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A novel method of robust trajectory linearization control for a class of nonlinear systems with uncertainties based on disturbance
rejection is proposed. Firstly, on the basis of trajectory linearization control (TLC) method, a feedback linearization based control
law is designed to transform the original tracking error dynamics to the canonical integral-chain form. To address the issue of
reducing the influence made by uncertainties, with tracking error as input, linear extended state observer (LESO) is constructed
to estimate the tracking error vector, as well as the uncertainties in an integrated manner. Meanwhile, the boundedness of the
estimated error is investigated by theoretical analysis. In addition, decoupled controller (which has the characteristic of well-tuning
and simple form) based on LESO is synthesized to realize the output tracking for closed-loop system. The closed-loop stability of
the system under the proposed LESO-based control structure is established. Also, simulation results are presented to illustrate the
effectiveness of the control strategy.

1. Introduction

Trajectory linearization control (TLC) is a novel nonlinear
tracking and decoupling control method, which combines
an open-loop nonlinear dynamic inversion and a linear
time-varying (LTV) feedback stabilization, which guarantees
that TLC’s output achieves exponential stability along the
nominal trajectory.Therefore, owing to the specific structure,
it provides a certain extent of robust stability and can be
capable of rejecting disturbance in nature, for which TLC
has been successfully applied to missile and reusable launch
vehicle flight control systems [1, 2] and tripropeller UAV [3],
helicopter [4], and fixed-wing vehicle [5].

However, in [6], theoretical analysis based on singular
perturbation is proposed, which demonstrates that TLC can
achieve local exponential stability because only linear term
for original nonlinear system is ultimately reserved. In other
words, when external and internal uncertainties are large
enough to surpass the stability domain provided by TLC,
the performance of the system will degrade significantly.

Thus,with the consideration of limitations of TLC in presence
of uncertainties, how to enhance or improve the robustness
and performance of TLC is becoming one of the active topics
in control community recently [4, 7–14]. So far, the existing
approach adopted by researchers can be classified as follows.
By employing the excellent ability of neutral network [4, 8–11]
or fuzzy logic [12, 13, 15, 16] in approximating the nonlinear
functions, the unknown disturbances and uncertainties can
be estimated and cancelled in enhanced control law, and
thus the nominal performance of system can be recovered.
Therefore, main research works are focused on the following
aspects: (i) the construction of neutral network structure
and fuzzy logic rules and (ii) the stability discussion of the
compound system based on the estimated uncertainties. For
instance, in [9], an adaptive neural network technique for
nonlinear systems based on TLC is firstly proposed. The
robustness and the stability of the proposed control scheme
are also analyzed. A similar type of adaptive neural network
TLC algorithm is also proposed through single hidden
layer neutral networks (SHLNN) and radical basis function
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(RBF) neural network in [9–11]. In [12, 15, 16], Takagi-
Sugeno (T-S) fuzzy system is applied to approximate the
unknown functions in the system. Based on [12, 13] proposed
a robust adaptive TLC(RATLC) algorithm, wherein only one
parameter needs to be adapted on line, but there are too
many design parameters to be chosen. Unlike the methods
mentioned above, in [14], by using PD-eigenvalue assignment
method, trajectory linearization observer is designed to can-
cel the uncertainties, but the design process seems cumber-
some and the results are not satisfactory. Among the litera-
tures mentioned above, one limitation which must be taken
into account is that due to the complexity of the theory, it is
overwhelmingly difficult to provide a guideline to tune the
corresponding parameters, especially those which will influ-
ence the system performance greatly. In addition, the con-
struction of fuzzy rules in T-S system usually needs certain
extent of expertise knowledge. The drawbacks mentioned
above will unavoidably increase the complexity of design
procedure in engineering practice.

It is not difficult to recognize that the focal point of
[7–14] is how to extract and estimate external disturbance
and unknown dynamics by the known knowledge. In fact,
there are many observers characterized in terms of state
space formulation, as shown in [17], including the unknown
input observer (UIO), the disturbance observer (DOB), and
the extended state observer (ESO) which includes nonlinear
ESO (NESO) and linear ESO (LESO) (when the structure of
observer is chosen in nonlinear form, it refers to the term
NESO, otherwise the term LESO). UIO is one of the earliest
disturbances estimators, where the external disturbance is
formulated as an augmented state and estimated using a
state observer. Similar to UIO, ESO is also a state space
approach. What sets ESO apart from UIO and DOB is that
it is conceived to estimate not only the external disturbance
but also plant dynamics. Furthermore, ESO requires the least
amount of plant information. To be specific, only the relative
order of system should be known. It is worth pointing out
that, compared with NESO, LESO is greatly simplified with a
single tuning parameter, that is, the bandwidth of LESO. Due
to the excellent capability of LESO in estimating the unknown
uncertainties, there have been many successful applications
including biomechanics [18] and multivariable jet engines
[19].

Above all, the essence of this problem is really disturbance
rejection, with the notion of disturbance generalized to sym-
bolize the uncertainties, both internal and external to the
plant [20]. Central to this novel design framework proposed
is the ability of LESO to estimate both the internal dynamics
and external disturbances of the plant in real time.Themajor
contributions of this paper are as follows.

(i) This is the first paper that employs LESO to improve
the robustness and capability in disturbance rejection
for TLC. Compared with methods proposed in [9–
14], the novel controller can achieve fast and accurate
response via effective compensation for unmodeled
error and disturbances.

(ii) Unlike the conclusions on stability made by [9–14],
the stability analysis in this paper not only gives

the statement about the convergence of tracking error
but also provides a viable guideline to select the
parameters of controller; hence the complicate selec-
tion of PD-eigenvalues via PD-spectrum theorem
which is widely used in [9–14] as a typical method can
be avoided.

(iii) Compared with [9–14], only two parameters of the
proposed method need to be tuned, which makes it
extremely simple and practical to implement in real
practice.

The paper is organized as follows.The review of TLC and
controller design procedure based on LESO are presented
in Sections 2 and 3, respectively. In Section 4, the analysis
of closed-loop system error dynamics is given. Simulation
results and discussion are shown in Section 5.The paper ends
with a few concluding remarks in Section 6.

