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This paper aims to discuss the delay epidemic model with vertical transmission, constant input, and nonlinear incidence. Some
sufficient conditions are given to guarantee the existence and global attractiveness of the infection-free periodic solution and the
uniform persistence of the addressed model with time delay. Finally, a numerical example is given to demonstrate the effectiveness
of the proposed results.

1. Introduction

Vaccination has been widely used as a method of disease
control; inoculate is an effective approach according to the
characteristics of the disease which takes the defense in
advance. The implementation of inoculate is not continuous
but cyclical. As early as in the 1960s, the principle of the
stability has been given in [1] for the impulsive differential
equation. Subsequently, a better definition of stability has
been proposed in [2] for the impulsive differential equation.
Motivated by the above work, the attention has beenmade on
the application of the pulse immunization in the infectious
disease model. For example, the study has been reported in
[3] where the research has been made about inoculating the
pulse vaccination for the people who are easily infected. The
researchers have realized that the pulse vaccination strategies
can eliminate the positive role to measles; see for example
[3, 4]. Moreover, the SIV infection model has been studied in
[5]. The inoculation ratio and the inoculation interval time
to eliminate the influence of the disease have been pointed
out. Accordingly, a huge amount of results has appeared
concerning the pulse model to study epidemics of infectious
diseases; see for example [6, 7].

On the other hand, the pulse SEIR epidemic model with
the incubation period has been established in [8]. The qual-
itative analysis has been given that the local asymptotic
stability of infection-free periodic solution is globally stable.
Note that the existence of time delay would degrade the

desired performance or even result in the instability [9–12].
As such, a new class of models with vertical transmission
delay pulse infectious disease has been given in [7]. By using
the impulsive differential inequality, the sufficient conditions
have been presented to guarantee the global attractability
of infection-free periodic solution and uniform persistence
of the disease. Subsequently, the disease delay pulse models
with multiple infectious diseases have been addressed in [13]
and the SIR pulse vaccination infectious disease model with
time delay has been discussed in [14]. By constructing an
appropriate Lyapunov function, the global attractability of
the unique positive periodic solution has been discussed in
[15] for the pulse predator-prey system with distributed delay
and proliferated. Also, by using the comparison principle of
impulsive differential equations, the influence from the time
delay, the pulse vaccination, and the other factors on the
nature of the model has been tackled in [16, 17].

An impulsive vaccination SEIR epidemic model with sat-
uration infectious and constant input has been studied in [18],
and the sufficient conditions have been established to ensure
the stability and the persistence of the disease-free periodic
solution. In [19], the SEIRS pulse infectious disease model
with saturated incidence has been investigated. Sufficient
conditions of infection-free periodic solution and disease-
lasting conclusion have been obtained. Also, it has been
shown that the size of the pulse cycle is an important factor
affecting the disease extinction.The SIR epidemicmodel with
nonlinear incidence rate and two class infectious diseases
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containing the pulse effect has been studied in [20]. Sufficient
conditions of the global attractability of the disease-free
periodic solutions have been given. It has confirmed that
the system is uniformly persistent under a certain condition.
Meanwhile, the time delay, pulse vaccination, and nonlinear
incidence play important roles in the nature of the model.
The conditions have been proposed to control two kinds of
diseases. In [21], the pulse vaccination SIQRS epidemicmodel
with constant input and saturated incidence rate has been
addressed. However, it is worth mentioning that the unified
model with vertical transmission, constant input, and nonlin-
ear incidence has not been investigated.

In this paper, the cases of constant population input and
vertical transmission are considered. Patients who contact
susceptible people with saturated incidence way are taken
into account. A new impulsive vaccination SEIR epidemic
model with time delay and nonlinear incidence rate is
established.The sufficient condition is given to guarantee the
stability of the disease-free periodic solution and the persis-
tence of the model. Compared to existing results, the main
contributions lie in the following aspects: (i) the nonlinear
incidence rate is considered in the model to describe the
spread of the disease which is more close to reality; (ii) all
kinds of infectious diseases have the incubation period, and
therefore it is necessary to deal with the phenomenon of time
delay; (iii) a unified pulse SEIR epidemic model including
the nonlinear contract rate, vertical transmission, and time
delays is established. As discussed in [22–24], the study of the
pulse epidemic model conducted in this paper has analyzed
the trend of the disease in the theoretical aspect which will
contribute to making the strategy of the disease prevention.

2. Model Establishment

We consider an SEIR model by assuming that the input term
has a constant population, a nonlinear occurrence rate as
𝛽𝑆(𝑡)𝐼(𝑡)/(1 + 𝑚𝐼ℎ(𝑡)), and the number of sick of which the
sick people who birth to the newborn are 𝑞𝜇𝐼(𝑡), the time
needed which the lurker transfer into the infected people is
𝜏, so after a time 𝜏, the number of survived lurker which into
the infected person is

𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒

−𝜇𝜏. (1)

The effective coverage of the pulse vaccination needle for the
newborn that is not infected is denoted by 𝜃; the vaccination
cycle is 𝑇. Now we can obtain the following impulsive differ-
ential equation model:

𝑆 (𝑡) = 𝐴 −
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
− 𝜇𝑆 (𝑡) − 𝑞𝜇𝐼 (𝑡) ,

𝐸 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
−
𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡)

− 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒
−𝜇𝜏 − 𝜇𝐸 (𝑡) ,

𝐼 (𝑡) =
𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒

−𝜇𝜏

− (𝜇 + 𝛾 + 𝛼) 𝐼 (𝑡) ,

𝑅 (𝑡) = 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡+) = 𝑆 (𝑡) − 𝜃𝜇 (𝑆 (𝑡) + 𝐸 (𝑡) + 𝑅 (𝑡)) − 𝜃𝑝𝜇𝐼 (𝑡) ,

𝐸 (𝑡+) = 𝐸 (𝑡) ,

𝐼 (𝑡+) = 𝐼 (𝑡) ,

𝑅 (𝑡+) = 𝑅 (𝑡) + 𝜃𝜇 (𝑆 (𝑡) + 𝐸 (𝑡) + 𝑅 (𝑡)) + 𝜃𝑝𝜇𝐼 (𝑡) ,

𝑡 = 𝑛𝑇.

