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Indirect immunofluorescence (IIF) with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA) in
systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them
by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without
relevant experience, inmaking correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic
inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for
automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process inwhich cells growunder control.
Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium
suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell
population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

1. Introduction

IIF with HEp-2 cells has been frequently employed to detect
ANA in systemic autoimmune diseases [1]. ANA testing can
be used to scan a broad range of autoantibody entities and to
describe them by distinct fluorescence patterns. The fluores-
cence patterns are usually identified by physician manually
inspecting the slides with the help of a microscope. However,
due to lacking in satisfying automation of inspection and a
low level of standardization, this procedure still needs highly
specialized and experienced technician or physician to obtain
diagnostic result. For this purpose, automatic inspection for
fluorescence patterns in an IIF image may assist physicians,
without relevant experience, in making correct diagnosis.
As ANA testing becomes more popularly used, a functional
automatic inspection system is essential and its clinical
application becomes more urgent [2].

Roughly, IIFwithHEp-2 cells can be classified into six dif-
ferentmain patterns: diffuse, peripheral, coarse speckled, fine
speckled, discrete speckled, and nucleolar patterns. Figure 1
shows the six distinct autoantibody fluorescence patterns
in IIF images. From an image processing point of view,
the fluorescence cell belonging to diffuse, peripheral, coarse
speckled, or fine speckled pattern normally includes only one
connected region. On the contrary, the discrete speckled and
nucleolar patterns contain mass and some bright spots [3].

Ideally, a fluorescent image [4] shows only the structure
of interest that is labelled with fluorescent dye, while the
responses of unstained cells remain unobserved. Specificity
of dyes with respect to cell types is sufficient for identifying
supporting cells and receptor cells. The application of an
array of fluorochromes has made it possible to identify cells
and submicroscopic cellular components with a high degree
of specificity amid nonfluorescing material. Many different
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Figure 1: Six main patterns of IIF images.

fluorescent dyes can be used to stain different structures
or chemical compounds. The fluorescence microscope is
capable of revealing the presence of a single molecule.
Through multiple fluorescent labelling, different probes can
simultaneously identify several target molecules.

Segmenting cells from an IIF image plays an important
role in developing an automatic ANA inspection system.
Many cell segmentation methods [1, 5–7] are available to
separate cells from an image but cannot be employed to cut
cells off well from a fluorescence image. Most of them adopt
a global threshold to convert a gray-level image into a binary
image, but the intensities of cells in a fluorescence image may
lie in an extremely wide range. It is very difficult to detect
all cells using a global threshold only. Hence, the methods
mentioned above cannot often give a good segmentation
result for fluorescence images.

An automatic ANA inspection system can be divided into
HEp-2 cell segmentation, fluorescence pattern classification,
and computer aided diagnosis phases. This study will focus
on the first phase, developing an effective method for auto-
matically cutting off the cells with fluorescence pattern from
IIF images.

In this study, a color selector is presented to transform
a color IIF image into a gray-level image, a run length
enhancer is provided to suppress the hazy fluorescent halo,
an adaptive filter is proposed to smooth the surfaces as well
as filling in the holes on the cells, and a gradient computing
method is given to effectively compute the gradients of an
image. These proposed techniques can be also applied to
segment objects from other kinds of images. In addition,
watershed and distance transform techniques are used to
split overlapping objects. Since the characteristics of the six
cell patterns in IIF images are extremely different, a rough

classifier is proposed to decide which set of the parameter
values should be employed in the proposed segmentation
method for segmenting cells from the IIF images with
different patterns.

Cell culture [8] is the process by which prokaryotic,
eukaryotic, or plant cells are cultivated under controlled
conditions [9]. This process allows individual cells to act as
an independent unit. In cell culture, the size and quantity
of cells will increase during cell division, and the growth of
cells will be constrained by culture variables such as nutrient
depletion. Culture techniques have become an important and
extensive part of biotechnology in applied research areas such
as genetics, cytology, and pathology. Cell culture also brings
huge economic benefits and prospects to agriculture, crop
genetics, crop breeding, and food additives.

Since the growing cells must be separated into two
or more dishes to avoid excessive growth in cell culture,
biologists need to know the precise number or density of
cells. Quantity measurement is an important task in cell cul-
ture. In addition, assessing medium suitability, determining
population doubling times, and monitoring cell growth in
culture all require ways to quantifying cell population. Cell
quantification also allows standardization for manipulations
such as transfection or cell fusion.

Generally, biologists count the cells under microscope
one by one or utilize the chambers. The most widely used
chamber is the hemocytometer, a device designed for esti-
mating the number of cells in a given volume under a
microscope.This device separates the whole-cell samples into
several large, equal squares, and each large square contains
many small squares. Counting the cells in several small
squares or larger squares provides an estimate of the total
number of cells. However, manually counting the cells on an
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image that contains an extremely large number of cells is a
time-consuming, arduous, and inaccurate task. An automatic
software system to count the cells on an image taken under
a microscope would save time and frustration and improve
accuracy.

The cells in an IIF image generally lie in a wide range of
gray level intensities; even the intensities of some cells are
too weak for human eyes to find them. The purpose of this
paper is to develop a system for automatically segmenting the
cells in an indirect immunofluorescence (IIF) image. We call
it automatic indirect immunofluorescence cell segmentation
(AIICS) system which will enhance the cell contours and cut
off the cells from an IIF image. The AIICS system also can be
used to count the cells on the IIF image.

In the AIICS system, a color selector is proposed to
transform a color IIF image into a gray-level image, a run
length enhancer and an adaptive filter to get rid of noise
and highlight the contours of objects on the IIF image, a
new gradient computing method to compute the gradient
of object contours, and an adaptive thresholding method
to decide the most proper thresholds for detecting the cell
contours on an IIF image. Moreover, a rough classifier is
provided to classify IIF images and GAPD to decide the most
suitable parameters used in the AIICS system.

2. Related Works

In this section, we will briefly review some cell segmenta-
tion methods [1, 5–7], the performances of which will be
compared with the performance of the AIICS system in cell
segmentation and counting. In addition, somemeasurements
of object segmentation and counting errors [10] will be briefly
reviewed as well.

2.1. Reviews. Eddins [5] presented an image segmentation
strategy for isolating objects from an image.The objects could
be anything: blood cells, stars, toner spots on a printed page,
DNA microarray elements, or even quantum semiconductor
dots. First, the strategy converts the image into a gray-
scale one and uses a morphological top-hat operator with a
disk-shaped structuring element to smooth out the uneven
illumination. Second, Otsu’s thresholding method [11] is
employed to determine a good threshold for converting the
image to a binary one. Finally, this strategy computes the
distance transform of the complement of the binary image,
modifies it to force the background to be its own catchment
basin, and then uses the watershed transform to extract
objects.

