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The viability problem is an important field of study in control theory; the corresponding research has profound significance in both
theory and practice. In this paper, we consider the viability for both an affine nonlinear hybrid system and a hybrid differential
inclusion on a region with subdifferentiable boundary. Based on the nonsmooth analysis theory, we obtain a method to verify the
viability condition at a point, when the boundary function of the region is subdifferentiable and its subdifferential is convex hull of
many finite points.

1. Introduction

Hybrid systems have been used to describe complex dynamic
systems that involve both continuous and discrete systems.
Such hybrid systems can be extensively used in robotics,
automated highway systems, air traffic management systems,
manufacturing, communication networks, and computer
synchronization, and so forth. There has been significant
research activity in the area of hybrid systems in the past
decade involving researchers from several areas [1–8]. In
recent years, the viability of systems is an important research
topic; it has been widely used in both reach-ability and
designing security domain.

In the study of hybrid systems, the concept of viability is
more prevalent.Thenotion of viability was first introduced by
Aubin [9]. Viability property provides a very nice theoretical
framework for a hybrid controller design problem. Many
researchers have considered the problem of viability for the
analysis and control of hybrid systems [10–14]. The nonsam-
pling viability problem was examined in the pioneering work
of Aubin and coworkers [10] in which impulse differential
inclusions are used to describe hybrid behavior.

As an important part of hybrid system, studies in the
viability theory include two topics. One is to verify viability

condition for a given set. Another one is to design a viable
solution within a viable set. Viability conditions for a linear
control system have been studied widely in recent years; see
[15, 16]. A necessary and sufficient viability condition for a
differential inclusion was given in [8, 17], but it is a hard
work to check that condition in most applications directly.
In the literature [10], the authors give the necessary and
sufficient condition of the viability, but it is still very difficult
to judge quantitatively. Gao in [18] discusses the viability
discrimination for an affine nonlinear control system on a
smooth region; it gives some results on continuous system.
There is certain limitation in the application of the literature
[18]. The limitation is that the region must be smooth;
in fact most of the region’s boundaries are nonsmooth.
Ahmed considers the viability criteria for a hybrid differential
inclusions on smooth region in [19]. Gao in [20] gives
viability criteria for differential inclusions on a nonsmooth
region.

In this paper, we mainly consider the viability condition
of a hybrid differential inclusion on a region with sub-
differentiable boundary. Based on nonsmooth analysis the-
ory, a method for checking the validity of the viability is
given for such case as mapping of the set valued at the
right hand of the differential inclusion is a polyhedron, the
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boundary function of the region is sub-differentiable, and its
sub-differential is a convex hull with finite point set.

The paper is organized as follows. Section 2 states the
main assumption, definitions and describes the hybrid
dynamics. Section 3 overcomes these limitations in the litera-
ture [18]; we deal with the viability criteria for a hybrid system
on a region with sub-differentiable boundary. Section 4 con-
siders the viability of a hybrid differential inclusion. Section 5
shows an example.

2. Preliminaries

Consider the general form of nonlinear control system

�̇� (𝑡) = 𝑓 (𝑥, 𝑢) , 𝑢 ∈ 𝑈, (1)

where 𝑥 ∈ R𝑛 denotes the state variable, 𝑢 ∈ 𝑈 denotes the
control variable, 𝑈 ⊂ R𝑚, and 𝑓(𝑥, 𝑢) is a Lipschitz function
which is from R𝑚+𝑛 to R𝑛.

Definition 1 (see [8]). Let 𝑊 ⊂ R𝑛 be a subset of R𝑛, for any
initial states 𝑥

0
∈ 𝑊, if there exists one solution 𝑥(𝑡) of the

system (1), such that 𝑥(𝑡) ∈ 𝑊 for all 𝑡 ≥ 0; then we call
the subset 𝑊 viable under the system (1); the solution 𝑥(𝑡) is
called viable solution.

Definition 2 (see [8]). Let 𝐾 ⊆ R𝑛 be a nonempty subset of
R𝑛; the tangent cone of the set 𝐾 at 𝑥 ∈ 𝐾 is given by the
formula

𝑇

𝐾
(𝑥) = {𝜐 ∈ R

𝑛

| lim inf
𝑡→0
+

𝑑

𝐾
(𝑥 + 𝑡𝜐) = 0} , (2)

where 𝑑
𝐾
(𝑦) is distance from the point 𝑦 ∈ R𝑛 to the set 𝐾.