(2)

Here, 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑅(𝑡) represent susceptible, lurker,
disease, and cure at time 𝑡, respectively; 𝜇 represents the birth
rate (the birth rate is equal to death rate); 𝛽 represents the
effective contact number; 𝛼 is the mortality due to illness; 𝛾
denotes the cure rate; 𝑞 (0 < 𝑞 < 1) represents the infected
people who give birth to the newborn and who are vertically
infected into “the kind of latent” at time 𝑡; 𝑝 = 1 − 𝑞 is the
proportion of infected people who gave birth to newborn
who are not vertically infected at time 𝑡; 𝜃 (0 < 𝜃 < 1)
denotes the succeeded vaccination proportion of newborn for
all those who are not infected; 𝐴 represents input number of
the population of constant; 𝜏 denotes the time of lurker who
become infected people;𝑇 is the pulse vaccination cycle; ℎ,𝑚,
𝐴,𝜇,𝛽, and 𝛾 are positive constants. In this paper, we consider
the property of the model under 𝑆(𝑡) ≥ 0, 𝐸(𝑡) ≥ 0, 𝐼(𝑡) ≥ 0,
and 𝑅(𝑡) ≥ 0, and the initial conditions are given as follows:

(𝜑1 (𝑠) , 𝜑2 (𝑠) , 𝜑3 (𝑠) , 𝜑4 (𝑠)) ∈ 𝐶 ([−𝜏, 0] , 𝑅
4

+
) ,

𝜑𝑖 (0) > 0 (𝑖 = 1, 2, 3, 4) .
(3)

Letting𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) and according to
(2), we have

𝑁 (𝑡) = 𝑆

(𝑡) + 𝐸


(𝑡) + 𝐼


(𝑡) + 𝑅


(𝑡)

= 𝐴 − 𝜇𝑁 (𝑡) − 𝛼𝐼 (𝑡) .
(4)

So (2) can be transformed into the following form:

𝑆 (𝑡) = 𝐴 −
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
− 𝜇𝑆 (𝑡) − 𝑞𝜇𝐼 (𝑡) ,

𝐸 (𝑡) =
𝛽𝑆 (𝑡) 𝐼 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
−
𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡)

− 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒
−𝜇𝜏 − 𝜇𝐸 (𝑡) ,

𝐼 (𝑡) =
𝛽𝑆 (𝑡 − 𝜏) 𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒

−𝜇𝜏

− (𝜇 + 𝛾 + 𝛼) 𝐼 (𝑡) ,

𝑁 (𝑡) = 𝐴 − 𝜇𝑁 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡+) = 𝑆 (𝑡) − 𝜃𝜇𝑁 (𝑡) + 𝜃𝜇𝑞𝐼 (𝑡) ,

𝐸 (𝑡+) = 𝐸 (𝑡) ,

𝐼 (𝑡+) = 𝐼 (𝑡) ,

𝑁 (𝑡+) = 𝑁 (𝑡) ,

𝑡 = 𝑛𝑇.

(5)
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Noticing𝑁(𝑡) ≤ 𝐴−𝜇𝑁(𝑡) and by the comparison prin-
ciple, we have 𝑁(𝑡) ≤ (𝐴/𝜇) + 𝑒−𝜇𝑡(𝑁(0) − (𝐴/𝜇)) and
then we have lim𝑡→∞𝑁(𝑡) ≤ (𝐴/𝜇). Then, all solutions
(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), and 𝑁(𝑡)) of model (5) eventually enter and
remain in the domain Ω = {(𝑆, 𝐸, 𝐼,𝑁) ∈ 𝑅4

+
: 𝑁 ≤ 𝐴/𝜇}.

Therefore,Ω is the positive invariant set of (5).
To proceed, we introduce the following two lemmas

which will play important roles in the remaining parts of this
paper.

Lemma 1 (see [25]). Consider the following differential equa-
tions with delay:

𝑤 (𝑡) ≤ (≥) 𝑝 (𝑡) 𝑤 (𝑡) + 𝑞 (𝑡) , 𝑡 ̸= 𝑡𝑘,

𝑤 (𝑡+
𝑘
) ≤ (≥) 𝑑𝑘𝑤 (𝑡𝑘) + 𝑏𝑘, 𝑡 = 𝑡𝑘, 𝑘 ∈ 𝑁,

(6)

where 𝑝(𝑡), 𝑞(𝑡) ∈ 𝐶[𝑅+, 𝑅], 𝑑𝑘 ≥ 0, and 𝑏𝑘 are constants.
Assume that

(i) the sequence {𝑡𝑘} satisfies 0 ≤ 𝑡1 < 𝑡2 and limt→∞ 𝑡𝑘 =
∞;

(ii) 𝑤 ∈ 𝑃𝐶[𝑅+, 𝑅] and 𝑤(𝑡) are left continuous at 𝑡𝑘 (𝑘 ∈
𝑁), then

𝑤 (𝑡) ≤ (≥)𝑤 (𝑡0) ∏
𝑡0<𝑡𝑘<𝑡

𝑑𝑘 exp(∫
𝑡

𝑡0

𝑝 (𝑠) 𝑑𝑠)

+ ∑
𝑡0<𝑡𝑘<𝑡

( ∏
𝑡𝑘<𝑡𝑗<𝑡

𝑑𝑗 exp(∫
𝑡

𝑡𝑘

𝑝 (𝑠) 𝑑𝑠))𝑏𝑘

+ ∫
𝑡

𝑡0

∏
𝑠<𝑡𝑘<𝑡

𝑑𝑘 exp(∫
𝑡

𝑠

𝑝 (𝜃) 𝑑𝜃) 𝑞 (𝑠) 𝑑𝑠, 𝑡 ≥ 𝑡0.

(7)

Lemma 2 (see [26]). Considering the following differential
equations with delay:

𝑥 (𝑡) = 𝑟1𝑥 (𝑡 − 𝜏) − 𝑟2𝑥 (𝑡) , (8)

where 𝑟1, 𝑟2, and 𝜏 are positive constants, and 𝑥(𝑡) > 0, one has
the following

(i) if 𝑟1 < 𝑟2, then lim𝑡→∞ 𝑥(𝑡) = 0,
(ii) if 𝑟1 > 𝑟2, then lim𝑡→∞ 𝑥(𝑡) = +∞,

for all t ∈ [−𝜏, 0].