2. Review of TLC

Consider a multi-input multi-output (MIMO) nonlinear
system:

ẋ = f (x) + g1 (x) 𝑢 + g2 (x) d (x) ,

y = h (x) ,

(1)

where x ∈ R𝑛, u ∈ R𝑚, and y ∈ R𝑝 represent the state, the
control input, and the output of the system, respectively. f(x),
g1(x), g2(x), and h(x) are smooth and bounded nonlinear
function with appropriate dimensions. And d(x) ∈ R𝑛 repre-
sents the unknown modeling error and external disturbance.
Besides, g1(x) and g2(x) satisfy the matching conditions;
namely, there exists a nonlinear matrix g

0
(x) ∈ 𝑅

𝑛×𝑚 such
that

g
0

(x) g
1

(x) = g
2

(x) . (2)

Firstly, without consideration of disturbance described
by d(x), according to the design process of TLC method,
the nominal control u, the nominal state x, and the nominal
output y will satisfy the following system:

̇x = f (x) + g1 (x) u,

y = h (x) .

(3)

Let = x + e and u = u + ũ; the tracking error dynamics
can be described as

ė = f (x + e) + g1 (x + e) (u + ũ) + g2 (x) d
− f (x) − g1 (x) 𝑢 = F (x, u, e, ũ) + g2 (x) d.

(4)

Since x, u in (4) can be viewed as the time-varying param-
eters of the system, (4) can be simply written as

ė = F (x, u, e, ũ) + g2 (x) d = F (𝑡, e) + g2 (x) d. (5)

Consider the LTV system derived by Taylor expansion at
the equilibrium point (x, u) for (5); we have

ė = A (t) e + B (t) ũ + g2 (x) d, (6)

whereA(t) = (𝜕f/𝜕x + (𝜕g1/𝜕x)u)|

(x,u) andB(t) = g1(x)|

(x,u).
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Assume that systems (5) and (6) satisfy the assumptions
stated as follows.

Assumption 1. Let e = 0 be an isolated equilibrium point for
(5) when d = 0, where F : [0, ∞) × 𝐷

𝑒
→ 𝑅

𝑛 is continuously
differentiable, 𝐷

𝑒
= {e ∈ 𝑅

𝑛

| ‖e‖ < 𝑅

𝑒
}, and the Jacobian

matrix [𝜕F/𝜕𝑡] is bounded and Lipschitz on 𝐷

𝑒
, uniformly in

𝑡.

Assumption 2. The system matrices pair (A(t),B(t)) in (6) is
uniformly completely controllable.

According to Assumption 2, we can design an LTV feed-
back control law ũ = 𝐾(𝑡)e for the LTV system (6) when
d = 0, the solution of system (6) can converge to zero expo-
nentially. For simplicity, let 𝐴

𝑐
(𝑡) = 𝐴(𝑡) + 𝐵(𝑡)𝐾(𝑡), where

𝐴

𝑐
(𝑡) is Hurwitz. The parameters in 𝐴

𝑐
(𝑡) can be chosen by

using PD-spectrum theorem. The detailed design process of
the nominal controller u and the LTV feedback controller ũ
can be found in [1–3].

3. Controller Design Based on LESO

With the consideration of control quality for closed-loop
system, the augmented tracking error in forms of PI can be
written in the following state space form:

ėI = eP, (7)
ėp = A (t) ep + B (t) ũ + g2 (x) d. (8)

Assumption 3. The state vector eI in (7) is measurable.

Let 𝜉 = [eI, eP]

𝑇

= [e
1,𝐼

, e
2,𝐼

, . . . , e
𝑛,𝐼

, e
1,𝑃

, e
2,𝑃

, . . . , e
𝑛,𝑃

]

𝑇,
and define eI as the output of new LTV system composed of
(7) and (8); then the tracking error dynamics can be rewritten
as

̇

𝜉 = [

0
𝑛×𝑛
Ι
𝑛×𝑛

0
𝑛×𝑛
Α (t)] 𝜉 + [

0
𝑛×𝑛

B (t)] ũ + [

0
𝑛×𝑛

𝑔

2
(𝑥)

] d,

y = [Ι
1×𝑛

0
1×𝑛

] [

eI
eP

] .

(9)

It is obvious that, with the relative order and system order
of (9) being 2𝑛, the problem on the zero-dynamics subsystem
does not exist.

Meanwhile, define

[

[

[

[

[

𝐹

1
(x, u, 𝑡)

𝐹

2
(x, u, 𝑡)

...
𝐹

𝑛
(x, u, 𝑡)

]

]

]

]

]

=

[

[

[

[

[

𝑎

11
(x, u, 𝑡) 𝑎

12
(x, u, 𝑡) ⋅ ⋅ ⋅ 𝑎

1𝑛
(x, u, 𝑡)

𝑎

21
(x, u, 𝑡) 𝑎

22
(x, u, 𝑡) ⋅ ⋅ ⋅ 𝑎

2𝑛
(x, u, 𝑡)

...
...

...
...

𝑎

𝑛1
(x, u, 𝑡) 𝑎

𝑛2
(x, u, 𝑡) ⋅ ⋅ ⋅ 𝑎

𝑛𝑛
(x, u, 𝑡)

]

]

]

]

]

×

[

[

[

[

[

𝑒

1,𝑝

𝑒

2,𝑝

...
𝑒

𝑛,𝑝

]

]

]

]

]

,

[

[

[

[

[

̃

𝑈

1

̃

𝑈

2

...
̃

𝑈

𝑛

]

]

]

]

]

=

[

[

[

[

[

𝑏

11
(x, 𝑡) 𝑏

12
(x, 𝑡) ⋅ ⋅ ⋅ 𝑏

1𝑚
(x, 𝑡)

𝑏

21
(x, 𝑡) 𝑏

21
(x, 𝑡) ⋅ ⋅ ⋅ 𝑏

2𝑚
(x, 𝑡)

...
...

...
...