Althoff et al. [1] provided a cell contour segmentation
method to cut off the neural stem cells from a time-lapse
image sequence. The method is an iterative process for every
image in the sequence and can be described as follows.

(i) Use multiscale Laplacian of Gaussian filters to sepa-
rate image background from cell regions.

(ii) Select the centroids of the blobs that are most likely to
be cells.

(iii) Use a dynamic programming to segment the cells.

Table 1: Classification condition.

Ground truth
Cluster 1 Cluster 2

Test outcome Cluster 1 True positive (TP) False positive (FP)
Cluster 2 False negative (FN) True negative (TN)

Tang and Ewert [6] also offered a method for severing
neural stem cells from a sequence of images.Thismethod first
applies a Gaussian filter to remove noise from the images. It
then performs fuzzy thresholding as follows: all pixels with
intensity below a lower threshold 𝑡𝑙 are set to 0, and all pixels
with intensity above a higher threshold 𝑡ℎ are set to 1.The gray
level intensities between 𝑡𝑙 and 𝑡ℎ are linearly rescaled to the
range [0, 1]. The chosen lower threshold 𝑡𝑙 = 𝜇 + 0.3𝜎, where
𝜇 is the mean value and 𝜎 is the standard deviation of the
background intensity. Similarly, the chosen higher threshold
𝑡ℎ = 𝜇 + 4𝜎 is high enough to guarantee that the pixels
brighter than 𝑡ℎ are really well inside the cells. Through the
use of a fuzzy thresholding approach, the method becomes
less sensitive to the exact values of these threshold levels than
would have been the case if a standard crisp threshold had
been used. Next, fuzzy gray weighted distance transform and
watershed transform are used to separate cells from images.

In 2008, Yan et al. [7] proposed a method for segmenting
the nuclei of cells from a genome-wide RNAi screening
image. The method converts an image into a gray-scale one
and applies Otsu’s thresholding method [11] to decide a
suitable threshold for converting the gray-scale image to a
binary image. It then computes the distance transform of
the complement of the binary image, employs an enhanced
watershed algorithm to detect the nucleus contours of cells,
and removes the objects with small areas.

2.2. Classification and Segmentation Measures. Positive pre-
dictive value and sensitivity are two most frequently used
criteria to evaluate the effectiveness of a classifier. Positive
predictive value can be seen as a measure of exactness or
fidelity, whereas sensitivity is a measure of completeness.
Table 1 lists all possible classification conditions in a binary
classification.The positive predictive value PPV and sensitiv-
ity SEN are defined as follows [10]:

PPV =
TP

TP + FP
, SEN =

TP
TP + FN

. (1)

There may be a trade-off problem between positive pre-
dictive value and sensitivity; greater positive predictive value
decreases sensitivity and greater sensitivity leads to decreased
positive predictive value. 𝐹-measure 𝐹 is the harmonic mean
of PPV and SEN and takes account of both measures [12]:

𝐹 =
2

1/PPV + 1/SEN
=

2TP
2TP + FN + FP

. (2)

Appropriate validation of segmentation is important for
clinical acceptance of a segmentation method. The positive
predictive value, sensitivity, and detection accuracy (DACC)
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Figure 2: The framework of the AIICS system.

are also often employed to measure the segmentation accu-
racy of a segmentation method. DACC can be defined as
follows:

DACC =
TP󸀠

TP󸀠 + FP󸀠 + FN󸀠
. (3)

Here, TP󸀠 is the number of objects which are detected by
a segmentation method and appear in ground truth; FP󸀠 is
the number of objects that are detected by the segmentation
method but do not appear in ground truth; FN󸀠 is the number
of objects that are not detected by the segmentation method
but appear in the ground truth. In this paper, wewill take PPV,
SEN, and DACC to measure the performance of the AIICS
system.

3. AIICS System

The AIICS system contains two stages: preprocessing and
cell segmenting. The preprocessing stage is to enhance cell
contours and suppress noise contours for facilitating further
cell segmenting. The cell segmenting stage is to cut off cells
from an IIF image. The AIICS system will take different
parameters for segmenting cells in different type IIF images.
Figure 2 shows the framework of the AIICS system.

3.1. Preprocessing. In the preprocessing stage, the AIICS
system first transforms a color IIF image 𝑓𝑅𝐺𝐵 into a gray-
level image𝑓 and then employs a run length enhancer and an
adaptive filter to eliminate noise and highlight the contours of
objects on 𝑓.

3.1.1. Color Selector. Since antibodies bind stably and specif-
ically to their corresponding antigen, they are invaluable
as probes to identify a particular molecule in cells, tissues,
or biological fluids. Antibody molecules can be used by

a variety of different labelling techniques to locate their
target molecules accurately in single cells or in tissue sec-
tions. When the antibody itself or the anti-immunoglobulin
antibody is detected, it is labelled with a fluorescent dye;
the technique is known as immunofluorescence microscopy.
Under the indirect immunofluorescence microscopy, the
chosen dye-antibody complex binds only to specific proteins
in the cell. Cells may be stained by different dyes to different
colors. The list of most available fluorescent labels includes
red, green, blue, cyan, or yellow fluorescent proteins.

To remove the effect of dye color on cell segmentation,
the AIICS system transforms each color IIF image 𝑓𝑅𝐺𝐵 into
a gray-level image 𝑓. The AIICS system computes the color
histogram of 𝑓𝑅𝐺𝐵 with 6 bins. Let black (background color),
red, green, blue, cyan, and yellow be the representative colors
of the six bins, respectively, and let (𝐶𝑅𝑖,𝐶𝐺𝑖,𝐶𝐵𝑖) be the 𝑅𝐺𝐵

color components of the representative color of the 𝑖th bin. In
𝑓𝑅𝐺𝐵, for each pixel 𝑝 with three color components (𝐶𝑅, 𝐶𝐺,
𝐶𝐵), 𝑝 will be thrown into bin 𝑗 where

𝑗 = Arg(
5

Min
𝑖=0

√(𝐶𝑅𝑖 − 𝐶𝑅)
2
+ (𝐶𝐺𝑖 − 𝐶𝐺)

2
+ (𝐶𝐵𝑖 − 𝐶𝐵)

2
) .

(4)

Let 𝑛𝑖 be the number of pixels which are thrown into bin
𝑖, and 𝑘 is defined as 𝑘 = Arg(Max5

𝑖=1
𝑛𝑖). The AIICS system

then projects the ℎth pixel with three color components (𝐶𝑅,
𝐶𝐺, 𝐶𝐵) in 𝑓𝑅𝐺𝐵 on a line passing through (0, 0, 0) and (𝐶𝑅𝑘,
𝐶𝐺𝑘, 𝐶𝐵𝑘), and assigns the value, obtained by projecting (𝐶𝑅,
𝐶𝐺,𝐶𝐵) on the line, to the gray-level intensity of the ℎth pixel
of 𝑓0. Let max and min be the maximal and minimal gray-
level intensities of all the pixels in 𝑓0. The AIICS system then
changes the gray-level intensity 𝑥 of each pixel in 𝑓0 into
((𝑥 − min)/(max−min)) × 255. This operation is to stretch
the contrasts of 𝑓0 from 0 to 255.