Definition 3. Let 𝐹(⋅) : 𝑋 → 2

𝑋 be a set valued map, it is
said to be upper semicontinuous if for all 𝑥0 ∈ 𝑋 and each
𝜖 > 0, there exists 𝛿 > 0, such that ‖𝑥 − 𝑥

0

‖ < 𝛿 implies
𝐹(𝑥) ⊆ 𝐹(𝑥

0

) + 𝜖𝐵 for all 𝑥 ∈ 𝑋; that is, 𝐹(𝑥) ⊆ 𝐵(𝐹(𝑥

0

), 𝜖).

Definition 4. Let 𝐹(⋅) : 𝑋 → 2

𝑋 be a set valued map; 𝐹 is
said to be Marchaud if the following conditions hold:

(i) 𝐹 is upper semicontinuous;
(ii) 𝐹(𝑥) is a nonempty convex compact set for all 𝑥 ∈ 𝑋;
(iii) 𝐹 is linear growth; that is, there exists 𝛼 > 0, such that

sup {‖𝜐‖ | 𝜐 ∈ 𝐹 (𝑥)} ≤ 𝛼 (‖𝑥‖ + 1) (3)

for all 𝑥 ∈ 𝑋.

Definition 5. Let 𝐹(⋅) : 𝑋 → 2

𝑋 be a set valued map, if there
exists a constant 𝜆 > 0 such that

𝐹 (𝑥

1

) ⊆ 𝐹 (𝑥

2

) + 𝜆











𝑥

1

− 𝑥

2










𝐵 (0, 1) (4)

for all 𝑥1, 𝑥2 ∈ 𝑋, then 𝐹 is said to be Lipschitz, where 𝜆 > 0

is a Lipschitz constant.

Definition 6 (see [10], hybrid differential inclusion). A hybrid
differential inclusion is a collection 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽), consist-
ing of a finite dimensional vector space 𝑋, a set valued map

𝐹 : 𝑋 → 2

𝑋, regarded as a differential inclusion �̇�(𝑡) ∈ 𝐹(𝑥),
a set valued map 𝑅 : 𝑋 → 2

𝑋, regarded as a reset map, and
a set 𝐽 ⊆ 𝑋, regarded as a forced transition set.

Definition 7 (see [10], run of a hybrid differential inclusion).
A run of a hybrid differential inclusion 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽) is a
pair (𝜏, 𝑥), consisting of a hybrid time trajectory 𝜏 and a map
𝑥 : 𝜏 → 𝑋, that satisfies:

(1) discrete evolution: for all 𝑖, 𝑥(𝜏
𝑖+1

) ∈ 𝑅(𝑥(𝜏



𝑖
));

(2) continuous evolution: if 𝜏
𝑖
< 𝜏



𝑖
, 𝑥(⋅) is a solution to

the differential inclusion �̇�(𝑡) ∈ 𝐹(𝑥) over the interval
[𝜏

𝑖
, 𝜏



𝑖
] starting at 𝑥(𝜏

𝑖
), with 𝑥(𝑡) ∉ 𝐽 for all 𝑡 ∈ [𝜏

𝑖
, 𝜏



𝑖
).

We use R
𝐻
(𝑥

0
) to denote the set of all runs of a hybrid

differential inclusion 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽) starting at a state
𝑥(𝜏

0
) = 𝑥

0
∈ 𝑋.

Definition 8 (see [10]). Let 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽) be a hybrid
differential inclusion. A set 𝐾 ⊆ 𝑋 is called viable under
a hybrid differential inclusion 𝐻, if for all 𝑥

0
∈ 𝐾, there

exists an infinite run (𝜏, 𝑥) ∈ R∞
𝐻
(𝑥

0
) viable in𝐾.𝐾 is called

invariant under the hybrid differential inclusion 𝐻, if for all
𝑥

0
∈ 𝐾, all runs (𝜏, 𝑥) ∈ R

𝐻
(𝑥

0
) are viable in𝐾.