𝑏

𝑛1
(x, 𝑡) 𝑏

𝑛2
(x, 𝑡) ⋅ ⋅ ⋅ 𝑏

𝑛𝑚
(x, 𝑡)

]

]

]

]

]

[

[

[

[

[

�̃�

1

�̃�

2

...
�̃�

𝑚

]

]

]

]

]

, (10)

where 𝑎

𝑖𝑗
(x, u, 𝑡) represents the 𝑖th row and the 𝑗th column

element of matrix 𝐴(𝑡) and 𝑏

𝑖𝑠
(x, 𝑡) represents the 𝑖th row and

the 𝑠th column element of matrix 𝐵(𝑡). In this case, the 𝑖th
tracking error subsystem can be formulated as

̇𝑒

𝑖,𝐼
= 𝑒

𝑖,𝑃
̇𝑒

𝑖,𝑃
= 𝐹

𝑖
(x, u, 𝑡) + 𝑔

2,𝑖
(x) d +

̃

𝑈

𝑖
,

𝑖 ∈ 𝑛,

(11)

where 𝑔

2,𝑖
(x) represents the 𝑖th row element of g2(x), by

introducing virtual control variable V
𝑖
, which takes the form

of

V
𝑖

= 𝐹

𝑖
(x, u, 𝑡) + 𝑔

2,𝑖
(x) d +

̃

𝑈

𝑖
. (12)

For subsystem (11), if the uncertainties in (12) are known,
then the controller can be designed by feedback linearization
method as

̃

𝑈

𝑖
= −𝑘

1,𝑖
𝑒

𝑖,𝑃
− 𝑘

2,𝑖
𝑒

𝑖,𝐼
− 𝑔

2,𝑖
(x) d − 𝐹

𝑖
(x, u, 𝑡) . (13)

However, the control law cannot be synthesized unless d
is estimated by observers. To deal with the estimation issue in
(13), LESO provides a novel frame to achieve the function of
uncertainties.

For simplicity, let 𝑒

𝑖,𝑑
= 𝐹

𝑖
(x, u, 𝑡) + 𝑔

2,𝑖
(x)d, which repre-

sent the lumped disturbance; assume that 𝑒

𝑖,𝑑
is differentiable

and denote ̇𝑒

𝑖,𝑑
= ℎ

𝑖
(x, d); then (11) can be written in an

augmented state space form:

̇𝑒

𝑖,𝐼
= 𝑒

𝑖,𝑃
,

̇𝑒

𝑖,𝑃
= 𝑒

𝑖,𝑑
+

̃

𝑈

𝑖
= V
𝑖
,

̇𝑒

𝑖,𝑑
= ℎ

𝑖
(x, d) ,

𝑦

𝑖
= 𝑒

𝑖,𝐼
,

𝑖 ∈ 𝑛.

(14)

So far, by adopting direct feedback linearization, the
original tracking error dynamics which take the form of
linear time-varying have been transformed to canonical
integral-chain form. Consequently, for (14), since 𝑒

𝑖,𝑑
is now

a state in the extended state model, LESO can be designed
to estimate 𝑒

𝑖,𝐼
, 𝑒

𝑖,𝑃
, and 𝑒

𝑖,𝑑
. With ̃

𝑈

𝑖
and 𝑒

𝑖,𝐼
as inputs, a

particular LESO of (14) is given as

𝑧

𝑖,0
= 𝑧

𝑖,1
− 𝑒

𝑖,𝐼
,

�̇�

𝑖,1
= 𝑧

𝑖,2
− 𝑙

01
𝑧

𝑖,0
,

�̇�

𝑖,2
= 𝑧

𝑖,3
+

̃

𝑈

𝑖
− 𝑙

02
𝑧

𝑖,0
,

�̇�

𝑖,3
= −𝑙

03
𝑧

𝑖,0
+ ℎ

𝑖
(x, d) ,

𝑖 ∈ 𝑛,

(15)
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where 𝑙

01
, 𝑙

02
, 𝑙

03
are the observer gain parameters to be

chosen such that the characteristic polynomial 𝑠

3

+ 𝑙

01
𝑠

2

+

𝑙

02
𝑠 + 𝑙

03
is Hurwitz. According to [21], let 𝑠

3

+ 𝑙

01
𝑠

2

+ 𝑙

02
𝑠 +

𝑙

03
= (𝑠 + 𝑤

0
)

3, where 𝑤

0
denotes the observer bandwidth,

which becomes the only tuning parameter of the observer.

Remark 4. Although ̇𝑒

𝑖,𝑑
= ℎ

𝑖
(x, d) can be assumed theoreti-

cally, in engineering practice, 𝑒

𝑖,𝑑
which contains information

of unknown disturbances cannot be obtained in advance. So,
in practice, we might as well set ℎ

𝑖
(x,d) = 0 in (15).

Furthermore, define 𝐸

𝑖
= [𝑒

𝑖,𝐼
, 𝑒

𝑖,𝑃
, 𝑒

𝑖,𝑑
]

𝑇 and its esti-
mated states 𝑍

𝑖
= [𝑧

𝑖,1
, 𝑧

𝑖,2
, 𝑧

𝑖,3
]

𝑇; hence (14) and (15) can
be rewritten in the following matrix form:

̇

𝐸

𝑖
= 𝐴𝐸

𝑖
+ 𝐵

1

̃

𝑈

𝑖
+ 𝐵

2
ℎ

𝑖
(x, d) ,

̇

𝑍

𝑖
= 𝐴𝑍

𝑖
+ 𝐵

1

̃

𝑈

𝑖
+ 𝐿 (𝐸

𝑖
− 𝑍

𝑖
) ,

(16)

where 𝐴 = [

0 1 0

0 0 1

0 0 0

], 𝐵

1
= [0 1 0]

𝑇, 𝐿 = [

𝑙01 0 0

𝑙02 0 0

𝑙03 0 0

], and

𝐵

2
= [0 0 1]

𝑇. Hence, estimated error of the observer can be
directly calculated as

̇

𝐸

𝑖
−

̇

𝑍

𝑖
= (𝐴 − 𝐿) (𝐸

𝑖
− 𝑍

𝑖
) + 𝐵

2
ℎ

𝑖
(x, d) . (17)

For simplicity, let ̃

𝐸

𝑖𝑜
= 𝐸

𝑖
− 𝑍

𝑖
and 𝐴

1
= 𝐴 − 𝐿. Here, 𝐴

1

is Hurwitz for 𝑙

01
, 𝑙

02
, and 𝑙

03
; then (17) can be reduced to

̇

̃

𝐸

𝑖𝑜
= 𝐴

1

̃

𝐸

𝑖𝑜
+ 𝐵

2
ℎ

𝑖
(x, d) .