3.1.2. Run Length Enhancer. In IIF images, cells are bright
objects protruding out from a uniform dark background.
However, some cells are often surrounded by a hazy flu-
orescent halo, such as the imagein Figure 3(a). The hazy
fluorescent halo will make cell segmentation more difficult.
Therefore, this paper proposed a run length enhancer to
suppress the hazy fluorescent halo. For each pixel 𝑓0(𝑖, 𝑗)

located at the coordinates (𝑖, 𝑗) on𝑓0, the run length enhancer
draws eight line segments 𝑙0, 𝑙1, . . . , 𝑙7, all of which pass
through 𝑓0(𝑖, 𝑗), and the included angle between 𝑙ℎ and 𝑋-
axis is 22.5 × ℎ

∘. Let 𝑊𝑟, consisting of 𝑚𝑟 × 𝑚𝑟 pixels, be
a window on 𝑓0, where 𝑓0(𝑖, 𝑗) is the central pixel of 𝑊𝑟.
We call 𝑊𝑟 the related window of 𝑓0(𝑖, 𝑗). Assume that 𝑙ℎ

passes through pixels 𝑃ℎ1 and 𝑃ℎ2 which are located on the
boundary of 𝑊𝑟. Figure 4 illustrates the related window 𝑊𝑟

of 𝑓0(𝑖, 𝑗) marked by red color. If the gray-level intensity
of 𝑓0(𝑖, 𝑗) is greater than the average gray-level intensity of
all the pixels in 𝑊𝑟, then the run length enhancer assigns
Max7
ℎ=0

((1/𝑚𝑟) ∑𝑘 𝑐ℎ𝑘) to the gray-level intensity of 𝑓𝑟(𝑖, 𝑗);
otherwise it gives Min7

ℎ=0
((1/𝑚𝑟) ∑𝑘 𝑐ℎ𝑘) to the gray-level

intensity of𝑓𝑟(𝑖, 𝑗), where 𝑐ℎ𝑘 is the gray-level intensity of each
pixel on line segment 𝑙ℎ from 𝑃ℎ1 to 𝑃ℎ2.
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(a) 𝑓0 (b) 𝑓𝑟

(c) 𝑓𝑎

Figure 3: The result of preprocessing stage.
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Figure 4: The eight line segments in run length enhancer.

The run length enhancer then stretches the gray-level
contrast of 𝑓𝑟 from 0 to 255. Figure 3(b) is the 𝑓𝑟 obtained
by executing the run length enhancer on image 𝑓0 in
Figure 3(a). Figure 3(b) explains that the run length enhancer
can suppress the hazy fluorescent halo.

3.1.3. Adaptive Filter. Figure 3(b) shows that some cells are
uneven and there may exist some holes on the cells in 𝑓𝑟,

indicated by a red arrow; therefore, the AIICS system adopts
an adaptive filter to smooth the surfaces and to fill in the
holes on the cells. Let Ave𝑔 be the average gray-level intensity
of all the pixels in 𝑓𝑟, let 𝑊𝑎, consisting of 𝑚𝑎 × 𝑚𝑎 pixels,
be a related window of 𝑓𝑟(𝑖, 𝑗), and let Ave𝑙 as well as Min𝑎
be the average and minimal gray-level intensities of all the
pixels in𝑊𝑎. Since cell pixels in 𝑓𝑟 are generally brighter than
background pixels, the adaptive filter gives

Ave𝑙, if Ave𝑙 ≥ Ave𝑔,

Min𝑎, otherwise,
(5)

to 𝑓𝑎(𝑖, 𝑗). After that, the adaptive filter stretches the pixel
contrast of 𝑓𝑎 from 0 to 255. Figure 3(c) is the 𝑓𝑎 obtained
by executing the adaptive filter on the image in Figure 3(b).
Figure 3(c) shows that the adaptive filter can smooth the
surfaces and fill in the holes on the cells in 𝑓𝑟.

3.2. Cell Segmenting. This stage is to cut off cells from an IIF
image. It consists of gradient computing, contour extracting,
and overlapping cells splitting steps.

3.2.1. Gradient Computing. The gradients of pixels in an
image can provide an abundance of object contour informa-
tion. Let ∇𝑓𝑎 denote the gradient vector field of pixel 𝑓𝑎(𝑖, 𝑗)
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where ∇ is the vector differential operator. The components
of ∇𝑓𝑎 are the partial derivatives of 𝑓𝑎(𝑖, 𝑗). That is,

∇𝑓𝑎 = [𝑔𝑥, 𝑔𝑦] = [
𝜕𝑓𝑎

𝜕𝑥
,
𝜕𝑓𝑎

𝜕𝑦
] . (6)

The magnitude of the vector is given to

Mag (∇𝑓𝑎) = (𝑔
2

𝑥
+ 𝑔
2

𝑦
)
1/2

= ((
𝜕𝑓𝑎

𝜕𝑥
)

2

+ (
𝜕𝑓𝑎

𝜕𝑦
)

2

)

1/2

. (7)

Let 𝑔𝑥𝑥, 𝑔𝑥𝑦, 𝑔𝑦𝑥, and 𝑔𝑦𝑦 be

𝑔𝑥𝑥 =
𝜕
2
𝑓𝑎

𝜕𝑥
2
, 𝑔𝑥𝑦 =

𝜕
2
𝑓𝑎

𝜕𝑥𝜕𝑦
,

𝑔𝑦𝑥 =
𝜕
2
𝑓𝑎

𝜕𝑦𝜕𝑥
, 𝑔𝑦𝑦 =

𝜕
2
𝑓𝑎

𝜕𝑦
2
,

(8)

and let V = (V𝑥, V𝑦) be a unit vector in 𝑋𝑌 plane. We define
the local contrast of 𝑓𝑎(𝑖, 𝑗) at the 𝑋𝑌 plane in the direction
of V as

𝑔𝑥𝑥V
2

𝑥
+ 2𝑔𝑥𝑦V𝑥V𝑦 + 𝑔𝑦𝑦V

2

𝑦
,

𝐴 = (
𝑔𝑥𝑥 𝑔𝑦𝑥

𝑔𝑥𝑦 𝑔𝑦𝑦

) .