Proposition 9 (see [8]). The closed set 𝑊 ⊂ R𝑛 is said to be
viable under the system (1), if and only if for any 𝑥 ∈ 𝑊, the
following formula is satisfied:

(⋃

𝑢∈𝑈

𝑓 (𝑥, 𝑢))⋂𝑇

𝐾
(𝑥) ̸= 0. (5)

For any interior point 𝑥 in the set𝑊, the tangent cone 𝑇
𝐾
(𝑥) =

R𝑛, so the above formula is satisfied. Hence, if we want to judge
the above formula, we should only consider the boundary point.

3. The Viability of a Hybrid System

To discuss the problem in R𝑛, we assume 𝑋 = R𝑛 in the
following paper.

Consider the following hybrid system 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽),
and

�̇� ∈ 𝐹 (𝑥) = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, 𝑥 ∈ 𝑋, 𝑢 ∈ 𝑈, (6)

where 𝑓 : R𝑛 → R𝑛 and 𝑔 : R𝑛 → R𝑚+𝑛 are both Lipschitz
functions. 𝑈 ⊂ R𝑚 is a convex set; it denotes

𝑈 = {𝑢 ∈ R
𝑚

| ℎ

𝑖
(𝑢) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝} , (7)

where ℎ
𝑖
(𝑢) (𝑖 = 1, 2, . . . , 𝑝) are convex functions on the R𝑛.

𝑅 is a reset map, and 𝐽 is a forced transition set.
Consider the following region𝐾:

𝐾 = {𝑥 ∈ R
𝑛

| 𝜑

𝑗
(𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑞} , (8)

and 𝜑

𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑞) are sub-differentiable functions on

R𝑛. Furthermore, we assume that sub-differential 𝜕𝜑
𝑗
(𝑥) is a

convex hull of many finite points.
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For hybrid time set 𝜏 = {𝐼

𝑖
}

𝑁

𝑖=0
, where 𝜏 is interval

sequence. For 𝑖 < 𝑁, it has 𝐼
𝑖
= [𝜏

𝑖
, 𝜏



𝑖
], for all 𝑖, 𝜏

𝑖
≤ 𝜏



𝑖
= 𝜏

𝑖+1
.

𝑥(𝜏



𝑖
) are the points at which discrete transitions take place,

𝑥(𝜏

𝑖+1
) are the points after discrete transitions take place; that

is,

𝑥 (𝜏

𝑖+1
) = 𝑅 (𝑥 (𝜏



𝑖
)) , 𝑖 < 𝑁. (9)

On the other hand, we assume that the discrete transition
does not occur infinite times within the limited time. The set
𝐽 is a forced transition set; that is, the discrete transitionmust
happen for every point in 𝐽. Without generality, we assume
that the set 𝐾 contains the forced transition set 𝐽 and the set
𝐽 contains countable transition points. For discussing easily,
we still denote by 𝑥(𝜏



𝑖
) (𝑖 = 0, 1, 2, . . . , 𝑁 − 1). In addition,

in order to describe the uncertainy in the hybrid differential
system and to determine whether discrete transition will
happen for every point 𝑥 in the set

𝑅

−1

(𝑋) = {𝑥 ∈ 𝑋 | 𝑅 (𝑥) ̸= 0} , (10)

we assume that

𝑅

−1

(𝑋) ⊂ 𝐾, 𝐽 ⊂ 𝑅

−1

(𝑋) ; (11)

it can prevent the system from death cycle. Obviously, the
points which are in 𝑅

−1

(𝑋) \ 𝐽may not be jump.
Let

𝜑 (𝑥) = max
1≤𝑗≤𝑞

𝜑

𝑗
(𝑥) . (12)

Since the point 𝑥 ∈ R𝑛 satisfies

max
1≤𝑗≤𝑞

𝜑

𝑗
(𝑥) ≤ 0, (13)

which is equivalent to

𝜑

𝑗
(𝑥) ≤ 0, (𝑗 = 1, 2, . . . , 𝑞) , (14)

so the set 𝐾 can be denoted by the following formula:

𝐾 = {𝑥 ∈ R
𝑛

| 𝜑 (𝑥) ≤ 0} . (15)

Because 𝜑
𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) are sub-differentiable, so 𝜑(𝑥)

is also sub-differentiable; since 𝜕𝜑

𝑗
(𝑥) is a convex hull of

many finite points, the sub-differential of𝜑(𝑥) is also a convex
hull of many finite points, marking

