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We solve theoretically the center problem and the cyclicity of the Hopf bifurcation for two families of Kukles-like systems with their
origins being nilpotent and monodromic isolated singular points.

1. Introduction

One of the main open problems in the qualitative theory of
planar analytic differential systems is the casewhen the singu-
lar point ismonodromic (the orbitsmove around the singular
point). A monodromic point of an analytic system is either a
center (i.e., a singular point with a punctures neighborhood
filled with periodic orbits) or a focus (i.e., a singular point
with a neighborhood where all the orbits are spirals which
arrive at the equilibrium point in forward or backward time).
The problem of distinguishing when a monodromic singular
point is either a center or a focus is called the center problem.

The so-called center problem for planar vector fields has
been intensively and extensively studied over the last century
and is also closely related to Hilbert’s 16th problem. The
singular point can be elementary or not in the sense whether
the corresponding Jacobian matrix has zero eigenvalues. If
the eigenvalues of the quoted matrix are imaginary with real
part null, the singular point may be a focus or a center, which
is known as the celebrated Poincaré-Lyapunov center problem
and has been theoretically solved by Poincaré [1] and Lia-
punov [2]. If the matrix of the linear part at the singular point
has its two eigenvalues equal to zero, but it is not identically
null, by Andreev [3] we know what is the behavior of the
solutions in a neighborhood of the singular point, except if
it is a center of a focus (nilpotent center problem).

Yet for the bifurcation of limit cycles and center problem
of nilpotent singular points in a planar vector field, its
intrinsic dynamics is still far away from understanding due

to the complexity and technical difficulties. Therefore, it is
natural to restrict our study to nilpotent singularities. An ana-
lytic system of differential equations in the plane having an
isolated nilpotent singularity, in some suitable coordinates,
can be written as

�̇� = 𝑦 + 𝑋 (𝑥, 𝑦) ,

̇𝑦 = 𝑌 (𝑥, 𝑦) ,

(1)

with 𝑋(𝑥, 𝑦) and 𝑌(𝑥, 𝑦) real analytic functions without
constant nor linear terms defined in a certain neighborhood
of the singularity.

The study of nilpotent singularities and their unfolding
for vector fields is important not only for mathematical
interest but also for practical reasons. To solve the finite
cyclicity problem in the second part ofHilbert’s 16th problem,
Dumortier et al. [4, 5] presented an impressive list of 121
graphics that occur in quadratic systems, among whichmany
are nilpotent cases, studied in [6–11]. On the other hand, the
center problem for nilpotent singularities is another interest-
ing issue and has been partially solved; see [3, 12–19], and so
forth.

Liu and Li [20] originated amethod in studying the center
problem of third-order nilpotent singularities by integral
factor method, where a new definition of the focal values,
quasi-Lyapunov constants, is provided. At the same time, the
equivalence of quasi-Lyapunov constants and focal values
is proved. A linear recursive formula for computing quasi-
Lyapunov constants is also derived. Afterward, they proved
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that if the third-order nilpotent origin is a𝑚-order weakened
focus, then, by a small perturbation for the unperturbed sys-
tem, there exist𝑚 limit cycles in a neighborhood of the origin.
Meanwhile, the origin becomes an elementary critical point
and two complex singular points.

In the present paper, we are interested in the study of
two families of Kukles-like systemswith third-order nilpotent
part of the form (𝑦, −2𝑥

3
) and, respectively, nonlinear part

given by quartic and quintic homogeneous polynomial with
an isolated singular point at the origin; that is,

𝑑𝑥

𝑑𝑡

= 𝑦,
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= −2𝑥

3
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+ 𝑏

22
𝑥

2
𝑦

2
+ 𝑏
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4
,

(2)

𝑑𝑥

𝑑𝑡

= 𝑦,
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3
+ 𝑏

50
𝑥

5
+ 𝑏

41
𝑥

4
𝑦

+ 𝑏
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𝑥

3
𝑦

2
+ 𝑏

23
𝑥

2
𝑦

3
+ 𝑏

14
𝑥𝑦

4
+ 𝑏

05
𝑦

5
.