(9)

It is well known that a quadratic form equation (9) has a
maximal and a minimal value for varying V. These extreme
values coincide with the eigenvalues of matrix 𝐴, and they
are attainedwhen V is the corresponding eigenvector [13].The
extreme values can be obtained by (10)

𝜆± =

𝑔𝑥𝑥 + 𝑔𝑦𝑦

2
±
√

(𝑔𝑥𝑥 − 𝑔𝑦𝑦)
2

4
+ 𝑔𝑥𝑦𝑔𝑦𝑥.

(10)

For each pixel 𝑓𝑎(𝑖, 𝑗), a pair (𝜆+, 𝜆−) is given, so that
𝜆+ is the greatest gradient magnitude of 𝑓𝑎(𝑖, 𝑗) in a certain
gradient direction 𝜃+; 𝜆− is the gradient of 𝑓𝑎(𝑖, 𝑗) in other
gradient direction 𝜃− and the included angle between 𝜃+ and
𝜃− is 90

∘.
After computing the 𝜆+ and 𝜆− of all the pixels in 𝑓𝑎, the

𝜆+ and 𝜆− of 𝑓𝑎(𝑖, 𝑗) are, respectively, transformed into

𝑓+ (𝑖, 𝑗) = 255 ×
𝜆+ −min+

max+ −min+
,

𝑓− (𝑖, 𝑗) = 255 ×
𝜆− −min−

max− −min−
,

(11)

where max+ and min+ are the maximum and the minimum
𝜆+ of all the pixels in𝑓𝑎 andmax− andmin− are themaximum
and the minimum 𝜆− of all the pixels in 𝑓𝑎. Figures 5(b)
and 5(c) demonstrate the 𝑓+ and 𝑓− obtained by the gradient
computing from the image 𝑓𝑎 shown in Figure 5(a).

From Figure 5, one can obviously observe that 𝑓+ and
𝑓− can effectively describe the gradient of 𝑓𝑎 but the object

contours in 𝑓+ (resp. 𝑓−) are expanded (resp. shrunk) com-
pared to the real object contours in 𝑓𝑎. Hence, 𝑓+ and 𝑓− are
integrated into 𝑓± by the following formula:

𝑓± (𝑖, 𝑗) =
𝑓+ (𝑖, 𝑗)

(255 − 𝑓− (𝑖, 𝑗)) + 1
, (12)

where the 1 in denominator is to ensure the value in
denominator not to be zero.

Next, the contrasts of all the pixels in 𝑓± are stretched
to range from 0 to 255. Figure 5(d) is the 𝑓± obtained by
executing the gradient computing approach on the image in
Figure 5(a). Figure 5(d) shows that the gradient computing
approach can provide the impressive gradient of an image.

3.2.2. Contour Extracting. Since the gradients of some object
contours are indistinct, such as the gradient indicated by a
red arrow in Figure 5(d), the AIICS system takes an adaptive
thresholding approach to transform 𝑓± into a binary image
𝑓𝑏 in which a 1-bit (resp. 0-bit) represents one white pixel
(resp. black pixel). The adaptive thresholding approach first
uses Otsu’s thresholdingmethod [11] to partition all the pixels
in𝑓± into two groups according to their gray-level intensities,
then respectively computes the average gray-level intensity of
all the pixels in each group, and considers the smaller one 𝜇𝑏

of the two average gray-level intensities to be the gray-level
intensity of the background pixels in 𝑓±.

Let 𝑊𝑏, consisting of 𝑚𝑏 × 𝑚𝑏 pixels, be the related
window of 𝑓±(𝑥, 𝑦), let 𝜇𝑙 be the average gray-level intensity
of all the pixels in𝑊𝑏, and let 𝜎𝑔 be the standard deviation of
the gray-level intensities of all the pixels in𝑓±. Two thresholds
𝑇1 and 𝑇2 are set to

𝑇1 = 𝜇𝑏 + 𝜎𝑔, 𝑇2 = 𝜇𝑏 +

𝜎𝑔

2
. (13)

The 𝑓𝑏(𝑥, 𝑦) is given to be

𝑓𝑏 (𝑥, 𝑦)

=

{{{

{{{

{

1, (𝑓𝑔 (𝑥, 𝑦) > 𝑇1) or

(𝑇2 < 𝑓𝑔 (𝑥, 𝑦) ≤ 𝑇1 and 𝜇𝑙 > 𝑇1) ,

0, otherwise.

(14)

Figure 6(a) illustrates the 𝑓𝑏 generated by the adaptive
thresholding approach from the image in Figure 5(d).

Since the contrast of the pixel at the vicinity of the
cell contour or noise is generally high, it may cause a false
contour with the thickness of over one pixel. The contour of
an object should be one pixel in thickness. The AIICS sys-
tem adopts a hit-and-miss transform-based skeletonization
(HMTS) algorithm [14] to thin the contour of an object so
that the contour of an object is the thickness of one pixel.
We refer to the eliminated candidate contour pixels as the
redundant-contour pixels and the remaining contour pixels
as true-contour pixels. We call this algorithm the thinning
operation.

Let𝑊𝑡(𝑥, 𝑦), consisting of 3×3 pixels, be the related win-
dow of 𝑓𝑏(𝑥, 𝑦). The thinning operation compares 𝑊𝑡(𝑥, 𝑦)
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(a) 𝑓𝑎 (b) 𝑓+

(c) 𝑓− (d) 𝑓±

Figure 5: The example results obtained by the gradient computing.

(a) 𝑓𝑏 (b) 𝑓𝑡

(c) 𝑓𝑠 (d) 𝑓𝑐

Figure 6: The example results obtained by the thinning and spur
pruning operations.

with each of the eight structuring elements shown in Figure 7,
where the gray pixels stand for the do-not-care pixels (A
do-not-care pixel may be a 1-bit pixel or a 0-bit pixel). The
thinning operation considers that 𝑊𝑡(𝑥, 𝑦) is matched if the
positions and values of 1- and 0-bits on one structuring ele-
ment are completely the same as those on𝑊𝑡(𝑥, 𝑦), regardless
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Figure 7: Eight structuring elements for thinning.

of the do-not-care pixels. If 𝑊𝑡(𝑥, 𝑦) is matched, 𝑓𝑡(𝑥, 𝑦) =

0; otherwise, 𝑓𝑡(𝑥, 𝑦) = 𝑓𝑏(𝑥, 𝑦). The algorithm repeats
this procedure until no more thinning can be performed.
The thinning algorithm is to cut off the redundant-contour
pixels, so that the contours have a thickness of only one
pixel. Figure 6(b) shows the result after running the thinning
operation on the image in Figure 6(a).