𝜕𝜑 (𝑥) = co {𝜐1, . . . , 𝜐𝑟} , 𝜐

𝑖

∈ R
𝑛

, 𝑖 = 1, 2, . . . , 𝑟. (16)

Define matrix 𝐵 = (𝜐

1

, . . . , 𝜐

𝑟

)

𝑇.
In nonsmooth optimization, two frequently used con-

straint qualifications:

constraint qualification 1 [8]: there exists 𝑦

0

∈ R𝑛,
such that 𝜑(𝑥; 𝑦0) < 0;
constraint qualification 2 [21]: cl 𝛾(𝑥) = Γ(𝑥), where

𝛾 (𝑥) = {𝑦 ∈ R
𝑛

| 𝜑



(𝑥; 𝑦) < 0} ,

Γ (𝑥) = {𝑦 ∈ R
𝑛

| 𝜑



(𝑥; 𝑦) ≤ 0} .

(17)

Lemma 10 (see [14, 21]). If the set 𝐾 satisfied constraint
qualification 1 or constraint qualification 2 at 𝑥 ∈ R𝑛, then
𝑇

𝐾
(𝑥) = Γ(𝑥).

According to [20], we get the following Proposition 11
immediately.

Proposition 11 (see [20]). Assume that constraint qualifica-
tion 1 or 2 is satisfied; then 𝑇

𝐾
(𝑥) = {𝑦 ∈ R𝑛 | 𝐵𝑦 ≤ 0},

where 𝐵 = (𝜐

1

, . . . , 𝜐

𝑟

)

𝑇, 𝜐𝑖 ∈ R𝑛 (𝑖 = 1, 2, . . . , 𝑟), 𝜕𝑔(𝑥) =

co{𝜐1, . . . , 𝜐𝑟}.

Lemma 12 (see [10]). Consider a hybrid system 𝐻 =

(𝑋, 𝐹, 𝑅, 𝐽) such that𝐹 isMarchaud,𝑅 is upper semicontinuous
with closed domain, and 𝐽 is a closed set. A closed set𝐾 ⊆ 𝑋 is
viable under𝐻 if and only if

(1) 𝐾 ∩ 𝐽 ⊆ 𝑅

−1

(𝐾);
(2) 𝐹(𝑥) ∩ 𝑇

𝐾
(𝑥) ̸= 0, ∀𝑥 ∈ 𝐾 \ 𝑅

−1

(𝐾).

Before we state Theorem 13, we construct the following
inequality system:

ℎ

𝑖
(𝑢) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝, 𝐵𝑓 (𝑥) + 𝐵𝑔 (𝑥) 𝑢 ≤ 0,

(18)

where 𝑢 ∈ R𝑚 is a variable.

According to [20] and Lemma 12, we get the following
theorem immediately.

Theorem 13. For the above hybrid system𝐻 = (𝑋, 𝐹, 𝑅, 𝐽), if

𝐾 = {𝑥 ∈ 𝑋 | 𝜑

𝑗
(𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}

= {𝑥 ∈ 𝑋 | 𝜑 (𝑥) ≤ 0}

(19)

satisfies constraint qualification 1 or 2, then the set 𝐾 is viable
under the hybrid system𝐻 if and only if

(1) discrete transition (or jump) must take place:
𝜑(𝑥(𝜏

𝑖+1
)) ≤ 0, 𝑖 = 0, 1, 2, . . . , 𝑁 − 1.

(2) continuous section: for each fixed point 𝑥 ∈ 𝐾\𝑅

−1

(𝐾)

inequality system (18) is solvable.

Proof. Under the above assumptions, it is sufficient to
show that Theorem 13(1) is equivalent to Lemma 12(1) and
Theorem 13(2) is equivalent to Lemma 12(2).