3. Main Results

In this section, for model (2), we aim to propose the sufficient
conditions to guarantee the existence of the disease-free
periodic solutions, the global stability of disease-free periodic
solution, and the uniform persistence of the considered
model.

3.1. Existence of the Disease-Free Periodic Solutions. Firstly,
the analysis result is given to ensure the existence of the dis-
ease-free periodic solutions.

Theorem 3. If 𝜃𝜇/(1 − 𝑒−𝜇𝑇) < 1, (10) has a unique and
positive periodic solution (𝑆∗(𝑡),𝑁∗(𝑡)). Moreover (5) has a
unique disease-free periodic solution (𝑆∗(𝑡), 0, 0,𝑁∗(𝑡)).

Proof. The existence of the disease-free periodic solution
means that the number of sick people is zero, that is 𝐼(𝑡) = 0
for all 𝑡 ≥ 0. Thus (5) is transformed into

𝑆 (𝑡) = 𝐴 − 𝜇𝑆 (𝑡) ,

𝐸 (𝑡) = −𝜇𝐸 (𝑡) ,

𝑁 (𝑡) = 𝐴 − 𝜇𝑁 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡+) = 𝑆 (𝑡) − 𝜃𝜇𝑁 (𝑡) ,

𝐸 (𝑡+) = 𝐸 (𝑡) ,

𝑁 (𝑡+) = 𝑁 (𝑡) ,

𝑡 = 𝑛𝑇.

(9)

Noticing that 𝐸(𝑡) only appears in the second equation of (9),
so we only need to consider the first and third equations of
(9),

𝑆 (𝑡) = 𝐴 − 𝜇𝑆 (𝑡) ,

𝑁 (𝑡) = 𝐴 − 𝜇𝑁 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑆 (𝑡+) = 𝑆 (𝑡) − 𝜃𝜇𝑁 (𝑡) ,

𝑁 (𝑡+) = 𝑁 (𝑡) ,

𝑡 = 𝑛𝑇.

(10)

Let 𝑁(𝑛𝑇) and 𝑆(𝑛𝑇) represent the initial value of 𝑁(𝑡)
and 𝑆(𝑡), at the time 𝑡 = 𝑛𝑇, respectively. For brevity, denote
𝑁𝑛 = 𝑁(𝑛𝑇), 𝑆𝑛 = 𝑆(𝑛𝑇). Then, we can be integral in the
pulse interval [𝑛𝑇, (𝑛 + 1)𝑇], respectively, and for the total
population and infected people, and we have

𝑆 (𝑡) =
𝐴

𝜇
− (
𝐴

𝜇
− 𝑆 (𝑛𝑇)) 𝑒

−𝜇(𝑡−𝑛𝑇),

𝑁 (𝑡) =
𝐴

𝜇
− (
𝐴

𝜇
− 𝑁 (𝑛𝑇)) 𝑒

−𝜇(𝑡−𝑛𝑇).

(11)

According to (11), we have the following stroboscopic
map:

(
𝑆𝑛+1
𝑁𝑛+1

) = (
𝑒−𝜇𝑇 −𝜃𝜇

0 𝑒−𝜇𝑇
)(
𝑆𝑛
𝑁𝑛
) +(

𝐴

𝜇
(1 − 𝑒−𝜇𝑇)

𝐴

𝜇
(1 − 𝑒−𝜇𝑇)

) . (12)

The Jacobi matrix of (12) is

𝐽 = (
𝑒−𝜇𝑇 −𝜃𝜇𝑒−𝜇𝑇

0 𝑒−𝜇𝑇
) . (13)



4 Mathematical Problems in Engineering

The matrix 𝐽 has the characteristic roots 𝜆1 = 𝜆2 = 𝑒
−𝜇𝑇 with

|𝜆𝑖| = 𝑒
−𝜇𝑡 < 1 (𝑖 = 1, 2). If 𝜃𝜇/(1 − 𝑒−𝜇𝑇) < 1, that is, (𝐴/𝜇) −

(𝜃𝐴/(1 − 𝑒−𝜇𝑇)) > 0, then map (12) has a unique and positive
fixed point (𝑆∗, 𝑁∗) with 𝑆∗ = (𝐴/𝜇) − (𝜃𝐴/(1 − 𝑒−𝜇𝑇)),𝑁∗ =
𝐴/𝜇. Therefore, the periodic solution of (10) is

𝑆∗ (𝑡) =

{{{{
{{{{
{

𝐴

𝜇
−

𝜃𝐴

1 − 𝑒−𝜇𝑇
𝑒−𝜇(𝑡−𝑛𝑇), 𝑡 ̸= 𝑛𝑇,

𝐴

𝜇
−

𝜃𝐴

1 − 𝑒−𝜇𝑇
, 𝑡 = 𝑛𝑇,

𝑁∗ (𝑡) =
𝐴

𝜇
.

(14)

By using the second and fifth equations of (9), we have
lim𝑡→∞ 𝐸

∗(𝑡) = 0. Thus the proof of this theorem is com-
plete.

3.2. Global Stability of Disease-Free Periodic Solution. In this
subsection, the global stability of the disease-free periodic
solution is discussed and the sufficient condition is given
accordingly.