However, the uneven object contours tend to cause small
spurs on the obtained skeleton by the thinning operation.
These spurs are not expected. Therefore, a spur pruning
operation is required to remove them. The procedure of
the spur pruning operation [14] is entirely the same as the
thinning operation except for the eight structuring elements
in Figure 7 which are replaced by the eight structuring
elements in Figure 8. Let 𝑓𝑠 be the result obtained by the spur
pruning operation from 𝑓𝑡. Figure 6(c) displays the result
image 𝑓𝑠 after running the spur pruning operation on the
image 𝑓𝑡 shown in Figure 6(b).
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Figure 8: Eight structuring elements for Spurs.

In 𝑓𝑠, some false contours should be removed. Let 𝑃𝑖 and
𝑃𝑗 be two pixels on the contour of the 𝑘th object 𝑂𝑘 in 𝑓𝑠,
and let 𝑑𝑖𝑗 be the distance between 𝑃𝑖 and 𝑃𝑗. Assume 𝑑ℎ𝑘 is
the maximal one among all the 𝑑𝑖𝑗’s on the contour of𝑂𝑘. We
call 𝑑ℎ𝑘 the major length of 𝑂𝑘. If the major length of 𝑂𝑘 is
less than the one-third of the average major length of all the
object contours in 𝑓𝑠, then 𝑂𝑘 is considered to be noise and
removed from 𝑓𝑠. After that, 𝑓𝑠 in Figure 6(c) is changed into
𝑓𝑐 in Figure 6(d).

3.2.3. Overlapping Cells Splitting. Some juxtaposed objects
may share overlapping regions, which will make cell distin-
guishing and counting imprecise. We call the area containing
some touching or overlapping cells an overlapping area.
The watershed algorithm is commonly used to split the
overlapping object [15–18]. Watershed based segmentation
can give good results for gray level images with different
minima and catchment basins. For a binary image, however,
there are only two gray levels 0 and 1, respectively, standing
for background and cell. If two cells are connected together
in the binary image 𝑓𝑐, only one minimum and catchment
basinwill be formed in the topographic surface. In employing
the watershed algorithm to segment connected cells, distance
transform [19] is often adopted to preprocess the image to
make it more suitable for segmentation by watershed algo-
rithm, for assigning the catchment basins in the overlapping
area.

Distance transform [19, 20] labels each pixel in an over-
lapping area with the distance of the pixel to the nearest pixel
outside the overlapping area. Let 𝑅 be an overlapping area
in 𝑓𝑐. For each pixel 𝑃(𝑥, 𝑦) in 𝑅 located at the coordinates
(𝑥, 𝑦) on 𝑓𝑐, the distance transform can be determined by the
following three steps.

(1) Attach a label 𝑑(𝑥, 𝑦) = ∞ to each pixel 𝑃(𝑥, 𝑦) in the
overlapping area on 𝑓𝑐 and give a label 𝑑(𝑥, 𝑦) = 0 to
each pixel outside the overlapping area.

(2) Then travel through 𝑓𝑐 pixel by pixel. Replace the
label of each pixel 𝑃(𝑥, 𝑦) in 𝑓𝑐 with Min{𝑑(𝑥, 𝑦),
𝑑(𝑥 − 1, 𝑦 − 1) + 1, 𝑑(𝑥 − 1, 𝑦) + 1, 𝑑(𝑥 − 1, 𝑦 + 1) + 1,
𝑑(𝑥, 𝑦−1)+1,𝑑(𝑥, 𝑦)+1,𝑑(𝑥, 𝑦+1)+1,𝑑(𝑥+1, 𝑦−1)+1,
𝑑(𝑥 + 1, 𝑦) + 1, 𝑑(𝑥 + 1, 𝑦 + 1) + 1}.

(3) Repeat step (2), until all labels have been converted to
finite values.

The most intuitive way to explain the watershed based
segmentation is to imagine that a hole is drilled in each
minimum of the surface and we flood water into different

catchment basins from the holes. If the water of different
catchment basins is likely tomerge due to further immersion,
a dam is built to prevent the merging. This flooding process
will eventually reach a stage when only the top of dam (the
watershed lines) is visible above the water line.

Let 𝑃𝑖𝑃𝑗 be the line segment passing through 𝑃𝑖 and 𝑃𝑗

which are two pixels on the contour of the 𝑘th object𝑂𝑘 in𝑓𝑐,
let 𝑑𝑖𝑗 be the distance between 𝑃𝑖 and 𝑃𝑗, let𝐷𝑀 = 𝑑𝑙𝑚 be the
major length of𝑂𝑘, where 𝑑𝑙𝑚 is the longest distance between
any two pixels on the contour of𝑂𝑘, and let (𝑥1, 𝑦1) as well as
(𝑥2, 𝑦2) be the coordinates of 𝑃𝑙 and 𝑃𝑚 on 𝑓𝑐. Assume 𝐷𝑚 =

𝑑𝑙󸀠𝑚󸀠 is the distance of pixels 𝑃𝑙󸀠 and 𝑃𝑚󸀠 on the contour of𝑂𝑘,
𝑃𝑙󸀠𝑃𝑚󸀠 passes through ((𝑥1 + 𝑥2)/2, (𝑦1 + 𝑦2)/2), and 𝑃𝑙󸀠𝑃𝑚󸀠 is
perpendicular to 𝑃𝑙𝑃𝑚. We call𝐷⊥ the minor length of 𝑂𝑘.

Let 𝐴𝑘 be the area of 𝑂𝑘 and let 𝐴ave be the average
area of all the objects on 𝑓𝑐. The AIICS system considers the
object 𝑂𝑘 to be an overlapping area and takes the watershed
algorithm [17] to split 𝑂𝑘 into more objects, only if

𝐷𝑀

𝐷⊥

> 1.5, 𝐴𝑘 > 2 × 𝐴ave. (15)

After that, 𝑓𝑐 is converted into other binary image 𝑓𝑤.
Figure 9(b) demonstrates the 𝑓𝑤 obtained by running this
watershed algorithm on the 𝑓𝑐 of the image in Figure 9(a),
where only the overlapping areas surrounded by white closed
curves in Figure 9(b) are further split by the watershed
algorithm.

There may be still some cells split into more than one
region. The AIICS system tries to combine them. Let 𝜇𝐴 and
𝜎𝐴 be the average and standard deviation of the areas of all
the object regions on 𝐼𝑤. If the area of object region𝑂𝑘 is less
than𝜇𝐴−0.5×𝜎𝐴, theAIICS systemmerges𝑂𝑘 into one object
region which is adjacent to 𝑂𝑘 and has the longest common
edge with𝑂𝑘. After region combination, 𝑓𝑤 is converted into
𝑓𝑚. Figure 9(c) displays the 𝑓𝑚 obtained from the 𝑓𝑤 in
Figure 9(b) by the region combination.