In Lemma 12(1), 𝐾 ∩ 𝐽 ⊆ 𝑅

−1

(𝐾) is equivalent to the
following statement: when discrete transition (or jump) must
happen (𝑥 ∈ 𝐾 ∩ 𝐽) for every 𝑥 ∈ 𝐾, then the point
after the transition (or jump) must be in the set 𝐾 (𝑅(𝑥) ∩

𝐾 ̸= 0). Based on the aforementioned assumptions, for the
jump point 𝑥(𝜏

0
), 𝑥(𝜏



1
), . . . , 𝑥(𝜏



𝑁−1
) contained in the set 𝐽,

we only need to show that the point will still be in 𝐾 after
the jump(𝑥(𝜏

𝑖+1
) = 𝑅(𝑥(𝜏



𝑖
)), (𝑖 = 0, 1, 2, . . . , 𝑁 − 1). That is,

𝑥(𝜏

𝑖+1
) ∈ 𝐾 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1). Since 𝐾 = {𝑥 ∈ 𝑋 |

𝜑(𝑥) ≤ 0}, 𝜑 (𝑥(𝜏

𝑖+1
)) ≤ 0 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1). Hence

Theorem 13(1) is equivalent to Lemma 12(1).
The Lemma 12(2) is sufficient to show that the changes

is possible (𝐹(𝑥) ∩ 𝑇

𝐾
(𝑥) ̸= 0) for continuous section in 𝐾,
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when discrete transition point (or jump point) (𝑅(𝑥)∩𝐾 = 0)

will be not in 𝐾 after the jump. The set 𝐾 satisfies constraint
qualification 1 or 2; then 𝑇

𝐾
(𝑥) = {𝑦 ∈ R𝑛 | 𝐵𝑦 ≤ 0}. We

set 𝑓(𝑥, 𝑢) = 𝑓(𝑥) + 𝑔(𝑥)𝑢 in Proposition 9; then the set𝐾 is
viable under the hybrid system𝐻 if and only if the following
formula is satisfied:

(⋃

𝑢∈𝑈

(𝑓 (𝑥) + 𝑔 (𝑥) 𝑢))⋂𝑇

𝐾
(𝑥) ̸= 0, (20)

where 𝑥 is a fixed point in 𝐾 \ 𝑅

−1

(𝐾). Consider the
expressions of the set 𝑈 and 𝑇

𝐾
(𝑥); the above expression is

equivalent to

{𝑓 (𝑥) + 𝑔 (𝑥) 𝑢 | ℎ

𝑖
(𝑢) ≤ 0,

𝑖 = 1, 2, . . . , 𝑝}⋂ {𝑦 ∈ R
𝑛

| 𝐵𝑦 ≤ 0} ̸= 0.

(21)

Obviously, the above equation is equivalent to following
solvable system:

ℎ

𝑖
(𝑢) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝, 𝐵𝑦 ≤ 0,

𝑦 = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢.

(22)

In (22), we set that 𝑦 = 𝑓(𝑥) + 𝑔(𝑥)𝑢 substitute into 𝐵𝑦 ≤

0; then we can obtain (18). Also, we can obtain (22) by
substituting 𝑦 = 𝑓(𝑥) + 𝑔(𝑥)𝑢 into (18). This shows that the
system (18) is equivalent to the system (22). This completes
the proof.

4. The Viability of a Hybrid
Differential Inclusion

Hybrid differential inclusion can describe a hybrid system in
a wide range of significance.

Consider the following hybrid differential system 𝐻 =

(𝑋, 𝐹, 𝑅, 𝐽), and

�̇� ∈ 𝐹 (𝑥) = co {𝑓
𝑖
(𝑥) | 𝑖 = 1, 2, . . . , 𝑝} , 𝑥 ∈ 𝑋, (23)

where 𝑓

𝑖
(𝑥) (𝑖 = 1, 2, . . . , 𝑝) are functions on 𝑋. 𝑅 is a reset

map, and 𝐽 is a forced transition set.
Consider the following region𝐾:

𝐾 = {𝑥 ∈ 𝑋 | 𝑔

𝑗
(𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚} , (24)

where 𝑔
𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) are sub-differentiable functions

on 𝑋. We further assume that the functions 𝑔

𝑗
(𝑥) are sub-

differentiable, and sub-differential 𝜕𝑔
𝑗
(𝑥) is a convex hull

with finite point set. Let

𝑔 (𝑥) = max
1≤𝑗≤𝑚

𝑔

𝑗
(𝑥) ; (25)

then the set 𝐾 can be rewritten as

𝐾 = {𝑥 ∈ 𝑋 | 𝑔 (𝑥) ≤ 0} . (26)

Since 𝑔

𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) are sub-differentiable, 𝑔(𝑥) is

sub-differentiable. Because 𝜕𝑔
𝑗
(𝑥) is a convex hull with finite

point set, sub-differential of 𝑔(𝑥) is also a convex hull with
finite point set, denoted by

𝜕𝑔 (𝑥) = co {𝜐1, . . . , 𝜐𝑞} , 𝜐

𝑖

∈ 𝑋 (𝑖 = 1, 2, . . . , 𝑞) .