(3)

This paper will be organized as follows. In Section 2 we
summarize some general definitions and results about third-
order nilpotent singularities. In Section 3 we present the con-
ditions for third-order nilpotent singularities to be a center
and give the proof of the cyclicity for system (2). In the last
section, we present the parallel results for system (3).

2. The Formula to Compute
the Quasi-Lyapunov Constants

The origin is a third-order monodromic critical point if and
only if the system is of the following form:

𝑑𝑥

𝑑𝑡

= 𝑦 + 𝜇𝑥

2
+

∞

∑

𝑖+2𝑗=3

𝑎

𝑖𝑗
𝑥

𝑖
𝑦

𝑗

= 𝑋 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= −2𝑥

3
+ 2𝜇𝑥𝑦 +

∞

∑

𝑖+2𝑗=4

𝑏

𝑖𝑗
𝑥

𝑖
𝑦

𝑗

= 𝑌 (𝑥, 𝑦) .

(4)

The quasi-Lyapunov constant is defined and a way of
computing them is provided in [20].

Theorem 1. For any positive integer 𝑠 and a given number
sequence

{𝑐

0𝛽
} , 𝛽 ≥ 3, (5)

one can construct successively the terms with the coefficients 𝑐
𝛼𝛽

satisfying 𝛼 ̸= 0 of the formal series

𝑀(𝑥, 𝑦) = 𝑦

2
+

∞

∑

𝛼+𝛽=3

𝑐

𝛼𝛽
𝑥

𝛼
𝑦

𝛽

=

∞

∑

𝑘=2

𝑀

𝑘
(𝑥, 𝑦) ,

(6)

such that

(

𝜕𝑋

𝜕𝑥

+

𝜕𝑌

𝜕𝑦

)𝑀 − (𝑠 + 1) (

𝜕𝑀

𝜕𝑥

𝑋 +

𝜕𝑀

𝜕𝑦

𝑌)

=

∞

∑

𝑚=3

𝜔

𝑚
(𝑠, 𝜇) 𝑥

𝑚
,

(7)

where for all 𝑘, 𝑀
𝑘
(𝑥, 𝑦) is a 𝑘-homogeneous polynomial of

𝑥, 𝑦 and 𝑠𝜇 = 0.

It is easy to see that (7) is linear with respect to the
function 𝑀, so that we can easily find in [20] the following
recursive formulae for the calculation of 𝑐

𝛼𝛽
and 𝜔

𝑚
(𝑠, 𝜇).

Theorem 2. For 𝛼 ≥ 1, 𝛼 + 𝛽 ≥ 3 in (6) and (7), 𝑐
𝛼𝛽

can be
uniquely determined by the recursive formula

𝑐

𝛼𝛽
=

1

(𝑠 + 1) 𝛼

(𝐴

𝛼−1,𝛽+1
+ 𝐵

𝛼−1,𝛽+1
) . (8)

For 𝑚 ≥ 1, 𝜔
𝑚
(𝑠, 𝜇) can be uniquely determined by the

recursive formula

𝜔

𝑚
(𝑠, 𝜇) = 𝐴

𝑚,0
+ 𝐵

𝑚,0
, (9)

where

𝐴

𝛼𝛽
=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑘 − (𝑠 + 1) (𝛼 − 𝑘 + 1)]

× 𝑎

𝑘𝑗
𝑐

𝛼−𝑘+1,𝛽−𝑗
,

𝐵

𝛼𝛽
=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑗 − (𝑠 + 1) (𝛽 − 𝑗 + 1)]

× 𝑏

𝑘𝑗
𝑐

𝛼−𝑘,𝛽−𝑗+1
.

(10)

Notice that in (10), one sets

𝑐

00
= 𝑐

10
= 𝑐

01
= 0,

𝑐

20
= 𝑐

11
= 0, 𝑐

02
= 1,

𝑐

𝛼𝛽
= 0, 𝑖𝑓 𝛼 < 0 𝑜𝑟 𝛽 < 0.

(11)

We see fromTheorem 1 that if the origin of system (4) is
𝑠-class or∞-class, then, by choosing {𝑐

𝛼𝛽
}, such that

𝜔

2𝑘+1
(𝑠, 𝜇) = 0, 𝑘 = 1, 2, . . . , (12)

we can obtain a solution group of {𝑐
𝛼𝛽
} of (12); thus, we have

𝜆

𝑚
=

𝜔

2𝑚+4
(𝑠, 𝜇)

2𝑚 − 4𝑠 − 1

.