4. Rough Classifier

There are six distinct autoantibody fluorescence pattern cells
which have quite different fluorescence characteristics. To
effectively sever the cells from the IIF images, the authors
roughly classify IIF images into two categories, uniform
pattern category and fleck pattern category. Most of the cells
on an image in uniform pattern category are with coarse
speckled pattern, diffused pattern, fine speckled pattern,
or peripheral pattern, while most cells on an image in
fleck pattern category are with discrete speckled pattern or
nucleolar pattern. The nuclei of the cells on the images in
fleck pattern category have bright spots. Since both image
categories have significantly different properties, the AIICS
system will take a rough classifier to classify IIF images and
use distinct parameter values to segment the cells from the
images.

Given an IIF image, the rough classifier first applies Otsu’s
thresholding method [11] to determine a threshold 𝑇𝑏 for
converting the IIF image into a binary image. A pixel is
considered to an object pixel if its gray-level intensity is
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(a) Original image (b) 𝑓𝑤

(c) 𝑓𝑚

Figure 9: The results of overlapping cells splitting.

s
r󳰀

s
a󳰀 sbsarea

Ch = 100101110011010110110001

s
a󳰀󳰀

s
r󳰀󳰀

(a) A chromosome Ch

100101110011010110110001

110101101011000110010000

Ch =

Ch =

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

(b) A new chromosome created
from Ch by mutation operator

100101110011010110110001 110101101011001110010001

100101100011011110010001 110101111011000110110001

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

s
r󳰀

s
a󳰀 sbsarea s

a󳰀󳰀
s
r󳰀󳰀

Ch󳰀

2
=Ch󳰀

1
=

Ch =Ch =

(c) Chromosomes Ch󸀠
1
and Ch󸀠

2
derived from Ch1 and Ch2 by crossover

operator

Figure 10: Example for GAPD.

greater than 𝑇𝑏; else it is considered to be one background
pixel. If the average area of all the cell regions is less than
a given threshold 𝑇area, then the image is classified to fleck
pattern category otherwise to uniformpattern category.Then,
the AIICS system will take different 𝑚𝑟 and 𝑚𝑎 to segment
cells on the images from different categories. In this paper,
we will use a genetic algorithm to compute the most suitable
𝑇area,𝑚𝑟, and𝑚𝑎.

5. Genetic Algorithm Based Parameter
Detector (GAPD)

According to the experimental results, the AIICS system
can give better results when given different 𝑚𝑟 and 𝑚𝑎 for
segmenting cells fromfleck pattern category images and from
uniform pattern category images. Assume that𝑚𝑟 and𝑚𝑎 are
given to be 𝑚𝑟 = 𝑚

󸀠

𝑟
as well as 𝑚𝑎 = 𝑚

󸀠

𝑎
for segmenting cells
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from fleck pattern category images and 𝑚𝑟 = 𝑚
󸀠󸀠

𝑟
as well as

𝑚𝑎 = 𝑚
󸀠󸀠

𝑎
for segmenting cells from uniform pattern category

images.
The performance of the AIICS system is significantly

affected by the values of 𝑇area, 𝑚
󸀠

𝑟
, 𝑚
󸀠

𝑎
, 𝑚
󸀠󸀠

𝑟
, 𝑚
󸀠󸀠

𝑎
, and 𝑚𝑏

in segmenting the cells on an IIF image. In this paper,
a genetic algorithm based parameter detector (GAPD) is
provided to determine the most suitable values of 𝑇area, 𝑚

󸀠

𝑟
,

𝑚
󸀠

𝑎
, 𝑚󸀠󸀠
𝑟
, 𝑚󸀠󸀠
𝑎
, and 𝑚𝑏. GAPD makes use of a binary string,

consisting of six substrings 𝑠area, 𝑠𝑟󸀠 , 𝑠𝑎󸀠 , 𝑠𝑟󸀠󸀠 , 𝑠𝑎󸀠󸀠 , and 𝑠𝑏 which,
respectively, comprise 𝑛area, 𝑛𝑟󸀠 , 𝑛𝑎󸀠 , 𝑛𝑟󸀠󸀠 , 𝑛𝑎󸀠󸀠 , and 𝑛𝑏 binary
bits, to represent a chromosome Ch. 𝑠area, 𝑠𝑟󸀠 , 𝑠𝑎󸀠 , 𝑠𝑟󸀠󸀠 , 𝑠𝑎󸀠󸀠 , and
𝑠𝑏 can be used to describe 𝑇area, 𝑚

󸀠

𝑟
, 𝑚󸀠
𝑎
, 𝑚󸀠󸀠
𝑟
, 𝑚󸀠󸀠
𝑎
, and 𝑚𝑏 in

segmenting cells from IIF images. For each chromosome Ch,
𝑇area,𝑚

󸀠

𝑟
,𝑚󸀠
𝑎
,𝑚󸀠󸀠
𝑟
,𝑚󸀠󸀠
𝑎
, and𝑚𝑏 can be encoded as 100+5×𝑛

󸀠

area,
2𝑛
󸀠

𝑟󸀠
+ 3, 2𝑛󸀠

𝑎󸀠
+ 3, 2𝑛󸀠

𝑟󸀠󸀠
+ 3, 2𝑛󸀠

𝑎󸀠󸀠
+ 3, and 2𝑛

󸀠

𝑏
+ 3, where 𝑛

󸀠

area,
𝑛
󸀠

𝑟󸀠
, 𝑛󸀠
𝑎󸀠
, 𝑛󸀠
𝑟󸀠󸀠
, 𝑛󸀠
𝑎󸀠󸀠
, and 𝑛

󸀠

𝑏
are the numbers of 1-bits in 𝑠area, 𝑠𝑟󸀠 ,

𝑠𝑎󸀠 , 𝑠𝑟󸀠󸀠 , 𝑠𝑎󸀠󸀠 , and 𝑠𝑏, individually.
GAPD applies the accumulated historical IIF images to

train the most appropriate values of 𝑇area, 𝑚
󸀠

𝑟
, 𝑚󸀠
𝑎
, 𝑚󸀠󸀠
𝑟
, 𝑚󸀠󸀠
𝑎
,

and𝑚𝑏 by using a genetic algorithm.Themanually drawn cell
regions are considered as a collection of ground truths. The
relative distance error (RDE) [21] is often adopted tomeasure
the segmentation errors of a segmentation method. GAPD
will use RDE as the measure of fitness of Ch based on the
values of 𝑇area,𝑚

󸀠

𝑟
,𝑚󸀠
𝑎
,𝑚󸀠󸀠
𝑟
,𝑚󸀠󸀠
𝑎
, and𝑚𝑏 encoded by Ch.

Initially, GAPD randomly generates 𝑁 chromosomes,
each with 𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠 + 𝑛𝑏 binary bits.
To evolve the best solution, the genetic algorithm repeatedly
executes mutation, crossover, and selection operations until
the relative fitness values of the reserved chromosomes are
very similar to one another or the number of iterations is
equal to MAXRUN.