(27)

Theorem 14. For the above hybrid differential inclusion 𝐻 =

(𝑋, 𝐹, 𝑅, 𝐽), if

𝐾 = {𝑥 ∈ 𝑋 | 𝑔

𝑗
(𝑥) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚}

= {𝑥 ∈ 𝑋 | 𝑔 (𝑥) ≤ 0}

(28)

satisfies constraint qualification 1 or 2, then the set 𝐾 is viable
under the hybrid differential inclusion𝐻 if and only if

(1) discrete transition (or jump) must take place:
𝑔(𝑥(𝜏

𝑖+1
)) ≤ 0, 𝑖 = 0, 1, 2, . . . , 𝑁 − 1;

(2) continuous section: Optimal value of the following
linear programming problem (P) is zero for each 𝑥 ∈

𝐾 \ 𝑅

−1

(𝐾). Consider

min 𝜔

s.t.
𝑝

∑

𝑖=1

𝜆

𝑖
𝐵𝑓

𝑖
(𝑥

𝑖
) + (𝜔, . . . , 𝜔)

𝑇

≤ 0,

𝑝

∑

𝑖=1

𝜆

𝑖
= 1,

𝜆

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑝,

𝜔 ≥ 0,

(P)

where 𝐵 = (𝜐

1

, . . . , 𝜐

𝑞

)

𝑇.

Proof. Under the above assumptions, it is sufficient to
show that Theorem 14(1) is equivalent to Lemma 12(1) and
Theorem 14(2) is equivalent to Lemma 12(2).

In Lemma 12(1), 𝐾 ∩ 𝐽 ⊆ 𝑅

−1

(𝐾) is equivalent to the
following statement: when discrete transition (or jump) must
happen (𝑥 ∈ 𝐾 ∩ 𝐽) for every 𝑥 ∈ 𝐾, then the point after
the transition (or jump) must be in the set 𝐾 (𝑅(𝑥) ∩ 𝐾 ̸= 0).
Based on the aforementioned assumptions, for the jumppoint
𝑥(𝜏



0
), 𝑥(𝜏



1
), . . . , 𝑥(𝜏



𝑁−1
) in the set 𝐽, we only need to show

that the point after the jump ((𝑥(𝜏

𝑖+1
) = 𝑅(𝑥(𝜏



𝑖
)), 𝑖 =

0, 1, 2, . . . , 𝑁 − 1)) will be still in 𝐾. That is, 𝑥(𝜏
𝑖+1

) ∈ 𝐾

(𝑖 = 0, 1, 2, . . . , 𝑁 − 1). Since 𝐾 = {𝑥 ∈ 𝑋 | 𝑔(𝑥) ≤ 0},
𝑔(𝑥(𝜏

𝑖+1
)) ≤ 0 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1). HenceTheorem 14(1) is

equivalent to Lemma 12(1).
In Lemma 12(2), we noticed that when discrete transition

point (or jump point) after the jump (𝑅(𝑥) ∩ 𝐾 = 0) will be
not in𝐾, then the changes are possible (𝐹(𝑥) ∩𝑇

𝐾
(𝑥) ̸= 0) for

continuous section in 𝐾. Since the set 𝐾 satisfies constraint
qualification 1 or 2,

𝑇

𝐾
(𝑥) = {𝑦 ∈ 𝑋 | 𝐵𝑦 ≤ 0} , 𝐵 = (𝜐

1

, . . . , 𝜐

𝑞

)

𝑇

,

𝜐

𝑖

∈ 𝑋 (𝑖 = 1, 2, . . . , 𝑞) , 𝜕𝑔 (𝑥) = co {𝜐1, . . . , 𝜐𝑞} .
(29)
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In addition,

𝐹 (𝑥) = co {𝑓
𝑖
(𝑥) | 𝑖 = 1, 2, . . . , 𝑝} ; (30)

then the condition

𝐹 (𝑥) ∩ 𝑇

𝐾
(𝑥) ̸= 0 (31)

and the following problem which has a solution

𝐵(

𝑝

∑

𝑖=1

𝜆

𝑖
𝑓

𝑖
(𝑥)) =

𝑝

∑

𝑖=1

𝜆

𝑖
𝐵𝑓

𝑖
(𝑥) ≤ 0,

𝑝

∑

𝑖=1

𝜆

𝑖
= 1, 𝜆

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑝,

(32)

are equivalent, and also are equivalent to the linear program-
ming problem (P) in which the optimal solution is zero. This
completes the proof.

