuzzy classifier C2 or the
fuzzy classifier C3.

Table 3: The CPU time of three kinds of the fuzzy classifiers.

Data CPU time (s)
C1 C2 C3

SPECTF 0.007631 0.315737 0.016842
Iris 0.002986 0.015712 0.005712
Lymphography 0.005756 0.139592 0.010951
Heart-disease-cleverland 0.016427 0.312738 0.015944
Pendigits (test) 0.275628 3.127292 0.535523

Table 4: Classified results of measurement data1.

Classifier Number of misclassified samples Classification
accuracy/%F1 F2 F3

C1 3 4 4 81.67
C2 2 3 3 86.67
C3 2 2 2 90.00
C3 2 2 2 90.00
1F1-Rock blasting signals; F2-mechanical vibration signals; F3-acoustic
emission signals.

3. Practical Application of Mamdani
Fuzzy Classifier Based on Improved
Chaos Immune Algorithm

Interference signals of acoustic emission signals from stope
wall rock of underground metal mines mainly include
mechanical vibration and blasting signals [1]. Figure 2 shows
the test data of mechanical vibration, blasting signals, and
acoustic emission signals from stope wall rock collected
during the exploitation process of undergroundmetal mines,
and each consists of 500 groups. 120 effective sample data
were fetched from acoustic emission signals and interference
signals from stope wall rock of underground metal mines,
60 of which were set as the training set (20 rock blasting
signals, 20 mechanical vibration signals, and 20 acoustic
emission signals) and 60 as the sample test set (20 rock
blasting signals (mV), 20 mechanical vibration signals (mV),
and 20 acoustic emission signals (103mV2 s−1)). Classifier
C2, classifier C3, and classifier C1 proposed in this paper
were used, respectively, for the classification of test data of
acoustic emission signals and interference signals from stope
wall rock of underground metal mines and the results were
shown in Table 4, from which it can be learned that the
classification accuracy when using classifier C2, classifier C3,
and classifier C1 proposed in this study is 81.67%, 86.67%, and
90.00%, respectively. It was thus clear that Mamdani fuzzy
classifier optimized by improved chaos immune algorithm
makes different samples have different contributions and, to
a large extent, reduces the influence of noises and outliers on
classification, making the learning algorithm more robust in
the case of sensitive data or noisy data, for the indexes of fuzzy
classification effectiveness and correct sample number of
fuzzy classification were set as the subgoal of fitness function
in classifier C1 when it constructs the fitness function.
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Figure 2: Acoustic emission signals and their interference signals from stope wall rock of underground metal mines.

4. Conclusions

(1) Mamdani fuzzy classifier optimized by improved
chaos immune algorithmwas established and its sim-
ulation experimental results showed that the Mam-
dani fuzzy classifier could effectively improve the
prediction accuracy of classification of data sets with
noises and outliers.

(2) Mamdani fuzzy classifier based on improved chaos
immune algorithm proposed was used for classifica-
tion and recognition of the acoustic emission signals
and interference signals from stope wall rock of
underground metal mines. The results showed that
the classification accuracy ofMamdani fuzzy classifier
based on improved chaos immune algorithm was
90.00%, which achieves to accurately diagnose the
acoustic emission signals and interference signals
from stope wall rock of underground metal mines.
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