In mutation operation, for each of the 𝑁 reserved chro-
mosomes, GAPD uses a randomnumber generator to specify
one bit 𝑏 from each of the substrings 𝑠area, 𝑠𝑟󸀠 , 𝑠𝑎󸀠 , 𝑠𝑟󸀠󸀠 , 𝑠𝑎󸀠󸀠 ,
and 𝑠𝑏. Then, all the 𝑏’s are replaced by ¬𝑏’s to generate a new
chromosome, where ¬ signifies the operator “NOT.”

In crossover operation, GAPD uses a random number
generator to designate 𝑁

󸀠 pairs of chromosomes from the 𝑁

reserved chromosomes. Let Ch[𝑖 ⋅ ⋅ ⋅ 𝑗] be the substring of the
𝑖th to 𝑗th bits in Ch. For each chromosome pair (Ch1,Ch2),
GAPD concatenates

Ch1 [1 ⋅ ⋅ ⋅ ⌊
𝑛area
2

⌋] ,

Ch2 [⌊
𝑛area
2

⌋ + 1 ⋅ ⋅ ⋅ 𝑛area] ,

Ch1 [𝑛area + 1 ⋅ ⋅ ⋅ (𝑛area + ⌊
𝑛𝑟󸀠

2
⌋)] ,

Ch2 [(𝑛area + ⌊
𝑛𝑟󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area + 𝑛𝑟󸀠] ,

Ch1 [𝑛area + 𝑛𝑟󸀠 + 1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + ⌊
𝑛𝑎󸀠

2
⌋)] ,

Ch2 [(𝑛area + 𝑛𝑟󸀠 + ⌊
𝑛𝑎󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠] ,

Ch1 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + ⌊
𝑛𝑟󸀠󸀠

2
⌋)] ,

Ch2 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + ⌊
𝑛𝑟󸀠󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠] ,

Ch1 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠

+1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + ⌊
𝑛𝑎󸀠󸀠

2
⌋)] ,

Ch2 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + ⌊
𝑛𝑎󸀠󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠] ,

Ch1 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠

+1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠 + ⌊
𝑛𝑏

2
⌋)] ,

Ch2 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠 + ⌊
𝑛𝑏

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠 + 𝑛𝑏] ,

(16)

into a new chromosome, and

Ch2 [1 ⋅ ⋅ ⋅ ⌊
𝑛area
2

⌋] ,

Ch1 [⌊
𝑛area
2

⌋ + 1 ⋅ ⋅ ⋅ 𝑛area] ,

Ch1 [(𝑛area + ⌊
𝑛𝑟󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area + 𝑛𝑟󸀠] ,

Ch2 [𝑛area + 𝑛𝑟󸀠 + 1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + ⌊
𝑛𝑎󸀠

2
⌋)] ,

Ch1 [(𝑛area + 𝑛𝑟󸀠 + ⌊
𝑛𝑎󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠] ,

Ch2 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + ⌊
𝑛𝑟󸀠󸀠

2
⌋)] ,

Ch1 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + ⌊
𝑛𝑟󸀠󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠] ,

Ch2 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠

+1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + ⌊
𝑛𝑎󸀠󸀠

2
⌋)] ,
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Ch1 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + ⌊
𝑛𝑎󸀠󸀠

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠] ,

Ch2 [𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠

+1 ⋅ ⋅ ⋅ (𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛a󸀠󸀠 + ⌊
𝑛𝑏

2
⌋)] ,

Ch1 [(𝑛area + 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛r󸀠󸀠 + 𝑛𝑎󸀠󸀠 + ⌊
𝑛𝑏

2
⌋ + 1) ⋅ ⋅ ⋅ 𝑛area

+ 𝑛𝑟󸀠 + 𝑛𝑎󸀠 + 𝑛𝑟󸀠󸀠 + 𝑛𝑎󸀠󸀠 + 𝑛𝑏] ,

(17)

into another new chromosome.
In selection operation, 𝑁 optimal chromosomes are

selected from the 𝑁 chromosomes reserved in the previous
iteration and𝑁 as well as 2×𝑁

󸀠 chromosomes created in the
mutation and crossover operations, respectively, according
to their fitness. GAPD continuously performs the three
operations—mutation, crossover, and selection, until the
related fitness of the reserved𝑁 chromosomes are very close.
Finally, GAPD employs the chromosome Ch with the best
fitness in the 𝑁 reserved chromosomes to describe 𝑇area, 𝑚

󸀠

𝑟
,

𝑚
󸀠

𝑎
, 𝑚󸀠󸀠
𝑟
, 𝑚󸀠󸀠
𝑎
, and 𝑚𝑏 in segmenting cells from IIF images.

Figure 10(a) is a chromosomeCh indicating𝑇area = 110,𝑚󸀠
𝑟
=

9, 𝑚󸀠
𝑎
= 𝑚
󸀠󸀠

𝑟
= 𝑚
󸀠󸀠

𝑎
= 7, and 𝑚𝑏 = 5, where 𝑛area = 𝑛𝑟󸀠 = 𝑛𝑎󸀠 =

𝑛𝑟󸀠󸀠 = 𝑛𝑎󸀠󸀠 = 𝑛𝑏 = 4. Figure 10(b) displays a new chromosome
Ch󸀠 derived from Ch by the mutation operation, where the
underlined bits are the randomly selected bits 𝑏. Figure 10(c)
displays two new chromosomes, Ch󸀠

1
and Ch󸀠

2
, generated

from chromosomes Ch1 and Ch2 by the crossover operation.

6. Experiments

This section is to explore the performance of the AIICS
system in segmenting and counting the cells on an IIF image
by experiments. In these experiments, 195 IIF images, 160 of
which are in uniform pattern category and 35 of which are
in fleck pattern category, are used as test images. Figure 1
shows a part of the test images. One can obviously observe
that there are quite different characteristics with these images.
The AIICS system hence employs rough classifier to classify
an IIF image into fleck category or uniform pattern category
and gives different values of𝑚𝑟 and𝑚𝑎 in segmenting the cells
on the IIF image.