Lemma 15 (see [10]). Let hybrid differential inclusion be𝐻 =

(𝑋, 𝐹, 𝑅, 𝐽) such that 𝐹 is Marchaud and Lipschitz, and 𝐽 is a
closed set. A closed set 𝐾 ⊆ 𝑋 is invariant under𝐻 if and only
if

(1) 𝑅(𝐾) ⊆ 𝐾;
(2) 𝐹(𝑥) ⊆ 𝑇

𝐾
(𝑥), for all 𝑥 ∈ 𝐾 \ 𝐽.

Theorem 16. 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽) is a hybrid differential inclusion
as above; if the set 𝐾 satisfies constraint qualification 1 or 2,
then the set 𝐾 = {𝑥 ∈ 𝑋 | 𝑔(𝑥) ≤ 0} is invariant under hybrid
differential inclusion𝐻 if and only if

(1) discrete transition (or jump) must take place:
𝑔(𝑥(𝜏

𝑖+1
)) ≤ 0, 𝑖 = 0, 1, 2, . . . , 𝑁 − 1;

uncertainty section: 𝑔(𝑅(𝑥)) ≤ 0, for all 𝑥 ∈ 𝐾 \ 𝐽;
(2) continuous section: 𝐵𝑓

𝑖
(𝑥) ≤ 0, 𝑖 = 1, 2, . . . , 𝑝, for all

𝑥 ∈ 𝐾 \ 𝐽.

Proof. Under the above assumptions, it is sufficient to
show that Theorem 16(1) is equivalent to Lemma 15(1) and
Theorem 16(2) is equivalent to Lemma 15(2).

In Lemma 15(1), to verify 𝑅(𝐾) ⊆ 𝐾, we just need to
show that the point after the transition (or jump) must be in
the set 𝐾 (𝑅(𝐾) ⊆ 𝐾), when discrete transition (or jump)
must happen (𝑥 ∈ 𝐽) for every 𝑥 ∈ 𝐾. By the previous
assumptions, the jump point contained in the set 𝐽 should
show that the point will be still in 𝐾 after the jump. That is,
there exists 𝑥(𝜏

𝑖+1
) ∈ 𝑅(𝑥(𝜏



𝑖
)) (𝑖 = 0, 1, 2, . . . , 𝑁 − 1), such

that 𝑥(𝜏
𝑖+1

) ∈ 𝐾 (𝑖 = 0, 1, 2, . . . , 𝑁 − 1); that is, 𝑔(𝑥(𝜏
𝑖+1

)) ≤ 0

(𝑖 = 0, 1, 2, . . . , 𝑁 − 1). In addition, for each 𝑥 in 𝐾 \ 𝐽, the
point after the transition (or jump) will still be in 𝐾; that is,
𝑔(𝑅(𝑥)) ≤ 0, 𝑥 ∈ 𝐾 \ 𝐽. Hence,Theorem 16(1) is equivalent to
Lemma 15(1).

In Lemma 15(2), for 𝑥 ∈ 𝐾\𝐽, 𝐹(𝑥) ⊆ 𝑇

𝐾
(𝑥) is equivalent

to the following statement: if the continuous evolution is
possible (𝑥 ∉ 𝐽), then all solutions of �̇� ∈ 𝐹(𝑥) are all in
𝐾 (𝐹(𝑥) ⊆ 𝑇

𝐾
(𝑥)). The set𝐾 satisfies constraint qualification

1 or 2; then

𝑇

𝐾
(𝑥) = {𝑦 ∈ 𝑋 | 𝐵𝑦 ≤ 0} . (33)

Moreover,

𝐹 (𝑥) = co {𝑓
𝑖
(𝑥) | 𝑖 = 1, 2, . . . , 𝑝} (34)

then the condition 𝐹(𝑥) ⊆ 𝑇

𝐾
(𝑥) is equivalent to 𝐵𝑓

𝑖
(𝑥) ≤ 0

(𝑖 = 1, 2, . . . , 𝑝), which completes the proof of Theorem 16.