(18)

Theorem 5. Assuming ℎ

𝑖
(x, d) is bounded, there exists a

positive constant 𝑀

1
such that |ℎ

𝑖
(x, d)| ≤ 𝑀

1
; then estimated

errors of the observer described by (18) are bounded. Further-
more, estimated errors of the observer satisfy ‖

̃

𝐸

𝑖𝑜
‖ ≤ 𝑀

2
for

𝑡 → ∞, where 𝑀

2
> 0.

Proof. If there exist three different negative real eigenvalues
for 𝐴

1
, it follows that −𝜆

1
< −𝜆

2
< −𝜆

3
< 0, 𝜆

𝑖
> 0 (𝑖 =

1, . . . , 3); thus there exists nonsingular matrix 𝑇, and one has

𝐴

1
= 𝑇 diag {−𝜆

1
, −𝜆

2
, −𝜆

3
} 𝑇

−1

. (19)

Note that

exp (𝐴

1
𝑡) = 𝑇 diag {− exp (𝜆

1
𝑡) , − exp (𝜆

2
𝑡) ,

− exp (𝜆

3
𝑡)} 𝑇

−1

.

(20)

When 𝑡 > 0, let us choose 𝑚

∞
norm for the matrix norm.

It is obvious that ‖exp(𝐴

1
𝑡)‖

𝑚∞

≤ 𝛽 exp(−𝜆

1
𝑡) (𝑡 > 0), where

𝛽 > 0. The response of (18) can be written as

̃

𝐸

𝑖𝑜
(𝑡) = exp (𝐴

1
𝑡)

̃

𝐸

𝑖𝑜
(0) + ∫

𝑡

0

exp (𝐴

1
(𝑡 − 𝜏)) 𝐵

2
ℎ

𝑖
𝑑𝜏,

𝑡 > 0.

(21)

Hence, we have










̃

𝐸

𝑖𝑜
(𝑡)











≤











exp (𝐴

1
𝑡)

̃

𝐸

𝑖𝑜
(0)











+

















∫

𝑡

0

exp (𝐴

1
(𝑡 − 𝜏)) 𝐵

2
ℎ

𝑖
𝑑𝜏

















≤









exp (𝐴

1
𝑡)







𝑚∞











̃

𝐸

𝑖𝑜
(0)











+ ∫

𝑡

0









exp (𝐴

1
(𝑡 − 𝜏))







𝑚∞









𝐵

2

















ℎ

𝑖









𝑑𝜏

≤ 𝛽











̃

𝐸

𝑖𝑜
(0)











exp (−𝜆

1
𝑡)

+

𝑀

1
𝛽

𝜆

1

(1 − exp (−𝜆

1
𝑡)) ≤

𝑀

1
𝛽

𝜆

1

= 𝑀

2
.

(22)

From Theorem 5, it can be concluded that the upper
bound of the estimated error monotonously decreases with
absolute value of dominant pole 𝜆

1
of LESO, that is, the

bandwidth. This viewpoint is similar with the conclusion
derived in [21, 22].

With respect to 𝑖th subsystem of LTV system, control law
can be formulated as

̃

𝑈

𝑖
(𝑡) = −𝑧

𝑖,3
+ V
𝑖
(𝑡, 𝑍

𝑖
) , 𝑖 ∈ 𝑛, (23)

where the term V
𝑖
(𝑡, 𝑍

𝑖
) is responsible for rendering (14) with

satisfactory control quality. We have the following.

Theorem 6. Suppose that the estimated errors of LESO satisfy
lim
𝑡→∞

‖

̃

𝐸

𝑖𝑜
‖

2
= 0, with the control structure as (23); virtual

control variable can be designed as V
𝑖
(𝑡, 𝑍

𝑖
) = −𝑘

1
𝑧

𝑖,1
− 𝑘

2
𝑧

𝑖,2
,

where 𝑘

1
, 𝑘

2
are gain parameters to be chosen to make 𝑠

2

+

𝑘

2
𝑠+𝑘

1
be Hurwitz.Thus, the LTV system composed by virtual

control variable satisfies the following.

(1) The controller of the LTV system stated above satisfies

ũ =

{

{

{

{

{

𝐵

−1

(𝑡) [

̃

𝑈

1
,

̃

𝑈

2
, . . . ,

̃

𝑈

𝑛
]

𝑇

𝑛 = 𝑚

𝐵

†

(𝑡) [

̃

𝑈

1
,

̃

𝑈

2
, . . . ,

̃

𝑈

𝑛
]

𝑇

𝑛 ̸= 𝑚,

(24)

and furthermore, the LTV subsystems are decoupled
with each other.

(2) lim
𝑡→∞

‖e‖

2
= 0.

Proof. With virtual control variable designed as V
𝑖
(𝑡, 𝑍

𝑖
) =

−𝑘

1
𝑧

𝑖,1
− 𝑘

2
𝑧

𝑖,2
, substituting (23) into (14), the 𝑖th subsystem

can be written as

̇𝑒

𝑖,𝐼
= 𝑒

𝑖,𝑃
,

̇𝑒

𝑖,𝑃
= 𝑒

𝑖,𝑑
− 𝑧

𝑖,3
− 𝑘

1
𝑧

𝑖,1
− 𝑘

2
𝑧

𝑖,2
, 𝑖 ∈ 𝑛.

𝑦

𝑖
= 𝑒

𝑖,𝐼
.

