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When new predators invade a habitat, either through range extensions or introductions, prey may be at a high risk because they
do not recognize the predators as dangerous. The nine-banded armadillo (Dasypus novemcinctus) has recently expanded its range
in North America. Armadillos forage by searching soil and leaf litter, consuming invertebrates and small vertebrates, including
salamanders. We tested whether Ozark zigzag salamanders (Plethodon angusticlavius) from a population coexisting with armadillos
for about 30 years exhibit antipredator behavior in the presence of armadillo chemical cues and whether they can discriminate
between stimuli from armadillos and a nonpredatory sympatric mammal (white-tailed deer, Odocoileus virginianus). Salamanders
appeared to recognize substrate cues from armadillos as a threat because they increased escape behaviors and oxygen consumption.
When exposed to airborne cues from armadillos, salamanders also exhibited an antipredator response by spending more time in
an inconspicuous posture. Additionally, individually consistent behaviors across treatments for some response variables suggest
the potential for a behavioral syndrome in this species.

1. Introduction

Invasive species have been implicated as a factor in pop-
ulation declines [1] and extinctions [2] of many species.
Whether due to introductions or range expansions, invasive
species can present challenges to native fauna in the form of
competition [3], predation [1], or introductions of disease
or parasites [4]. These problems can be exacerbated by the
inability of native species to recognize the threat imposed by
invaders so that they fail to perform appropriate evasive or
protective behaviors (e.g., [5–7]).

Predicting how prey respond to introduced predators is
not always straight forward. On the one hand, prey may
fail to respond appropriately to novel predators due to lack
of recognition of danger. On the other hand, introduced
predators may sometimes be less of a problem to native
prey. For example, in some cases, prey recognize cues from
introduced predators without experience, possibly because
the cues are similar to cues from their native predators
(“generalized predator recognition:” [8, 9]). Alternatively,
naı̈ve prey may recognize cues (particularly chemical cues)

from novel predators if the predators have recently eaten prey
that are of the same or similar species (reviewed in [10]).

The nine-banded armadillo (Dasypus novemcinctus)
recently has experienced a relatively rapid period of range
expansion [11]. Before the 1850s, the northern limit of the
armadillo’s range was northern Mexico, but the removal of
natural barriers and the addition of roadways and railways
allowed the armadillo to expand northward through Texas
and into Southern Oklahoma and Arkansas; by the 1990s,
the armadillo’s range included most of Missouri and parts
of Kansas and Nebraska [11]. In these regions armadillos
occupy woodland, bottomland, brushland, and savannah
habitats [12] where they are generalist foragers, apparently
consuming any appropriately sized prey encountered during
their searches of the leaf litter [13]. Stomach contents
from a sample of armadillos in Arkansas revealed that, in
addition to feeding on numerous taxa of invertebrates, they
also consume some vertebrates, such as small reptiles and
amphibians, including salamanders [14, 15].

Plethodontid (lungless) salamanders are especially
diverse and abundant in deciduous forests in eastern
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North America. They may be particularly vulnerable to
predation by armadillos because they are often active in leaf
litter habitats at night (e.g., [16–18]) when armadillos are
actively foraging [14]. Of particular concern are the small-
bodied plethodontids, such as the Ozark zigzag salamander
(Plethodon angusticlavius, 6.9–9.8 cm total length [19]),
which are similar in size and shape to one of the armadillo’s
most commonly consumed prey, the earthworm [15].

For plethodontid salamanders, a primary mode for
predator recognition is via chemical cues (“kairomones”
[20]) left on the substrate by the predator. Predator recog-
nition is typically tested by bioassays that determine whether
responses of salamanders to predator kairomones are con-
sistent with antipredator behavior. For example, stimuli
from predatory garter snakes (Thamnophis sirtalis) and ring-
neck snakes (Diadophis punctatus) have elicited avoidance
responses [21, 22] and reduced foraging activity [23–25]; the
latter behavior is consistent with both increased vigilance
and decreased visibility to visual predators. Physiologically,
antipredator responses can be manifested as increased respi-
ration (e.g., [26]), apparently as a component of the fright-
or-flight response.