Theorem 4. If 𝑅1 = max{𝑅1, 𝜃𝜇/(1 − 𝑒
−𝜇𝑡)} < 1, then the dis-

ease-free periodic solution (𝑆∗(𝑡), 0, 0, 𝐴/𝜇) of (9) is globally
attractive, where

𝑅1 =
𝛽 ((𝐴/𝜇) − (𝜃𝜇𝐴/ (𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇))) + 𝑞𝜇

𝑒𝜇𝜏 (𝛾 + 𝛼 + 𝜇)
. (15)

Proof. By the first and fifth equations of (5) and𝑁(𝑡) ≥ 𝐴 −
(𝜇 + 𝛼)𝑁(𝑡), we have𝑁(𝑡) ≥ 𝐴/(𝜇 + 𝛼), and then we have

𝑆 (𝑡) ≤ 𝐴 − 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁

𝑆 (𝑡+) ≤ 𝑆 (𝑡) −
𝜃𝜇𝐴

𝜇 + 𝛼
, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(16)

By Lemma 1, we obtain

𝑆 (𝑡) ≤ 𝑆 (0
+) ∏
0<𝑛𝑇<𝑡

𝑒∫
𝑡

0
−𝜇𝑑𝑠 + ∑

0<𝑛𝑇<𝑡

𝑒∫
𝑡

𝑛𝑇
−𝜇𝑑𝑠 ⋅ (−

𝜃𝜇𝐴

𝜇 + 𝛼
)

+ ∫
𝑡

0

∏
𝑠<𝑛𝑇<𝑡

𝑒∫
𝑡

𝑠
−𝜇𝑑𝜃 ⋅ 𝐴 𝑑𝑠

≤ 𝑆 (0+) 𝑒−𝜇𝑡 + (−
𝜃𝜇𝐴

𝜇 + 𝛼
) 𝑒−𝜇𝑡

𝑒𝜇𝑇 (1 − 𝑒𝜇[𝑡/𝑇]𝑇)

1 − 𝑒𝜇𝑇
+ Δ,

(17)

where

Δ = ∫
𝑡

0

∏
𝑠<𝑛𝑇<𝑡

𝑒∫
𝑡

𝑠
−𝜇𝑑𝜃 ⋅ 𝐴 𝑑𝑠

=
𝐴

𝜇
𝑒−𝜇𝑡 ∫

𝑡

0

∏
𝑠<𝑛𝑇<𝑡

𝑒𝜇𝑠𝑑𝜇𝑠

=
𝐴

𝜇
𝑒−𝜇𝑡 ∫

𝑡/𝑇

0

∏
𝜉<𝑛<𝑡/𝑇

𝑒𝜇𝑇𝜉𝑑𝜇𝑇𝜉

=
𝐴

𝜇
𝑒−𝜇𝑡 [

[

∫
1

0

∏
𝜉<𝑛<𝑡/𝑇

𝑒𝜇𝑇𝜉𝑑𝜇𝑇𝜉 + ∫
2

1

∏
𝜉<𝑛<𝑡/𝑇

𝑒𝜇𝑇𝜉𝑑𝜇𝑇𝜉

+ ⋅ ⋅ ⋅ + ∫
𝑡/𝑇

[𝑡/𝑇]

∏
𝜉<𝑛<𝑡/𝑇

𝑒𝜇𝑇𝜉𝑑𝜇𝑇𝜉]

]

=
𝐴

𝜇
𝑒−𝜇𝑡 [

(𝑒𝜇𝑇 − 1) (1 − 𝑒𝜇𝑇[𝑡/𝑇])

1 − 𝑒𝜇𝑇
+ 𝑒𝜇𝑡 − 𝑒𝜇𝑇[𝑡/𝑇]]

=
𝐴

𝜇
−
𝐴

𝜇
𝑒−𝜇𝑡.

(18)

So

𝑆 (𝑡) ≤ 𝑆 (0
+) 𝑒−𝜇𝑡 + (−

𝜃𝜇𝐴

𝜇 + 𝛼
) 𝑒−𝜇𝑡

𝑒𝜇𝑇 (1 − 𝑒𝜇[𝑡/𝑇]𝑇)

1 − 𝑒𝜇𝑇

+
𝐴

𝜇
−
𝐴

𝜇
𝑒−𝜇𝑡

≤ 𝑒−𝜇𝑡 [𝑆 (0+) −
𝐴

𝜇
+

𝜃𝜇𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
]

+
𝐴

𝜇
+
𝜃𝜇𝐴𝑒𝜇𝑇([𝑡/𝑇]+1−(𝑡/𝑇))

(𝜇 + 𝛼) (𝑒𝜇𝑇 − 1)

≤ 𝑒−𝜇𝑡 [𝑆 (0+) −
𝐴

𝜇
+

𝜃𝜇𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
]

+
𝐴

𝜇
−

𝜃𝜇𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
,

(19)

that is,

lim sup
𝑡→∞

𝑆 (𝑡) ≤
𝐴

𝜇
−

𝜇𝜃𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
. (20)

Noticing 𝜃𝜇/(1−𝑒−𝜇𝑇) < 1, we have 𝜃𝜇/(1−𝑒−𝜇𝑇) ⋅𝜇/(𝜇+𝛼) <
1. Moreover, we obtain (𝐴/𝜇) − (𝜇𝜃𝐴/(𝜇 + 𝛼)(1 − 𝑒−𝜇𝑇)) > 0.
Then, for all 𝜀 > 0, there exists 𝑛1 ∈ 𝑁 such that

𝑆 (𝑡) ≤
𝐴

𝜇
−

𝜇𝜃𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
+ 𝜀 ≜ 𝜂 (21)

for all 𝑡 ≥ 𝑛1𝑇.
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Subsequently, it follows from (21) and the third equation
of (5) that

𝐼 (𝑡) ≤
𝛽𝜂𝐼 (𝑡 − 𝜏)

1 + 𝑚𝐼ℎ (𝑡 − 𝜏)
𝑒−𝜇𝜏

+ 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒
−𝜇𝜏 − (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡)

≤ 𝛽𝜂𝐼 (𝑡 − 𝜏) 𝑒
−𝜇𝜏 + 𝑞𝜇𝐼 (𝑡 − 𝜏) 𝑒

−𝜇𝜏 − (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡)

= 𝑒−𝜇𝜏 (𝛽𝜂 + 𝑞𝜇) 𝐼 (𝑡 − 𝜏) − (𝜇 + 𝛼 + 𝛾) 𝐼 (𝑡)

(22)

for ∀𝑡 > 𝑛1𝑇 + 𝜏.
Consider the comparison system of (22)

𝑧 (𝑡) = 𝑒
−𝜇𝜏 (𝛽𝜂 + 𝑞𝜇) 𝑧 (𝑡 − 𝜏) − (𝜇 + 𝛼 + 𝛾) 𝑧 (𝑡) . (23)