(25)
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Note that lim
𝑡→∞

‖

̃

𝐸

𝑖𝑜
‖

2
= 0; it can be directly concluded

that

lim
𝑡→∞

𝑒

𝑖,𝐼
= 𝑧

𝑖,1
, lim

𝑡→∞

𝑒

𝑖,𝑝
= 𝑧

𝑖,2
, lim

𝑡→∞

𝑒

𝑖,𝑑
= 𝑧

𝑖,3
.

(26)

Substituting (26) into (25), one has

̇𝑒

𝑖,𝐼
= 𝑒

𝑖,𝑃
,

̇𝑒

𝑖,𝑃
= −𝑘

1
𝑒

𝑖,𝐼
− 𝑘

2
𝑒

𝑖,𝑃
= V
𝑖
(𝑡, 𝑍

𝑖
) ,

𝑦

𝑖
= 𝑒

𝑖,𝐼
,

𝑖 ∈ 𝑛.

(27)

It is obvious that the relationship between the output
𝑦

𝑖
and virtual control variable V

𝑖
(𝑡, 𝑍

𝑖
) of the 𝑖th subsystem

is single-input and single-output. That is to say, the LTV
subsystems are decoupled with each other.

Here, without loss of generality, the gain parameters 𝑘

1
,

𝑘

2
satisfy the following condition: 𝑠

2

+ 𝑘

2
𝑠 + 𝑘

1
= (𝑠 + 𝑤

𝑐
)

2,
𝑤

𝑐
> 0. For the given 𝑘

1
, 𝑘

2
, the overall controller of LTV

system can be calculated as

ũ =

{

{

{

{

{

𝐵

−1

(𝑡) [

̃

𝑈

1
,

̃

𝑈

2
, . . . ,

̃

𝑈

𝑛
]

𝑇

𝑛 = 𝑚

𝐵

†

(𝑡) [

̃

𝑈

1
,

̃

𝑈

2
, . . . ,

̃

𝑈

𝑛
]

𝑇

𝑛 ̸= 𝑚,

(28)

where 𝐵

†

(𝑡) denotes the generalized inverse of 𝐵(𝑡).
Next, we mainly prove the conclusion (2).
Let the tracking error of 𝑖th subsystem be 𝐸



𝑖
=

[𝑒

𝑖,𝐼
𝑒

𝑖,𝑃
]

𝑇; then the tracking error dynamics of 𝑖th subsystem
can be written as

̇

𝐸



𝑖
= 𝐴

3
𝐸



𝑖
+ 𝐴

4

̃

𝐸

𝑖𝑜
, 𝑖 ∈ 𝑛, (29)

where 𝐴

3
= [

0 1

−𝑘1 −𝑘2
], 𝐴

4
= [

0 0 0

−𝑘1 −𝑘2 −1
].

Since lim
𝑡→∞

‖

̃

𝐸

𝑖𝑜
‖

2
= 0, then for any 𝜙 > 0 there is a

finite time 𝑇

1
> 0 such that ‖𝐴

4

̃

𝐸

𝑖𝑜
‖ ≤ 𝜙 for all 𝑡 > 𝑇

1
> 0.

Then, the response of (29) can be written as

𝐸



𝑖
(𝑡) = exp (𝐴

3
𝑡) 𝐸



𝑖
(0) + ∫

𝑡

0

exp (𝐴

3
(𝑡 − 𝜏)) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏,

𝑡 > 0.

(30)

When 𝑡 > 𝑇

1
, we have











𝐸



𝑖
(𝑡)











≤











exp (𝐴

3
𝑡) 𝐸



𝑖
(0)











+









exp (𝐴

3
𝑡)



























∫

𝑇1

0

exp (−𝐴

3
𝜏) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏



















+ ∫

𝑡

𝑇1









exp (𝐴

3
(𝑡 − 𝜏))









𝜙 𝑑𝜏.

(31)

Suppose that there exist two different real eigenvalues for
𝐴

3
; it follows that −𝜆



1
< −𝜆



2
< 0, 𝜆



𝑖
> 0 (𝑖 = 1, 2); thus there

exists nonsingular matrix 𝑇, and one has

𝐴

3
= 𝑇 diag {−𝜆



1
, −𝜆



2
} 𝑇

−1

. (32)

Similar to Theorem 5, ‖exp(𝐴

3
𝑡)‖

𝑚∞

≤ 𝛽

1
exp(−𝜆



1
𝑡),

where 𝛽

1
> 0.

Hence, we have










𝐸



𝑖
(𝑡)











≤











exp (𝐴

3
𝑡) 𝐸



𝑖
(0)











+









exp (𝐴

3
𝑡)



























∫

𝑇1

0

exp (−𝐴

3
𝜏) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏



















+ 𝜙 ‖𝑇‖











𝑇

−1










𝛽

1
∫

𝑡

𝑇1

exp (−𝜆



1
(𝑡 − 𝜏)) 𝑑𝜏

=











exp (𝐴

3
𝑡) 𝐸



𝑖
(0)











+









exp (𝐴

3
𝑡)



























∫

𝑇1

0

exp (−𝐴

3
𝜏) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏



















+

𝜙𝛽

1
exp (−𝜆



1
(𝑡 − 𝑇

1
))

(−𝜆



1
)

+

𝜙𝛽

1

(−𝜆



1
)

.

(33)

It can be seen that

lim
𝑡→∞











exp (𝐴

3
𝑡) 𝐸



𝑖
(0)











= 0,

lim
𝑡→∞









exp (𝐴

3
𝑡)



























∫

𝑇1

0

exp (−𝐴

3
𝜏) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏



















= 0,

lim
𝑡→∞

𝜙𝛽

1
exp (−𝜆



1
(𝑡 − 𝑇

1
))

(−𝜆



1
)

= 0.