The first experiment is to compute the most suitable
parameters𝑇area,𝑚

󸀠

𝑟
,𝑚󸀠
𝑎
,𝑚󸀠󸀠
𝑟
,𝑚󸀠󸀠
𝑎
, and𝑚𝑏. In this experiment,

17 of the 160 uniform pattern images and 3 of the 35 fleck
pattern images are randomly selected to train 𝑇area, 𝑚

󸀠

𝑟
, 𝑚󸀠
𝑎
,

𝑚
󸀠󸀠

𝑟
, 𝑚
󸀠󸀠

𝑎
, and 𝑚𝑏 via GAPD, where 𝑁 = 10, 𝑁

󸀠
= 10,

𝑛𝑟󸀠 = 𝑛𝑎󸀠 = 𝑛𝑟󸀠󸀠 = 𝑛𝑎󸀠󸀠 = 𝑛𝑏 = 10, and MAXRUN = 200.
The experimental results show that the AIICS system will
give better segmentation results when 𝑇area = 210, 𝑚󸀠

𝑟
= 3,

𝑚
󸀠

𝑎
= 11, 𝑚󸀠󸀠

𝑟
= 17, 𝑚󸀠󸀠

𝑎
= 3, and 𝑚𝑏 = 3 in segmenting

cells from IIF image. In the following experiments, 𝑇area, 𝑚
󸀠

𝑟
,

Table 2: The segmentation errors obtained in the second experi-
ment.

Sobel Prewitt Roberts Laplacian AIICS
ME 0.12 0.13 0.11 0.10 0.05
RAE 0.64 0.70 0.51 0.48 0.11
MHD 8960.99 6355.46 4989.59 2103.70 89.00
RDE 7384.81 5493.53 4333.16 2327.26 241.23

Table 3:The segmentation errors obtained in the third experiment.

Eddins Althoff Tang Yan AIICS
ME 0.34 0.44 0.73 0.54 0.05
RAE 0.53 0.62 0.81 0.71 0.11
MHD 1322.71 1331.15 1414.72 1311.13 89.00
RDE 1523.62 1615.57 1598.56 1515.31 241.23

Table 4:The segmentation errors obtained in the third experiment.

Eddins Althoff Tang Yan AIICS
PPV 0.47 0.69 0.86 0.85 0.98
SEN 0.70 0.37 0.72 0.76 0.90
DACC 0.39 0.32 0.64 0.67 0.89

𝑚
󸀠

𝑎
, 𝑚󸀠󸀠
𝑟
, 𝑚󸀠󸀠
𝑎
, and 𝑚𝑏 are set to the values obtained in this

experiment.
The purpose of the second experiment is to probe the

performance of the gradient computing method proposed in
this paper. In this experiment, the AIICS system is applied to
segment cells out from 20 IIF images, except that the gradient
computing method is replaced by Sobel [22], Prewitt [22],
Roberts [22], and Laplacian [22].The 20 IIF images, including
1242 cells, are randomly selected from the 195 test images.
Misclassification error (ME) [23], relative area error (RAE)
[23], modified Hausdorff distance (MHD) [23], and relative
distance error (RDE) [21] are often adopted to measure the
segmentation errors. In this experiment, they are used to
evaluate the performances of Sobel, Prewitt, Roberts, and
Laplacian and the gradient computing method proposed in
this paper. Table 2 shows the results of this experiment.
The experimental results indicate that our method is much
better than Sobel, Prewitt, Roberts, and Laplacian methods
in computing the gradient of an image.

The third experiment is to explore the performances of
the AIICS system, Eddins’, Althoff et al.’s, Tang et al.’s, and
Yan et al.’s methods in segmenting cells on an IIF image. In
this experiment, the 20 test images employed in the second
experiment are also used as test images; ME, RAE, MHD,
and RDE are employed to evaluate the segmentation errors.
Table 3 demonstrates the results obtained in this experiment.

The fourth experiment is to scrutinize the performance
of the AIICS system and to compare this performance with
those of Eddins’ [5], Althoff et al.’s [1], Tang and Ewert [6],
and Yan et al.’s [7] methods in counting cells on an IIF image
after segmenting the cells out. Tables 4, 5, and 6 show the
experimental results, respectively, obtained by using all 195
IIF images, only 160 uniform pattern images, and only 35



12 Mathematical Problems in Engineering

Table 5: The results of experiment 4 by using 160 uniform pattern
images as test data.

Eddins Althoff Tang Yan AIICS
PPV 0.45 0.73 0.89 0.89 0.99
SEN 0.79 0.43 0.73 0.80 0.92
DACC 0.41 0.37 0.67 0.73 0.91

Table 6:The results of experiment 4 by using 35 fleck pattern images
as test data.

Eddins Althoff Tang Yan AIICS
PPV 0.81 0.39 0.74 0.67 0.94
SEN 0.32 0.11 0.66 0.58 0.82
DACC 0.30 0.09 0.54 0.45 0.78

Table 7: The classification results obtained by the rough classifier.

Ground Truth
Uniform Uniform

Test outcome Uniform 160 4
Fleck 0 31

Table 8: The segmentation results of the erroneously classified
images obtained by the AIICSC system with (𝑚𝑟 = 17,𝑚𝑎 = 3) and
(𝑚
𝑟
= 3,𝑚

𝑎
= 11).

(𝑚𝑟 = 17,𝑚𝑎 = 3) (𝑚𝑟 = 3,𝑚𝑎 = 11)

PPV 0.98 1.00
SEN 0.94 0.87
DACC 0.92 0.87

fleck pattern images as the test data.The experimental results
indicate that the AIICS system is much superior to Eddins’
[5], Althoff et al.’s [1], Tang and Ewert [6], and Yan et al.’s [7]
methods in counting cells on an IIF image.

The fifth experiment is to investigate the effect of rough
classifier. In this experiment, 160 uniform pattern images
and 35 fleck pattern images are used as test data. Table 7
shows the experimental results in classifying IIF images to the
uniform pattern category or to the fleck pattern category by
rough classifier. The classification measures obtained in this
experiment are PPV = 0.988, SEN = 0.943, and 𝐹 = 0.965.

Table 7 displays that four images in fleck pattern category
are erroneously classified to uniform pattern category. After
that, in this experiment, the AIICS system is used to separate
the cells from the four images with (𝑚𝑟 = 17, 𝑚𝑎 = 3) and
(𝑚𝑟 = 3, 𝑚𝑎 = 11), respectively. Table 8 demonstrates the
experimental results which tell that it is more appropriate to
categorize the four images to the uniform pattern category in
cell segmentation by the AIICS system.

7. Conclusions

In this paper, the AIICS system is proposed to automatically
segment and count cells on an IIF image. The experimental
results show that the AIICS system can effectively segment

and count the cells on an IIF image, even though the char-
acteristics of the IIF images are extremely different. In this
paper, color selector, run length enhancer, and adaptive filter
are provided to remove noise and to enhance the contours
of cells on an image. To cut off the cells from an image
effectively, a new gradient computing method is proposed
to compute the gradient of edge and an adaptive threshold
method is given to decide the most proper thresholds for
detecting the cells on an image. In addition, rough classifier is
presented to classify IIF images. GAPD is presented to decide
themost suitable parameters used in the AIICS system.These
techniques can be also applied in segmenting the objects from
other kind of images.
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