(13)

Clearly, the recursive formulas presented by Theorem 2
are linear with respect to all 𝑐

𝛼𝛽
. Therefore, it is convenient to

realize the computations of quasi-Lyapunov constants by
using computer algebraic system like MATHEMATICA.
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3. Center Conditions and Limit
Cycles of System (2)

ByTheorems 1 and 2, we directly have the following.

Lemma 3. Assume that 𝑠 is a natural number. One can derive
a power series (6) for system (2) under which (7) is satisfied,
where

𝑐 [0, 0] = 0, 𝑐 [1, 0] = 0, 𝑐 [0, 1] = 0,

𝑐 [2, 0] = 0, 𝑐 [1, 1] = 0, 𝑐 [0, 2] = 1.

(14)

In addition, for any natural numbers 𝛼, 𝛽, 𝑐[𝛼, 𝛽] is given by
the following recursive formula:

𝑐 [𝛼, 𝛽] = (−𝑏

40
(1 + 𝑠) (2 + 𝛽) 𝑐 [−5 + 𝛼, 2 + 𝛽]

+ 𝑏

31
(1 − (1 + 𝑠) (1 + 𝛽)) 𝑐 [−4 + 𝛼, 1 + 𝛽]

+ 2 (1 + 𝑠) (2 + 𝛽) 𝑐 [−4 + 𝛼, 2 + 𝛽]

+ 𝑏

22
(2 − (1 + 𝑠) 𝛽) 𝑐 [−3 + 𝛼, 𝛽]

+ 𝑏

13
(3 − (1 + 𝑠) (−1 + 𝛽))

× 𝑐 [−2 + 𝛼, −1 + 𝛽]

+ 𝑏

04
(4 − (1 + 𝑠) (−2 + 𝛽))

× 𝑐 [−1 + 𝛼, −2 + 𝛽] ) × (𝛼 (𝑠 + 1))

−1
,

(15)

and, for any natural number 𝑚, 𝜔
𝑚
is given by the following

recursive formula:

𝜔

𝑚
= −𝑏

40
(1 + 𝑠) 𝑐 [−4 + 𝑚, 1]

+ 𝑏

31
𝑐 [−3 + 𝑚, 0] + 2 (1 + 𝑠) 𝑐 [−3 + 𝑚, 1]

+ 𝑏

22
(3 + 𝑠) 𝑐 [−2 + 𝑚, −1]

+ 𝑏

13 (
3 + 2 (1 + 𝑠)) 𝑐 [−1 + 𝑚, −2]

+ 𝑏

04
(4 + 3 (1 + 𝑠)) 𝑐 [𝑚, −3] .

(16)

The straightforward computing according to Lemma 3
with MATHEMATICA gives

𝜔

6
= 0,

𝜔

7
=

1

2

(𝑏

31
− 2𝑏

31
𝑠 + 6𝑐

03
+ 6𝑠𝑐

03
) ,

𝜔

8
∼ −

1

10

𝑏

40
𝑏

31 (
−3 + 4𝑠) ,

𝜔

9
∼ −2𝑏

13 (
−1 + 𝑠) .

(17)

To make 𝜔
9
= 0, we will consider two different cases:

𝑏

13
= 0 and 𝑠 = 1.

Case 1 (𝑏
13
= 0). Taking expression (13) into account, the first

four quasi-Lyapunov constants of system (2) are given by

𝜆

1
= 0,

𝜆

2
∼

1

10

𝑏

40
𝑏

31
,

𝜆

3
∼

1

21

𝑏

31
𝑏

22
,

𝜆

4
∼ −

2

9

𝑏

31
𝑏

04
.

(18)

Now we can prove the following result.

Theorem 4. In this case, the origin of system (2) is a center if
and only if the first four quasi-Lyapunov constants vanish; that
is, one of the following two series is satisfied:

𝑏

31
= 𝑏

13
= 0, (19)

𝑏

40
= 𝑏

22
= 𝑏

13
= 𝑏

04
= 0. (20)

Proof. It is direct to obtain conditions (19) and (20) by impos-
ing 𝜆
𝑖
= 0, 𝑖 = 1, 2, 3, 4.