(34)

Therefore, there exists 𝑇

2
> 𝑇

1
> 0 such that











exp (𝐴

3
𝑡) 𝐸



𝑖
(0)











≤ 𝜙, ∀𝑡 > 𝑇

2
> 0,









exp (𝐴

3
𝑡)



























∫

𝑇1

0

exp (−𝐴

3
𝜏) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏



















≤ 𝜙,

∀𝑡 > 𝑇

2
> 0,

𝜙𝛽

1
exp (−𝜆



1
(𝑡 − 𝑇

1
))

(−𝜆



1
)

≤ 𝜙, ∀𝑡 > 𝑇

2
> 0.

(35)

Let 𝑐



= 𝛽

1
/(−𝜆



1
); then we have ‖𝐸



𝑖
(𝑡)‖ ≤ (𝑐



+3)𝜙, ∀𝑡 >

𝑇

2
> 0.
Since 𝜙 can be arbitrarily small, it can be concluded that

lim
𝑡→∞

‖𝐸



𝑖
(𝑡)‖ = 0, 𝑖 ∈ 𝑛.

Since the LTV subsystems are decoupled with each
other, the tracking errors of closed-loop system satisfy the
following:

lim
𝑡→∞

‖e‖

2
= 0. (36)
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4. Stability Analysis of Closed-Loop System

It is worth pointing out that conclusion (2) of Theorem 6
holds only if lim

𝑡→∞
‖

̃

𝐸

𝑖𝑜
‖

2
= 0. Actually, according to The-

orem 5, that is, ‖

̃

𝐸

𝑖𝑜
‖ ≤ 𝑀

2
, the tracking error of 𝑖th

subsystem and the estimated error of LESO can be written
in the following cascade structure:

̇

𝐸



𝑖
= 𝐴

3
𝐸



𝑖
+ 𝐴

4

̃

𝐸

𝑖𝑜
,

̇

̃

𝐸

𝑖𝑜
= 𝐴

1

̃

𝐸

𝑖𝑜
+ 𝐵

2
ℎ

𝑖
(x, d) ,

𝑖 ∈ 𝑛.

(37)

Theorem7. For the tracking error dynamics described by (37),
there exist gain parameters 𝑘

1
> 0, 𝑘

2
> 0, and positive con-

stant 𝑀

3
> 0 such that ‖𝐴

4
‖

2
≤ 𝑀

3
; then

lim
𝑡→∞











𝐸



𝑖









2

≤

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
𝜆



1

, 𝑖 ∈ 𝑛, (38)

where 𝑀

1
, 𝑀

3
, 𝛽, and 𝛽

1
are constants related to the system

dynamics and controller parameters and −𝜆

1
, −𝜆



1
(𝜆

1
> 0,

𝜆



1
> 0) are dominant poles of LESOand controller, respectively.

Proof. From Theorem 6, the LTV subsystems are decoupled
with each other. For simplicity, here, it is necessary to
prove the ultimate tracking error bound of 𝑖th subsystem.
Conclusions obtained can be readily applied to the overall
subsystems.

The solution of (37) can be written as

𝐸



𝑖
(𝑡) = exp (𝐴

3
𝑡) 𝐸



𝑖
(0) + ∫

𝑡

0

exp (𝐴

3
(𝑡 − 𝜏)) 𝐴

4

̃

𝐸

𝑖𝑜
(𝜏) 𝑑𝜏,

𝑡 > 0.

(39)

Similar to Theorem 6, we have ‖ exp(𝐴

3
𝑡)‖

𝑚∞

≤ 𝛽

1

exp(−𝜆



1
𝑡), where 𝛽

1
> 0. FromTheorem 5, it follows that











̃

𝐸

𝑖𝑜
(𝜏)











≤ 𝛽











̃

𝐸

𝑖𝑜
(0)











exp (−𝜆

1
𝜏)

+

𝑀

1
𝛽

𝜆

1

(1 − exp (−𝜆

1
𝜏)) .

(40)

Substituting the above inequality into (39), we can get










𝐸



𝑖
(𝑡)











≤ 𝛽

1











𝐸



𝑖
(0)











exp (−𝜆



1
𝑡)

+ 𝑀

3
𝛽𝛽

1











̃

𝐸

𝑖𝑜
(0)











∫

𝑡

0

exp (−𝜆



1
(𝑡 − 𝜏)) exp (−𝜆



1
𝜏) 𝑑𝜏

+

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1

∫

𝑡

0

exp (−𝜆



1
(𝑡 − 𝜏)) (1 − exp (−𝜆

1
𝜏)) 𝑑𝜏.

(41)

It is usually desirable in observer design that 𝜆

1
> 𝜆



1
> 0;

that is, the observer dynamics are designed to be faster than
the controller tracking error dynamics in order to recover

the system performance by the singular perturbation theory.
Thus, inequality (41) can be further expressed as











𝐸



𝑖
(𝑡)











≤ 𝛽

1











𝐸



𝑖
(0)











exp (−𝜆



1
𝑡)

+

𝑀

3
𝛽𝛽

1











̃

𝐸

𝑖𝑜
(0)











𝜆



1
− 𝜆

1

(exp (−𝜆

1
𝑡) − exp (−𝜆



1
𝑡))

+

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
𝜆



1

(1 − exp (−𝜆



1
𝑡))

−

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
(𝜆



1
− 𝜆

1
)

(exp (−𝜆

1
𝑡) − exp (−𝜆



1
𝑡))

≤ 𝛽

1











𝐸



𝑖
(0)











exp (−𝜆



1
𝑡) +

𝑀

3
𝛽𝛽

1











̃

𝐸

𝑖𝑜
(0)











𝜆

1
−𝜆



1

exp (−𝜆



1
𝑡)

+

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
𝜆



1

(1 − exp (−𝜆



1
𝑡))

−

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
(𝜆

1
−𝜆



1
)

exp (−𝜆



1
𝑡) .