Salamanders retrieve chemical cues from the substrate
(i.e., nonvolatile cues) using nasolabial cirri, and these cues
are assessed via the vomeronasal organ; airborne (volatile)
cues can be assessed using the main olfactory system [27].
Although salamanders experience predation from other
mammals (skunks, raccoons, and shrews [28]), we are not
aware of any studies that have investigated plethodontid
salamander responses to mammal kairomones.

We tested whether Ozark zigzag salamanders from a pop-
ulation near the northern extent of the armadillo’s expanded
range would (1) respond to chemical stimuli from armadillos
with behaviors that are consistent with an antipredator
response and (2) distinguish between chemical cues from
armadillos and a nonpredatory herbivorous mammal
(white-tailed deer, Odocoileus virginianus). We performed
a series of experiments where salamanders were exposed
to either volatile or nonvolatile cues from armadillos,
deer, and a blank control; we recorded both behavioral and
metabolic responses.

2. Methods

2.1. Salamander Collection and Maintenance. We collected
approximately 80 adult Ozark zigzag salamanders from sites
in Taney County, MO, USA and White County, AR, USA
during 2006–2009. Salamanders were housed in clear, plastic
Petri dishes (14.5 cm diameter, 1.5 cm depth) lined with
moistened filter paper and kept inside an environmental
chamber (19◦C, 12 : 12 light : dark cycle). We fed salamanders
a diet of 10–15 flies (Drosophila hydei) per week and changed
filter paper biweekly.

2.2. Collection of Stimuli. We captured three armadillos
with a landing net at Bull Shoals Field Station (BSFS) in
Taney County, MO, USA. We placed the armadillos in large
plastic containers (55 × 40 × 30 cm) at the field site and
collected fecal matter (20–75 mL from each individual) when

defecation occurred (within 60 s of capture). Armadillos
were immediately released at the capture site after collection
of feces. To serve as nonpredatory control stimuli, we also
collected several pieces of moist deer scat (50 mL total) in
fields at BSFS. The scat was collected at dawn and estimated
to be no more than 2-h old based upon the predawn activity
of this species [29].

All fecal samples were diluted (9 : 1 dechlorinated tap
water to fecal matter), homogenized with a blender, and
passed through Aqua-Pure filter fiber to remove solid
particles. The resulting liquid was divided into snap-cap
tubes (1.7 mL each) which were labeled and frozen. In
addition to the predator and nonpredator treatments, we
used dechlorinated tap water as a blank control. This control
was prepared in the same manner as the other samples but
without the addition of any fecal matter.

Experiment 1 (behavioral responses to substrate cues). We
conducted Experiment 1 during October 2007. We fed each
salamander 4–6 flies and changed its filter paper four days
before each trial, providing individuals with sufficient time
for pheromonal marking of the substrates [30]. We exposed
salamanders (n = 23) individually to each of three stimuli
(armadillo, deer, or blank water) in random order with four
days between exposures.

Five min before each trial, we removed a salamander
from its home Petri dish and placed it into a clean holding
dish. We poured one of the three stimuli into the home
Petri dish and rotated the dish to spread the stimulus evenly
across the filter paper. Then we returned the salamander to its
home dish which was surrounded by partitions on three sides
to minimize visual disturbance. Trials began immediately
after the salamander was introduced and lasted for 600 s.
Then an observer, who was blind to the treatment, recorded
movement time (time spent walking), edge time (time spent
with the head or body pressed against the sides of the Petri
dish), and time in the flat posture (entire ventral surface in
contact with substrate). Changes in activity and increased
edge time have been reported as responses to predatory
stimuli by salamanders in other studies (e.g., [31, 32]); flat
behavior has not been reported in an antipredator context,
but it is consistent with reduction of conspicuousness. After
the completion of a trial, we moved each salamander to a
clean Petri dish with new filter paper.