Due to 𝑅1 < 1 + 𝜀, the following inequalities hold:

𝑒−𝜇𝜏 [𝛽(
𝐴

𝜇
−

𝜃𝜇𝐴

(𝜇 + 𝛼) (1 − 𝑒−𝜇𝑇)
+ 𝜀) + 𝑞𝜇]

− (𝛾 + 𝛼 + 𝜇) < 0,

𝑒−𝜇𝜏 (𝛽𝜂 + 𝑞𝜇) < (𝛾 + 𝛼 + 𝜇)

(24)

for ∀𝜀 > 0. By Lemma 2, we have lim𝑡→∞ 𝑧(𝑡) = 0. Note that
𝐼(𝑠) = 𝑧(𝑠) = 𝜑2(𝑠) > 0 for all 𝑠 ∈ [−𝜏, 0]. Then, according
to the comparison theorem of differential equation, one gets
lim𝑡→∞ 𝐼(𝑡) = 0.

Without loss of generality, assuming that there exists 𝑡0 >
0, we have 0 < 𝐼(𝑡) < 𝜀 < 𝐴/𝛼 for all 𝑡 ≥ 𝑡0. By the first and
the fifth equations of (5), we have

𝑆 (𝑡) ≥ (𝐴 − 𝑞𝜇𝜀) − (𝛽𝜀 + 𝜇) 𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑆 (𝑡+) ≥ 𝑆 (𝑡) − 𝜃𝐴, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.
(25)

Considering the comparison systems of (25),

𝑧
1
(𝑡) = (𝐴 − 𝑞𝜇𝜀) − (𝛽𝜀 + 𝜇) 𝑧1 (𝑡) ,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑧1 (𝑡
+) = 𝑧1 (𝑡) − 𝜃𝐴, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑧1 (0
+) = 𝑆 (0+)

(26)

when 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇, we obtain

𝑧∗
1
(𝑡) =

{{{{
{{{{
{

𝐴 − 𝑞𝜇𝜀

𝛽𝜀 + 𝜇
−

𝜃𝐴

1 − 𝑒−(𝛽𝜀+𝜇)𝑇
𝑒−(𝛽𝜀+𝜇)(𝑡−𝑛𝑇), 𝑡 ̸= 𝑛𝑇

𝐴 − 𝑞𝜇𝜀

𝛽𝜀 + 𝜇
−

𝜃𝐴

1 − 𝑒−(𝛽𝜀+𝜇)𝑇
, 𝑡 = 𝑛𝑇,

(27)

where

lim
𝜀→0
𝑧∗
1
(𝑡) = 𝑆

∗
(𝑡) . (28)

By the comparison theorem of impulsive differential equa-
tion, for ∀𝜀1 > 0, there exists 𝑇1 > 𝑡0, when 𝑡 > 𝑇1, and we
obtain

𝑆 (𝑡) > 𝑧
∗

1
(𝑡) − 𝜀1 (29)

for all 𝑡 > 𝑇1. As 𝐴 − 𝜇𝑁 − 𝛼𝜀 ≤ 𝑁
(𝑡), 𝑡 ≥ 𝑡0, 𝑁(𝑡) ≥

(𝐴 − 𝛼𝜀)/𝜇 > 0. Then due to the first and the fifth equations
of (5), we obtain

𝑆 (𝑡) ≤ 𝐴 − 𝜇𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑆 (𝑡+) ≤ 𝑆 (𝑡) − 𝜃𝐴 + (𝛼 + 𝜇𝑞) 𝜃𝜀, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.
(30)

Considering the comparison systems of (30),

𝑧
2
(𝑡) = 𝐴 − 𝜇𝑧2 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑧2 (𝑡
+) = 𝑧2 (𝑡) − 𝜃𝐴 + (𝛼 + 𝜇𝑞) 𝜃𝜀, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑧2 (0
+) = 𝑆 (0+) ,

(31)

we have

𝑧∗
2
(𝑡) =

{{{{
{{{{
{

𝐴

𝜇
−
𝜃𝐴 − (𝛼 + 𝜇𝑞) 𝜃𝜀

1 − 𝑒−𝜇𝑇
𝑒−𝜇(𝑡−𝑛𝑇), 𝑡 ̸= 𝑛𝑇

𝐴

𝜇
−
𝜃𝐴 − (𝛼 + 𝜇𝑞) 𝜃𝜀

1 − 𝑒−𝜇𝑇
, 𝑡 = 𝑛𝑇

(32)

when 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇.
Similarly, for ∀𝜀1 > 0, there exists 𝑇2 > 𝑡0 such that

𝑆 (𝑡) < 𝑧2 (𝑡) + 𝜀1 (33)

for 𝑡 > 𝑇2. Denote 𝑇 = max{𝑇1, 𝑇2}. When 𝑡 > 𝑇, let 𝜀1 → 0.
Then it follows from (29) and (33) that 𝑆∗(𝑡) − 𝜀1 < 𝑆(𝑡) <
𝑆∗(𝑡) + 𝜀1, that is,

lim
𝑡→∞

𝑆 (𝑡) = 𝑆
∗
(𝑡) . (34)

By substituting 𝐼(𝑡) = 0 into (5), we have lim𝑡→∞ 𝐸(𝑡) = 0,
lim𝑡→∞𝑁(𝑡) = 𝐴/𝜇. Then, the proof of this theorem is
complete.

3.3. Uniform Persistence of the Model. In this subsection,
the definition of the uniform persistence is first given. Then
the sufficient condition is proposed to ensure the uniform
persistence of the addressed model.

Definition 5. If there exists a compact set 𝐷 ⊂ Ω, such that
(2) at any periodic solution enters into𝐷 and finally remains
𝐷 under the initial condition of (3), then (2) is uniformly
persistent.