(42)

Let 𝐿 = 𝛽

1
‖𝐸



𝑖
(0)‖ + 𝑀

3
𝛽𝛽

1
‖

̃

𝐸

𝑖𝑜
(0)‖/(𝜆

1
−𝜆



1
) − 𝑀

1
𝑀

3
𝛽𝛽

1
/

𝜆

1
𝜆



1
− 𝑀

1
𝑀

3
𝛽𝛽

1
/𝜆

1
(𝜆

1
−𝜆



1
) and the above inequality can

be rearranged as











𝐸



𝑖
(𝑡)











≤ 𝐿 exp (−𝜆



1
𝑡) +

𝑀

1
𝑀

3
𝛽𝛽

1

𝜆

1
𝜆



1

. (43)

It can be seen that lim
𝑡→∞

‖𝐸



𝑖
‖

2
≤ 𝑀

1
𝑀

3
𝛽𝛽

1
/𝜆

1
𝜆



1
, 𝑖 ∈ 𝑛.

From Theorem 7, the following conclusion can also be
obtained: suppose that there exist positive constants 𝑀

1
and

𝑀

3
such that ‖𝐴

4
‖

2
≤ 𝑀

3
, |ℎ

𝑖
(x, d)| ≤ 𝑀

1
; then there exist

LESO parameters and controller gain parameters 𝑙

01
> 0,

𝑙

02
> 0, 𝑙

03
> 0, 𝑘

1
> 0, 𝑘

2
> 0 such that the tracking errors of

closed-loop system are bounded; that is, with respect to any
bounded input, the output of closed-loop system is bounded;
in other words, the closed-loop system is BIBO stable.

5. Simulation Results and Discussion

To demonstrate the effectiveness of the proposed approach,
a numerical example is considered, which is described by
Changsheng et al. [13]

̇

𝜉 = −

sin (4𝜋𝜉)

4𝜋𝜉

2
+ 1

+ (2 + cos (7𝜉)) 𝑢,

𝑦 = 𝜉, 𝜉 (0) = 0.5,

(44)

where 𝑢 represents the input and 𝜉 represents the output.
In fact, the affine nonlinear system described by (44) can
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represent a class of models existing widely in real practice,
such as motor motion system.

According to the design procedure of the TLC method,
the nominal input can be obtained:

𝑢 =

1

2 + cos (7𝜉)

[

[

̇

𝜉 +

sin (4𝜋𝜉)

4𝜋𝜉

2

+ 1

]

]

. (45)

To maintain causality, the derivative of 𝜉 in (45) can be
calculated through a pseudodifferentiator which takes the
following form of transfer function:

𝐺 (𝑠) =

5𝑠

𝑠 + 5

. (46)

According to the design framework of TLC [1–3], a PI
regulator can be designed by defining an augmented tracking
error to improve the performance of the closed-loop system.
The augmented tracking error is defined as follows:

e = [

𝑒

𝐼

𝑒

𝑃

] =

[

[

∫ (𝜉 − 𝜉) 𝑑𝑡

𝜉 − 𝜉

]

]

. (47)

Correspondingly, the original system (44) can be rewrit-
ten as

ẋ = 𝑓 (x) + 𝑔

1
(x) 𝑢,

𝑦 = 𝑥

2
,

(48)

where x = [

𝑥1

𝑥2
] = [

∫ 𝜉𝑑𝑡

𝜉

] , 𝑓 = [

𝑥

2

− sin(4𝜋𝑥2)/(4𝜋𝑥22+1)
] , 𝑔

1
=

[

0

2+cos(7𝑥2)
].

By linearizing (48) along the nominal trajectory (𝑥, 𝑢),
the time-varying matrices for the augmented error dynamics
can be obtained:

𝐴 (𝑡) = [

0 1

0 𝑎

22

] , 𝐵 (𝑡) = [

0

𝑏

2

] , (49)

where 𝑎

22
= −4𝜋 cos(4𝜋𝑥

2
)/(4𝜋𝑥

2

2
+ 1) + 8𝜋𝑥

2
sin(4𝜋𝑥

2
)/

(4𝜋𝑥

2

2
+ 1)

2

− 7 sin(7𝑥

2
)𝑢, 𝑏

2
= 2 + cos(7𝑥

2
).

The tracking and disturbance rejection performance of
TLC combined with LESO are tested under the following dif-
ferent scenarios.

Case 1. There exist no unmodeled dynamics and distur-
bances.

Case 2. The unmodeled dynamics exist in the system de-
scribed as

𝑑 = 1.5 sin (2𝜉 + 1) . (50)

Case 3. Both unmodeled dynamics and external disturbances
exist in the system described as

𝑑 = 1.5 sin (2𝜉 + 1) + 2 sin (𝑡 + 1) . (51)

Thus, the system (48) can be rewritten as

ẋ = 𝑓 (x) + 𝑔

1
(x) 𝑢 + 𝑔

2
(x) 𝑑,

𝑦 = 𝑥

2
,

(52)

where 𝑔

2
(x) = [0, 1]

𝑇.
Suppose that the tracking error eI of LTV system is mea-

surable, according to the method proposed; the controller of
LTV system can be synthesized as follows:

̃

𝑈 (𝑡) = −𝑧

3
+ V (𝑡, 𝑍) = −𝑧

3
− 𝑘

1
𝑧

1
− 𝑘

2
𝑧

2
, (53)

where 𝑍 = [𝑧

1
, 𝑧

2
, 𝑧

3
]

𝑇, which can be produced by the
following dynamics:

𝑧

0
= 𝑧

1
− 𝑒

𝐼
.

�̇�

1
= 𝑧

2
− 𝑙

01
𝑧

0

�̇�

2
= 𝑧

3
+

̃

𝑈 − 𝑙

02
𝑧

0

�̇�

3
= − 𝑙

03
𝑧

0
.

(54)

In this simulation, the tuning parameters are 𝑤

0
=

200 rad/s and 𝑤

𝑐
= 20 rad/s. Correspondingly, 𝑙

01
= 3𝑤

𝑜
,

𝑙

02
= 3𝑤

2

𝑜
, 𝑙

01
= 𝑤

3

𝑜
, 𝑘

1
= 𝑤

2

𝑐
, and 𝑘

2
= 2𝑤

𝑐
.