Experiment 2 (behavioral responses to airborne cues). In
April 2009, we tested salamander responses to airborne
stimuli. The stimuli were the same as in Experiment 1, but
we exposed the salamanders differently. During each trial, we
used a flow meter (Sable Systems, MFS2) to pump air (rate =
440 mL per min) from a container holding a stimulus sample
through a container that housed a salamander (Figure 1).
The container holding the stimulus was a clean Petri dish
with moistened filter paper, and the container holding
the salamander was its home Petri dish. We observed the
salamanders (n = 21) for 10 min and recorded the same
behavioral patterns as in Experiment 1: movement time,
edge time, and flat time. We exposed each salamander in
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Figure 1: Diagram of the testing apparatus used to test behavioral responses of salamanders to airborne cues in Experiment 2 (diagram
modified from Windel 2005). Salamanders occupied their home chambers which were connected by air line to stimulus chambers containing
diluted armadillo feces, deer feces, or blank water; air was pumped from the stimulus chamber through the salamander’s chamber via the
flow meter. Dotted arrows indicate direction of flow.
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Figure 2: Apparatus used for testing oxygen consumption by salamanders exposed to substrate cues in Experiment 3 (diagram modified
from Windel 2005). Air from a cylindrical chamber holding a salamander was pumped by the flow meter through an oxygen analyzer to
measure oxygen consumption during a sealed-chamber period of 12 min. Dark arrows indicate direction of flow.

a random order to each of the treatments, and the time
between exposures was 6-7 days.

Experiment 3 (physiological responses to substrate cues).
In May 2010, we recorded the oxygen consumption of
salamanders exposed to each of the three treatments (n = 17
per group). We placed salamanders in small chambers (6 mL
glass syringes); because salamanders frequently occupy
earthworm or similar-sized burrows in nature [33], the
small diameter of these tubes should not have represented a
substantial stressor. The inside of the chamber was lined with
filter paper that had been moistened with water from the
salamander’s home Petri dish. The chambers were kept inside
an environmental chamber that maintained a temperature
of 19◦C. Salamanders acclimated for 24 h in these chambers
before trials began.

At the start of a trial, one of the three stimuli was selected
and injected with a pipette onto the filter paper inside a
chamber holding a salamander. The chamber was connected
to an oxygen analyzer (Sable Systems, FC-10a; Figure 2) and
then sealed for 12 min. During this time, the oxygen analyzer
recorded oxygen concentration levels from air that was being
pumped (rate = 50 mL per min) through a control chamber.
The control chamber replicated the chamber holding the
salamander except that it did not contain a salamander. After
the 12-min period with the salamander’s chamber sealed, we
opened a valve that diverted air through the oxygen analyzer.
After recording the oxygen concentration passing through
the salamander’s chamber for 10 min, the valve was switched
so that the analyzer received control air again. Before air

reached the analyzer, it first passed through soda lime and
silica gel to remove carbon dioxide and water, respectively.
We analyzed the oxygen data using ExpeData Pro software,
and we selected the proportional area tool to calculate the
total amount of oxygen consumed during the same time
frame for each individual’s oxygen reading.

3. Results

Experiment 1 (behavioral responses to substrate cues). We
performed general linear mixed models (GLMMs) with the
experimental treatment as a fixed factor and subject as a
random factor. Post hoc comparison tests were performed
using Dunnett’s method to compare the armadillo and
deer treatments to the blank control. Only one salamander
performed flat behavior, so no data are presented for this
response variable.