On the other hand, when condition (19) holds, system (2)
goes over to

𝑑𝑥

𝑑𝑡

= 𝑦,

𝑑𝑦

𝑑𝑡

= −2𝑥

3
+ 𝑏

40
𝑥

4
+ 𝑏

22
𝑥

2
𝑦

2
+ 𝑏

04
𝑦

4
,

(21)

whose vector field is symmetric with respect to the 𝑥-axis.
When condition (20) holds, system (2) goes over to

𝑑𝑥

𝑑𝑡

= 𝑦,

𝑑𝑦

𝑑𝑡

= 𝑥

3
(−2 + 𝑏

31
𝑦) ,

(22)

whose vector field is symmetric with respect to the 𝑦-axis.
This ends the proof.

Case 2 (𝑠 = 1). Taking expression (13) into account, the first
five quasi-Lyapunov constants of system (2) are given by

𝜆

1
= 0,

𝜆

2
∼

1

10

𝑏

40
𝑏

31
,

𝜆

3
∼

1

105

(5𝑏

31
𝑏

22
+ 9𝑏

40
𝑏

13
) ,

𝜆

4
∼

1

6300

(680𝑏

22
𝑏

13
− 1400𝑏

31
𝑏

04
− 117𝑏

3

40
𝑏

13
) ,

𝜆

5
∼

1

8085000

𝑏

13

× (476000𝑏

04
− 286495𝑏

2

40
𝑏

22
+ 18018𝑏

5

40
) .

(23)

For the same reason as before, we obtain the following.
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Theorem 5. In this case, the origin of system (2) is a center if
and only if the first five quasi-Lyapunov constants vanish; that
is, the following series is satisfied:

𝑏

40
= 𝑏

22
= 𝑏

04
= 0. (24)

Proof. It is direct to obtain conditions (24) by imposing 𝜆
𝑖
=

0, 𝑖 = 1, 2, 3, 4, 5.
On the other hand, when condition (24) holds, system (2)

goes over to

𝑑𝑥

𝑑𝑡

= 𝑦,

𝑑𝑦

𝑑𝑡

= 𝑥 (−2𝑥

2
+ 𝑏

31
𝑥

2
𝑦 + 𝑏

13
𝑦

3
) ,

(25)

whose vector field is symmetric with respect to the 𝑦-axis.
Then, we have proved the theorem.

It is not hard to see that condition (20) is a particular
case of condition (24); in summary, the following result
characterizes the center of system (2).

Theorem 6. System (2) has a center at the origin if and only if
one of the following two sets of conditions holds:

(𝐼) 𝑏

31
= 𝑏

13
= 0,

(𝐼𝐼) 𝑏

40
= 𝑏

22
= 𝑏

04
= 0.

Remark 7. Indeed, in the light of the theory of [21], the origin
is not only a center but also an analytic center under condition
(I).

Referring to the expressions given in (18) and (23), we
have the following.

Lemma 8. The origin of system (2) is a fine focus of maximum
order five. Further, it is of order five if and only if

𝑏

40
= 𝑏

31
= 𝑏

22
= 0, 𝑏

13
𝑏

04
̸= 0. (26)

Consider the perturbed system of (2)

𝑑𝑥

𝑑𝑡

= 𝛿 (𝜀) 𝑥 + 𝑦,

𝑑𝑦

𝑑𝑡

= 2𝛿 (𝜀) 𝑦 − 2𝑥

3
+ 𝑏

21 (
𝜀) 𝑥

2
𝑦 + 𝑏

40 (
𝜀) 𝑥

4

+ 𝑏

31
(𝜀) 𝑥

3
𝑦 + 𝑏

22
(𝜀) 𝑥

2
𝑦

2
+ 𝑏

13
𝑥𝑦

3
+ 𝑏

04
𝑦

4
.

(27)

Theorem 9. Under a small perturbation of system (2), for a
small parameter 𝛿, in a neighborhood of the origin of system
(27), there exist exactly 5 small amplitude limit cycles enclosing
the elementary node 𝑂(0, 0).