According to the above definition, we aim to present the
analysis result about the uniform persistence for model (2).
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Theorem 6. If 𝑅2 = min{𝑅2, 𝑅3, 𝑅4} > 1 then the (2) is uni-
formly persistent, where

𝑅2=
(𝐴+𝑞𝜇) (1−𝑒−𝜇𝑇)+𝜃𝐴 (𝜇+𝛽)−(1+𝑚𝛿ℎ) (𝛼+𝛾+𝜉)

𝑞𝜇 (1 − 𝑒−𝜇𝑇) + 𝜃𝐴𝛽
,

𝑅3 =
(1 − 𝑞) (1 − 𝑒−(𝛿𝛽+𝜇)𝑇)

(𝛿𝛽 + 𝜇) 𝜃
,

𝛿 =
𝐴

𝜇
, 𝜉 = 𝜇 (1 − 𝑞𝑒−𝜇𝜏) .

(35)

Proof. It follows from Ω that, we obtain 𝑁(𝑡) ≤ 𝐴/𝜇 = 𝛿,
then the solutions of (2) have upper bound. So we only need
to consider the lower bound solution of (2).

First, we show the existence of a lower bound for 𝐼(𝑡).The
third equation of (2) transforms the form as follows:

𝐼 (𝑡) = [
𝛽𝑆 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
𝑒−𝜇𝜏 − (𝛼 + 𝛾 + 𝜉)] 𝐼 (𝑡)

− 𝑒−𝜇𝜏
𝑑

𝑑𝑡
∫
𝑡

𝑡−𝜏

(
𝛽𝑆 (𝜃)

1 + 𝑚𝐼ℎ (𝜃)
+ 𝑞𝜇) 𝐼 (𝜃) 𝑑𝜃.

(36)

Construct 𝑉(𝑡) = 𝐼(𝑡) + 𝑒−𝜇𝜏 ∫𝑡
𝑡−𝜏
((𝛽𝑆(𝜃)/(1 + 𝑚𝐼ℎ(𝜃))) +

𝑞𝜇)𝐼(𝜃)𝑑𝜃. So𝑉(𝑡) is a bounded function. Along the solution
of (2), we have

𝑉 (𝑡)

= 𝐼 (𝑡) + 𝑒
−𝜇𝜏 𝑑

𝑑𝑡
∫
𝑡

𝑡−𝜏

(
𝛽𝑆 (𝜃)

1 + 𝑚𝐼ℎ (𝜃)
+ 𝑞𝜇) 𝐼 (𝜃) 𝑑𝜃

= (𝛼 + 𝛾 + 𝜉) [
𝛽𝑆 (𝑡)

1 + 𝑚𝐼ℎ (𝑡)
𝑒−𝜇𝜏 ⋅

1

𝛼 + 𝛾 + 𝜉
− 1] 𝐼 (𝑡) .

(37)

By 𝑅2 > 1, there exists𝑚
∗

2
= 𝑅2 − 1 > 0 satisfying

𝑚∗
2
=
𝛽𝑒−𝜇𝜏𝐴[1−𝑒−𝜇𝑇−𝜃𝜇]−(1+𝑚𝛿ℎ) (𝛼+𝛾+𝜉)

[(1 − 𝑒−𝜇𝑇) 𝑞𝜇 + 𝜃𝐴𝛽] 𝛽𝑒−𝜇𝜏
> 0.

(38)

Then, we have

𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
[
𝐴 − 𝑞𝜇𝑚∗

2

𝛽𝑚∗
2
+ 𝜇

−
𝜃𝐴

1 − 𝑒−𝜇𝑇
] = 1. (39)

Subsequently, there exists 𝜀1 > 0, such that

𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
[
𝐴 − 𝑞𝜇𝑚∗

2

𝛽𝑚∗
2
+ 𝜇

−
𝜃𝐴

1−𝑒−(𝛽𝑚
∗

2
+𝜇)𝑇

−𝜀1] > 1.

(40)

So

𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
Δ > 1, (41)

where

Δ =
𝐴 − 𝑞𝜇𝑚∗

2

𝛽𝑚∗
2
+ 𝜇

−
𝜃𝐴

1 − 𝑒−(𝛽𝑚
∗

2
+𝜇)𝑇

− 𝜀1. (42)

Now we prove that 𝐼(𝑡) ≤ 𝑚∗
2
is not true. Otherwise,

assume that there exists 𝑡0 > 0, and when 𝑡 > 𝑡0, there is
𝐼(𝑡) < 𝑚∗

2
. By using the first and the fifth equations of (2), we

have

𝑆 (𝑡) ≥ (𝐴 − 𝑞𝜇𝑚
∗

2
) − (𝛽𝑚∗

2
+ 𝜇) 𝑆 (𝑡) ,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑆 (𝑡) ≥ 𝑆 (𝑡) − 𝜃𝐴, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.

(43)

By Lemma 1, there exists 𝑇1 ≥ 𝑡0 + 𝜏, and we have

𝑆 (𝑡) >
𝐴 − 𝑞𝜇𝑚∗

2

𝛽𝑚∗
2
+ 𝜇

−
𝜃𝐴

1 − 𝑒−(𝛽𝑚
∗

2
+𝜇)𝑇

− 𝜀1 ≜ Δ (44)

for 𝑡 > 𝑇1. Together with (37) and (44), one gets

𝑉 (𝑡) > (𝛾 + 𝜉) [
𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
⋅ Δ − 1] 𝐼 (𝑡) . (45)

Denote 𝐼𝑙 = min𝑡∈[𝑇1 ,𝑇1+𝜏] 𝐼(𝑡).Then 𝑡 ≥ 𝑇1 > 𝑡0, that is, 𝐼(𝑡) ≥
𝐼𝑙. Otherwise there exists𝑇2 > 0, such that 𝑡 ∈ [𝑇1, 𝑇1+𝜏+𝑇2].
Then there are 𝐼(𝑡) ≥ 𝐼𝑙, 𝐼(𝑇1+𝜏+𝑇2) = 𝐼

𝑙, and 𝐼(𝑇1+𝜏+𝑇2) ≤
0. It follows from the second equation of (2) and (41) that

𝐼 (𝑇1 + 𝜏 + 𝑇2)

≥ (𝛼 + 𝛾 + 𝜉) [
𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
Δ − 1] 𝐼𝑙 > 0,

(46)

which is a contradiction. So, for 𝑡 ≥ 𝑇1, according to (36),
𝐼(𝑡) ≥ 𝐼𝑙, 𝑉(𝑡) > 0, that is lim𝑡→∞ 𝑉(𝑡) = +∞. This is,
a contradiction of which 𝑉(𝑡) is bounded. So when 𝑡 > 𝑡0,
𝐼(𝑡) < 𝑚∗

2
is not tenable.