5. Example

We provide here an example that better illustrates the class of
hybrid systems where our theoretical framework is relevant.

Consider the differential inclusion 𝐻 = (𝑋, 𝐹, 𝑅, 𝐽),
where

𝐹 (𝑥) = co {𝑓
1
(𝑥) , 𝑓

2
(𝑥)} , 𝑥 ∈ R

2

,

𝑓

1
(𝑥) = (𝑥

1
+ 𝑥

2
, 𝑥

2
+ 1)

𝑇

, 𝑓

2
(𝑥) = (𝑥

1
+ 𝑥

2
+ 1, 𝑥

2
)

𝑇

,

𝐽 = {𝑥 ∈ R
2

| 𝑥

1
≥ 0, 𝑥

2
≥ 0, 𝑥

1
+ 𝑥

2
− 1 ≤ 0} ,

𝐾 = {𝑥 ∈ R
2

| 𝑔 (𝑥) ≤ 0} ,

𝑔 (𝑥) = max {−𝑥
1
, −𝑥

2
, 𝑥

2

1
+ 𝑥

2

2
− 1} ,

𝑅 (𝑥) = (𝑥

1
+

1

2

, 𝑥

2
−

1

3

)

𝑇

, 𝑥 = (𝑥

1
, 𝑥

2
)

𝑇

.

(35)

We can easily conclude that 𝑔(𝑥) is a sub-differentiable
function, and the set 𝐾 is a quarter of the unit circle.

(1) Viability discrimination of the point 𝑥(1) = (0, 1)

𝑇

under the hybrid differential inclusion 𝐻: by the
definition and operation of the sub-differential,

𝜕𝑔 (𝑥

(1)

) = co {(−1, 0)𝑇, (0, 2)𝑇} . (36)

Obviously, the point 𝑥(1) is in the set 𝐽, so discrete
transition (or jump) must take place. The point after
jump is 𝑅 ((0, 1)

𝑇

) = (1/2, 2/3)

𝑇. It can be shown that
the point (1/2, 2/3)𝑇 in𝐾\𝐽 and it is the interior point
of the set 𝐾 \ 𝐽. Hence the point 𝑥(1) = (0, 1)

𝑇 in 𝐾

satisfied the viability condition.

(2) Viability discrimination of the point 𝑥

(2)

=

(1/2,
√
3/2)

𝑇 under the hybrid differential inclusion
𝐻: Obviously, the point 𝑥

(2)

= (1/2,
√
3/2)

𝑇 is in
the set 𝐾 \ 𝐽 and it is the boundary point. Viability
discrimination of the point 𝑥

(2)

= (1/2,
√
3/2)

𝑇
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is equivalent to the following linear programming
problem (37) in which the optimal solution is zero

min 𝜔

s.t.
𝑝

∑

𝑖=1

𝜆

𝑖
𝐵𝑓

𝑖
(𝑥) + (𝜔, . . . , 𝜔)

𝑇

≤ 0,

𝜆

𝑖
≥ 0, 𝑖 = 1, 2,

𝜆

1
+ 𝜆

2
= 1,

𝜔 ≥ 0.

(37)

We can obtain sub-differential 𝜕𝑔(𝑥(2)) = (1,
√
3)

𝑇; hence,
𝐵 = (1,

√
3),

𝑓

1
(𝑥

(2)

) = (

1 +
√
3

2

,

2 +
√
3

2

)

𝑇

,

𝑓

2
(𝑥

(2)

) = (

3 +
√
3

2

,

√

3)

𝑇

.

(38)

Consequently, the linear programming problem reduces to

min 𝜔

s.t. 4 + 3
√
3

2

𝜆

1
+

9 +
√
3

2

𝜆

2
− 𝜔 ≤ 0,

𝜆

𝑖
≥ 0, 𝑖 = 1, 2.

𝜆

1
+ 𝜆

2
= 1,

𝜔 ≥ 0.

(39)

Obviously, 𝜔 = 0 is not the optimal value of constrained
optimization. Hence 𝑥(2) = (1/2,

√
3/2)

𝑇 does not satisfy the
conditions for the viability of differential inclusion.
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