The next example shows this fact.

Example 10. Take

𝛿 (𝜀) = −𝜀

30
,

𝑏

21
(𝜀) = 𝜀

20
,

𝑏

40
(𝜀) = 𝜀

6
,

𝑏

31 (
𝜀) = −𝜀

6
,

𝑏

22
(𝜀) = −𝜀

2
,

𝑏

13
= 𝑏

04
= 1.

(28)
Straightforward computations by using expression (23) give
the first 5 quasi-Lyapunov constants of the origin of system
(27):

𝜆

1
=

1

3

𝜀

20
+ 𝑜 (𝜀

20
) ≈ 0.333333𝜀

20
+ 𝑜 (𝜀

20
) ,

𝜆

2
∼ −

1

10

𝜀

12
+ 𝑜 (𝜀

12
) = −0.1𝜀

12
+ 𝑜 (𝜀

12
) ,

𝜆

3
∼

3

35

𝜀

6
+ 𝑜 (𝜀

6
) ≈ 0.0857143𝜀

6
+ 𝑜 (𝜀

6
) ,

𝜆

4
∼ −

34

315

𝜀

2
+ 𝑜 (𝜀

2
) ≈ −0.107937𝜀

2
+ 𝑜 (𝜀

2
) ,

𝜆

5
∼

68

1155

+ 𝑜 (1) ≈ 0.0588745 + 𝑜 (1) .

(29)

Thereby, for 0 < 𝜀 ≪ 1, system (27) has 5 limit cycles Γ
𝑘
:

𝑟 = 𝑟(𝜃, ℎ

𝑘
(𝜀)) in a small neighborhood of the origin, where

ℎ

𝑘
(𝜀) = 𝑜(𝜀

𝑘
), 𝑘 = 1, 2, 3, 4, 5.

4. Center Conditions and Limit
Cycles of System (3)

Similar to Lemma 3, we have the following.

Lemma 11. Assume that 𝑠 is a natural number. One can derive
a power series (6) for system (3) under which (7) is satisfied,
where

𝑐 [0, 0] = 0, 𝑐 [1, 0] = 0, 𝑐 [0, 1] = 0,

𝑐 [2, 0] = 0, 𝑐 [1, 1] = 0, 𝑐 [0, 2] = 1.

(30)

In addition, for any natural numbers 𝛼, 𝛽, 𝑐[𝛼, 𝛽] is given by
the following recursive formula:
𝑐 [𝛼, 𝛽] = (−𝑏

50
(1 + 𝑠) (2 + 𝛽) 𝑐 [−6 + 𝛼, 2 + 𝛽]

+ 𝑏

41
(1 − (1 + 𝑠) (1 + 𝛽)) 𝑐 [−5 + 𝛼, 1 + 𝛽]

+ 𝑏

32
(2 − (1 + 𝑠) 𝛽) 𝑐 [−4 + 𝛼, 𝛽]

+ 2 (1 + 𝑠) (2 + 𝛽) 𝑐 [−4 + 𝛼, 2 + 𝛽]

+ 𝑏

23
(3 − (1 + 𝑠) (−1 + 𝛽))

× 𝑐 [−3 + 𝛼, −1 + 𝛽]

+ 𝑏

14
(4 − (1 + 𝑠) (−2 + 𝛽))

× 𝑐 [−2 + 𝛼, −2 + 𝛽]

+ 𝑏

05
(5 − (1 + 𝑠) (−3 + 𝛽))

× 𝑐 [−1 + 𝛼, −3 + 𝛽] ) × (𝛼 (𝑠 + 1))

−1
,

(31)
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and, for any natural number 𝑚, 𝜔
𝑚
is given by the following

recursive formula:

𝜔

𝑚
= −𝑏

50
(1 + 𝑠) 𝑐 [−5 + 𝑚, 1]

+ 𝑏

41
𝑐 [−4 + 𝑚, 0] + 𝑏32 (

3 + 𝑠) 𝑐 [−3 + 𝑚, −1]

+ 2 (1 + 𝑠) 𝑐 [−3 + 𝑚, 1]

+ 𝑏

23 (
3 + 2 (1 + 𝑠)) 𝑐 [−2 + 𝑚, −2]

+ 𝑏

14
(4 + 3 (1 + 𝑠)) 𝑐 [−1 + 𝑚, −3]

+ 𝑏

05
(5 + 4 (1 + 𝑠)) 𝑐 [𝑚, −4] .