Two cases to prove are given as follows.

Case 1. If, for 𝑡 which is sufficiently large, 𝐼(𝑡) ≥ 𝑚∗
2
, hence

the statements are proved.

Case 2. If 𝐼(𝑡) is shocked near 𝑚∗
2
, let 𝑚2 = min{𝑚∗

2
/2,

𝑚∗
2
𝑒−(𝛼+𝛾+𝜇)𝜏}. There exists two constants: 𝑡 and 𝜛 satisfying

𝐼(𝑡) = 𝐼(𝑡 + 𝜛) = 𝑚∗
2
, and when 𝑡 < 𝑡 < 𝑡 + 𝜛, there is

𝐼(𝑡) < 𝑚∗
2
. Because 𝐼(𝑡) is a continuous and bounded function

which is not affected by pulse, then 𝐼(𝑡)is uniformly continu-
ous. So, there exists 0 < 𝑇3 < 𝜏 (𝑇3 depends on the selection
of 𝑡), met for all 𝑡 < 𝑡 < 𝑡 + 𝑇3, and there is 𝐼(𝑡) > 𝑚∗

2
/2. If

𝜛 < 𝑇3. The conclusion was established. If 𝑇3 < 𝜛 < 𝜏, then,
by the second equation of (5) that we have when 𝑡 < 𝑡 < 𝑡+𝜛,
𝐼(𝑡) ≥ −(𝛼 + 𝛾 + 𝜇)𝐼(𝑡); again by 𝐼(𝑡) = 𝑚∗

2
, there is

𝐼(𝑡) ≥ 𝑚∗
2
𝑒−(𝛼+𝛾+𝜇)𝜏, and obviously 𝐼(𝑡) ≥ 𝑚2 is established.

Similarly, if 𝜛 ≥ 𝜏, then, by the second equation of (5), when
𝑡 < 𝑡 < 𝑡 + 𝜏, 𝐼(𝑡) ≥ 𝑚2. Then proof is as follows, when
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𝑡 + 𝜏 ≤ 𝑡 ≤ 𝑡 + 𝜛, and there is still 𝐼(𝑡) ≥ 𝑚2. If not, there
exists 𝑇 ≥ 0, when 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝜏 + 𝑇, and there are 𝐼(𝑡) ≥ 𝑚2,
𝐼(𝑡 + 𝜏 + 𝑇) = 𝑚2, and 𝐼

(𝑡 + 𝜏 + 𝑇) ≤ 0. It follows from the
second equation of (2) that

𝐼 (𝑡 + 𝜏 + 𝑇) ≥ [
𝛽𝑒−𝜇𝜏

(1 + 𝑚𝛿ℎ) (𝛼 + 𝛾 + 𝜉)
Δ − 1]𝑚2 > 0.

(47)

It is a contradiction. So when 𝑡 < 𝑡 < 𝑡+𝜛, there is 𝐼(𝑡) ≥ 𝑚2.
Above all, any positive periodic solution of (2) which for

sufficiently large 𝑡, it can be concluded that 𝐼(𝑡) ≥ 𝑚2.
It follows from the first and the fifth equations of (2) that

𝑆 (𝑡) ≥ (1 − 𝑞)𝐴 − (𝛿𝛽 + 𝜇) 𝑆 (𝑡) , 𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑁,

𝑆 (𝑡+) ≥ 𝑆 (𝑡) − 𝜃𝐴, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁.
(48)

It follows from Lemma 1 that

𝑆 (𝑡) ≥ 𝑒
−(𝛿𝛽+𝜇)𝑡 [𝑆 (0+) −

(1 − 𝑞)𝐴

𝛿𝛽 + 𝜇
+

𝜃𝐴

1 − 𝑒−(𝛿𝛽+𝜇)𝑇
]

+
(1 − 𝑞)𝐴

𝛿𝛽 + 𝜇
−
𝜃𝐴𝑒(𝛿𝛽+𝜇)(𝑇[𝑡/𝑇]+𝑇−𝑡)

𝑒(𝛿𝛽+𝜇)𝑇 − 1
.

(49)

Since 0 < 𝑇[𝑡/𝑇] + 𝑇 − 𝑡 < 𝑇, so

𝑆 (𝑡) ≥ 𝑒
−(𝛿𝛽+𝜇)𝑡 [𝑆 (0+) −

(1 − 𝑞)𝐴

𝛿𝛽 + 𝜇
+

𝜃𝐴

1 − 𝑒−(𝛿𝛽+𝜇)𝑇
]

+
(1 − 𝑞)𝐴

𝛿𝛽 + 𝜇
−

𝜃𝐴

1 − 𝑒−(𝛿𝛽+𝜇)𝑇
.

(50)

Thus lim𝑡→∞ 𝑆(𝑡) ≥ 𝐴[((1−𝑞)/(𝛿𝛽+𝜇))−(𝜃/(1−𝑒
−(𝛿𝛽+𝜇)𝑇))];

it follows from 𝑅3 > 1 that ((1 − 𝑞)/(𝛿𝛽 + 𝜇)) − (𝜃/(1 −
𝑒−(𝛿𝛽+𝜇)𝑇)) > 0, that is; for ∀𝜀 > 0, there exists 𝑇4 > 0, when
𝑡 > 𝑇4, and there is

𝑆 (𝑡) ≥ 𝐴[
1 − 𝑞

𝛿𝛽 + 𝜇
−

𝜃

1 − 𝑒−(𝛿𝛽+𝜇)𝑇
] − 𝜀 ≜ 𝑚1. (51)

Because of the second equation of (2)

𝐸 (𝑡) = ∫
𝑡

𝑡−𝜏

𝛽𝑆 (𝑢) 𝐼 (𝑢)

1 + 𝑚𝐼ℎ (𝑢)
𝑒−𝜇(𝑡−𝑢)𝑑𝑢 + ∫

𝑡

𝑡−𝜏

𝑞𝜇𝐼 (𝑢) 𝑒
−𝜇(𝑡−𝑢)𝑑𝑢

≥ (
𝛽𝑚1𝑚2

𝜇 (1 + 𝑚𝛿ℎ)
+ 𝑞𝑚2) (1 − 𝑒

−𝜇𝜏) ≜ 𝑚3.