Above all, the overall controller of the closed-loop system
can be synthesized as follows:

𝑢 = 𝑢 + �̃� = 𝑢 + 𝐵(𝑡)

†
̃

𝑈 (𝑡) . (55)

In order to compare conveniently, here, the control law of
[13] is also given as follows:

𝑢 = 𝑢 + �̃� = 𝑢 + 𝐾 (𝑡) e − 𝑔

0
Vad, (56)

where 𝐾(𝑡) denotes gain matrix to be chosen by utilizing PD-
spectrum theorem of TLC, while Vad denotes the output of
the robust adaptive controller constructed on the basis of T-
S fuzzy system. The detailed design method can be found
in [13]. Here, the design parameters to be chosen in [13] are
outlined below, respectively, 𝑄(𝑡) = 12𝐼

2
, 𝜎 = 50, 𝛾 = 5,

𝜌 = 0.5, and 𝜆

0
= 0.

Firstly, we suppose that the reference command is the
same with [13], which can be described by

𝑦 = 0.3 sin(

𝑡

2

) + 0.5 cos (𝑡) . (57)

The tracking performance of original TLCmethod tested
under the aforementioned scenarios is shown in Figure 1.

From the simulation in Figure 1, it can be observed that
the output of closed-loop system can track the command
closely in the absence of unmodeled dynamics or external
disturbances. However, if there exist unmodeled dynamics
or both unmodeled dynamics and external disturbances as
stated in Figure 1, the tracking performance of TLC degrades
remarkably. Thus, the original TLC method cannot meet the
increasing demands on accuracy and robustness when larger
disturbances are considered.
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Figure 1: Simulation results for original TLC method.

0 5 10 15 20 25 30 35 40
−1

−0.5
0

0.5
1

Time (s)

O
ut

pu
t o

f C
as

e 2

0 5 10 15 20 25 30 35 40
−4
−2

0
2
4

Time (s)

C
on

tro
l o

f C
as

e 2

Reference command
Output response

Control input

Figure 2: Simulation results for proposed method under Case 2.

The performance for the proposed method and control
scheme presented in [13] tested in the presence of the
aforementioned uncertainties are shown in Figures 2–5,
respectively. Meanwhile, in order to emphasize the advantage
of the proposed method, tracking errors of the closed-loop
system for the proposed method and the method in [13] are
also illustrated in Figure 6, respectively.

From the simulation in Figures 2–6, it can be observed
that the output of proposed method and the method in [13]
can both track the command closely under aforementioned
scenarios. Compared with Figures 4 and 5, Figures 2 and
3 clearly demonstrate that the proposed method has better
performance in control quality such as tracking precision and
robustness, especially in the presence of larger disturbances.
Such performance can only be attributed to the ability of
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Figure 3: Simulation results for proposed method under Case 3.
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Figure 4: Simulation results for the method in [13] under Case 2.

0 5 10 15 20 25 30 35 40
−1

−0.5
0

0.5
1

Time (s)

O
ut

pu
t o

f C
as

e 3

0 5 10 15 20 25 30 35 40
−4
−2

0
2
4

Time (s)

C
on

tro
l o

f C
as

e 3

Reference output
Output response

Control input

Figure 5: Simulation results for the method in [13] under Case 3.
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Figure 6: Tracking errors for proposed method and the method in
[13].

LESO in obtaining an accurate estimation of the combined
effect of unmodeled dynamics and external disturbances in
real time. Moreover, the closed-loop tracking errors for the
proposed method under Cases 2 and 3 all converge to zero
quickly and ultimatelymaintain steadily in the neighborhood
of zero. However, for the method proposed in [13], the upper
bound of tracking error increases as more uncertainties are
incorporated into lumped disturbances. Apparently, highly
tracking accuracy for the method in [13] cannot be guaran-
teed in face of larger uncertainties.

To further demonstrate the relationship between the
tracking error and the bandwidth, Figure 7 shows the sim-
ulation results using the reduced bandwidth 𝑤

0
= 100 rad/s

and 𝑤

𝑐
= 10 rad/s. In addition, the curve for estimated error

with different bandwidth of LESO is also given in Figure 8.
The simulation results in Figure 7 obviously verify the validity
of Theorems 6 and 7; that is, the ultimate upper bound of
closed-loop tracking error monotonously decreases with the
product of LESO’s and controller’s bandwidth. This conclu-
sion provides a viable guideline to select the parameters of
controller. Compared with the method in [13], the ultimate
upper bound of tracking error can achieve the magnitude
of 10

−4. Moreover, Figure 8 shows that the upper bound
of the estimated error for lumped disturbance decreases as
bandwidth increases, which is coincided with Theorem 5.

Next, in order to illustrate the control strategy can
also work well when the desired trajectory proceeds with
abrupt disturbance, we suppose a step disturbance with the
amplitude of 3 at 𝑡 = 15 s as the abrupt disturbance; in
this case, control strategy proposed in [11] is considered to
make comparison. The parameters of proposed method are
kept unchanged, as mentioned previously. Figure 9 shows the
tracking response for proposed method and the method in
[11]. It is obvious that, compared with [11], the output of the
proposed method tracks the reference command effectively
in spite of abrupt disturbance at 𝑡 = 15 s. The tracking error
can converge to a neighborhood of zero rapidly. However,
for the method proposed in [11], the tracking error changes
obviously when abrupt disturbance occurs.Thus, with LESO,
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the capability of the proposed method in disturbance rejec-
tion is superior to that of the method proposed in [11].

Above all, compared with [9–14], only two parameters of
the proposed method need to be tuned while maintaining
the excellent performance such as disturbance rejection and
tracking characteristics, which makes it extremely simple
and practical. Both the stability analysis and the simulation
study demonstrate the effectiveness and the robustness of the
proposed method.

6. Concluding Remarks

The main result in this paper is the validation of proposed
method through theoretical analysis and simulation. The
BIBO stability and ultimate tracking error bound are rigor-
ously analyzed based on the proposed robust TLC’s specific
structure. It is shown that the ultimate upper bound of closed-
loop tracking errormonotonously decreases with the product
of LESO’s and controller’s bandwidth. Thus, the analysis
provides a guideline to select the two tuning parameters.
The theoretical study is further supported by the simulation
results. Both stability analysis and simulation results validate
the effectiveness of the proposed method.
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