(32)

Taking expression (13) into account, the first four quasi-
Lyapunov constants of system (3) are given by

𝜆

1
= 0,

𝜆

2
∼

1

5

𝑏

41
,

𝜆

3
∼

2

7

𝑏

23
,

𝜆

4
∼

4

3

𝑏

05
.

(33)

Hence, we arrive at the following.

Theorem 12. System (3) has a center at the origin if and only
if the following set of conditions holds:

(𝐼𝐼𝐼) 𝑏

41
= 𝑏

23
= 𝑏

05
= 0.

Proof. It is direct to obtain condition (III) by imposing𝜆
𝑖
= 0,

𝑖 = 1, 2, 3, 4.
On the other hand, when condition (III) is satisfied, sys-

tem (3) reduces to

𝑑𝑥

𝑑𝑡

= 𝑦,

𝑑𝑦

𝑑𝑡

= 𝑥 (−2𝑥

2
+ 𝑏

50
𝑥

4
+ 𝑏

32
𝑥

2
𝑦

2
+ 𝑏

14
𝑦

4
) ,

(34)

whose vector field is symmetricwith respect to the origin.The
claim follows.

Remark 13. Indeed, in the light of the theory of [21], the origin
is not only a center but also an analytic center under condition
(III).

We obtain the following by expression (33).

Lemma 14. Theorigin of system (3) is a fine focus ofmaximum
order four. Further, it is of order four if and only if

𝑏

41
= 𝑏

23
= 0, 𝑏

05
̸= 0. (35)

Consider the perturbed system of (3):

𝑑𝑥

𝑑𝑡

= 𝛿 (𝜀) 𝑥 + 𝑦,

𝑑𝑦

𝑑𝑡

= 2𝛿 (𝜀) 𝑦 − 2𝑥

3
+ 𝑏

21
(𝜀) 𝑥

2
𝑦 + 𝑏

50
𝑥

5

+ 𝑏

41
(𝜀) 𝑥

4
𝑦 + 𝑏

32
𝑥

3
𝑦

2
+ 𝑏

23
(𝜀) 𝑥

2
𝑦

3

+ 𝑏

14
𝑥𝑦

4
+ 𝑏

05
𝑦

5
.

(36)

Theorem 15. Under a small perturbation of system (3), for a
small parameter 𝛿, in a neighborhood of the origin of system
(36), there exist exactly 4 small amplitude limit cycles enclosing
the elementary node 𝑂(0, 0).

Example 16. Take

𝛿 (𝜀) = 𝜀

20
,

𝑏

21 (
𝜀) = −𝜀

12
,

𝑏

41
(𝜀) = 𝜀

6
,

𝑏

23
(𝜀) = −𝜀

2
,

𝑏

05
= 1.

(37)

Straightforward computations by using expression (33) give
the first 4 quasi-Lyapunov constants of the origin of system
(36):

𝜆

1
= −

1

3

𝜀

12
+ 𝑜 (𝜀

12
) ≈ −0.333333𝜀

12
+ 𝑜 (𝜀

12
) ,

𝜆

2
∼

1

5

𝜀

6
+ 𝑜 (𝜀

6
) = 0.2𝜀

6
+ 𝑜 (𝜀

6
) ,

𝜆

3
∼ −

2

7

𝜀

2
+ 𝑜 (𝜀

2
) ≈ −0.285714𝜀

2
+ 𝑜 (𝜀

2
) ,

𝜆

4
∼

4

3

+ 𝑜 (1) ≈ 1.33333 + 𝑜 (1) .

(38)

Thereby, for 0 < 𝜀 ≪ 1, system (36) has 4 limit cycles Γ
𝑘
:

𝑟 = 𝑟(𝜃, ℎ

𝑘
(𝜀)) in a small neighborhood of the origin, where

ℎ

𝑘
(𝜀) = 𝑜(𝜀

𝑘
), 𝑘 = 1, 2, 3, 4.
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