(52)

Subsequently, it follows from the fourth equation of (2)
that

𝑅 (𝑡) ≥ 𝑟𝑚2 − 𝜇𝑅 (𝑡) . (53)

Similarly, there is 𝑅(𝑡) ≥ 𝑟𝑚2/𝜇 ≜ 𝑚4 satisfying

𝐷 = {(𝑆, 𝐸, 𝐼, 𝑅) | 𝑚1 ≤ 𝑆 (𝑡) ≤ 𝛿,𝑚2 ≤ 𝐼 (𝑡) ≤ 𝛿,

𝑚3 ≤ 𝐸 (𝑡) ≤ 𝛿,𝑚4 ≤ 𝑅 (𝑡) ≤ 𝛿} .
(54)

Then, 𝐷 is a bounded compact set, nontrivial for any cycle
solution of (2) to enter and stay in 𝐷 inside. Hence, it
completes the proof of this theorem.
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Figure 1: The global attractability of disease-free periodic solution.

Remark 7. Up till now, we investigate the delay epidemic
model with vertical transmission, constant input and nonlin-
ear incidence.The sufficient conditions are given to guarantee
the existence of the disease-free periodic solutions, the global
stability of disease-free periodic solution, and the uniform
persistence of the considered model. It is worth mentioning
that, according to the statistics of the suspected patients
and patients and using the data identification approach, the
parameters in the model can be determined when the disease
outbreaks. Subsequently, the illness trend of the epidemic
can be predicted. Hence, we can make the reasonable control
measures. One of the future research directions would be to
apply the developed results to make the control strategy by
properly considering the real information on the epidemic
data.

4. A Numerical Simulation

For comparisons, we consider the following five cases.

Case 1. Let the parameters be specified as certain fixed values
in (2): 𝐴 = 0.2, 𝜇 = 0.02, 𝛽 = 0.05, 𝑞 = 0.8, 𝛾 = 0.5,
𝛼 = 0.3, 𝜃 = 0.8, 𝜏 = 10, 𝑇 = 20, and 𝑚 = ℎ = 1;
then the result 𝑅1 = max{0.5137, 0.04853} < 1 is obtained
after calculation. By Theorem 4, we know that the disease-
free periodic solution of (2) is globally attractive. Setting the
initial value 𝑆(0) = 1, 𝐸(0) = 2, 𝐼(0) = 3, and 𝑅(0) = 4, the
numerical simulation of the diagram is shown in Figure 1.

Case 2. Take the following parameters: 𝜏 = 1, 𝛼 = 0.01, 𝐴 =
0.5, 𝛽 = 0.12, 𝜇 = 0.1, 𝑞 = 0.8, 𝑚 = 0.02, ℎ = 0.8, 𝛾 = 0.06,
𝑇 = 10, 𝑝 = 1 − 𝑞, and 𝜃 = 0.1; we calculate that 𝑅2 =
min{5.2830, 2.8545} > 1. By Theorem 6, (2) is uniform
persistence. Letting the initial 𝑆(0) = 0.5, 𝐸(0) = 1, 𝐼(0) =
1.5, 𝑅(0) = 2, the numerical simulation of (2) is shown in
Figure 2.

Case 3. The parameter of (2) is the same as that in Figure 1
except for parameter 𝛽. Taking 𝛽 = 0.08, we have
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Figure 2:Theuniformpersistence of diseasewhen𝛽 = 0.12, 𝑞 = 0.8,
and 𝜃 = 0.1.
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Figure 3: The uniform persistence of disease when 𝛽 = 0.08.

𝑅2 = min{5.4400, 3.9730} > 1. Then, by Theorem 6, (2) is of
uniform persistence. The corresponding numerical simula-
tion of (2) is shown in Figure 3.

Case 4. If the parameter of (2) is the same as in Figure 1 except
𝑞. Taking 𝑞 = 0.1, we obtain 𝑅2 = min{20.1653, 12.8454} > 1.
ByTheorem 6, (2) is of uniform persistence. Accordingly, the
simulation of (2) is shown in Figure 4.

Case 5. If the parameter of (2) is the same as in Figure 1 except
𝜃. Taking 𝜃 = 0.9, we have 𝑅2 = min{4.9835, 1.2496} > 1.
By Theorem 6, (2) is of uniform persistence. The numerical
simulation of (2) is shown in Figure 5.

It can be seen that 𝐼(𝑡) is more influenced by the change
of 𝛽, 𝑝 but is less influenced by the change of 𝜃.

By Figures 2 and 3, we can see that when the contact rate is
smaller, the numbers of lurker and infective are reduced, but
the numbers of susceptible and removed accordingly changed
much. Also, there is a proportional relationship between the
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Figure 4: The uniform persistence of disease when 𝑞 = 0.1.
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Figure 5: The uniform persistence of disease when 𝜃 = 0.9.

size of the extent of epidemic and the contact rate. By com-
paring Figures 2 and 4, when the vertical transmission rate
is bigger, the number of infective is increased by controlling
the vertical transmission rate of infected newborn.Moreover,
by comparing Figures 2 and 5, the increase of vaccination
rate has a certain effect for the control of the disease, but
it is not obvious. Therefore, if we reduce the extent of the
epidemic, the measure of one is reducing the contact rate and
vertical transmission rate. From the simulation the feasibility
and usefulness of the proposed main results are confirmed.

5. Conclusions

In this paper, we have discussed the SEIR model with the
pulse vaccination, the constant input item of population, and
the vertical transmission. By employing the impulsive dif-
ferential inequality and the stroboscopic map, the existence
conditions of the disease-free periodic solution of the model
have been given. Also, the sufficient conditions of globally
attractive and uniform persistence have been proposed.
Finally, a numerical example has been given to illustrate the
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validity of the proposed results. One of our future research
interests is to extend the main results of the analysis and
synthesis of gene regulatory networks or complex dynamical
systems as discussed in [27–32].
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