Movement time differed significantly among treatments
(F = 11.17, df = 2, P < 0.001; Figure 3(a)). Comparison
tests revealed that movement time in the presence of
the armadillo cues was significantly greater than it was
in the blank control (P < 0.05), whereas movement
time did not differ significantly between the deer and
blank treatments (P > 0.05). The same pattern was
found for edge time (F = 6.46, df = 2, P = 0.003),
salamanders exposed to armadillo cues spent more time
on the edge than those in the blank treatment (P < 0.05),
and there was no difference between edge time in the
deer and blank treatments (P < 0.05; Figure 3(b)).
There also were consistent differences among individuals
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Figure 3: Experiment 1: behavioral responses to substrate cues.
Time spent moving (a) and time spent on the edge of the arena (b)
for salamanders exposed to stimuli from armadillos, deer, or blank
control water. Bars and error bars represent means± 1 SE. Asterisks
indicate statistical significance.

with respect to movement time (F = 3.64, df = 22, P <
0.001) and edge time (F = 5.04, df = 22, P < 0.001).

Experiment 2 (behavioral responses to airborne cues). For
Experiment 2, the GLMM analysis showed no statistical
differences among the treatments for movement time (F =
1.26, df = 2, P = 0.294; Figure 4(a)) or edge time (F =
1.24, df = 2, P = 0.804), and no differences existed
among individuals for these variables (movement time: F =
0.99, df = 22, P = 0.497; edge time: F = 1.03, df =
22, P = 0.450). However, flat time was significantly different
among individuals (F = 3.29, df = 22, P < 0.001) and
marginally different among treatments (F = 2.69, df =
2, P = 0.080; Figure 4(b)).

Experiment 3 (physiological responses to substrate cues).
The individuals in Experiment 3 were only tested once
(i.e., independent groups), so we were unable to test
for differences among individuals. To assess differences
among treatments, we used a nonparametric Kruskal-Wallis
ANOVA because the data were not normally distributed.
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Figure 4: Experiment 2: behavioral responses to airborne cues.
Time spent moving (a) and time spent in a flat posture (b) for
salamanders exposed to stimuli from armadillos, deer, or blank
control water. Bars and error bars represent means ± 1 SE.

Oxygen consumption is affected by body size, so we per-
formed the analysis on the residuals of the oxygen data
regressed against the mass of the salamanders after log-
transforming both variables because of their curvilinear
relationship in amphibians [34]. This statistical method
was also used by Ligon and Peterson [35] for analyzing
similar metabolic data in turtles. Statistical testing revealed a
significant difference among the treatments (H = 6.06, P =
0.048; Figure 5). We then performed post hoc Dunnett’s
method comparisons, which indicated that, compared to the
blank control, salamanders responded to armadillo stimuli
with increased oxygen consumption (P < 0.05) but did not
respond differently when exposed to deer stimuli (P > 0.05).

4. Discussion

Numerous species of plethodontid salamanders may be
affected by the recent and future expansions of the
armadillo’s range. Thermal models, based on environmental
criteria such as the annual number of freeze days, lead to
the prediction that the armadillo will eventually move into
the northeastern United States, including Appalachia [11]
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Figure 5: Experiment 3: physiological responses to substrate cues.
Oxygen consumption index by salamanders exposed to stimuli
from armadillos, deer, or blank control water in a closed chamber
for 12 min. Bars and error bars represent means ± 1 SE. The
asterisk represents statistical significance. Index = residuals of
log-transformed oxygen consumption (µL) regressed against log-
transformed mass (g).

where plethodontid salamander diversity is highest [36].
The Ozark zigzag salamander has lived sympatrically with
armadillos for a relatively short period of time and, thus,
provides a suitable model for understanding the effects, if
any, that armadillo expansion may have on armadillo-naı̈ve
populations of salamanders.

Our data indicate that Ozark zigzag salamanders can dis-
criminate between chemical stimuli from feces of armadillos
(potential predators) and deer (nonpredators). In nature,
feces are patchily distributed, so substrate cues would only
be sporadically available as warning cues. We do not know
the distance at which airborne cues from armadillo feces
travel, but these cues might provide an earlier warning
than substrate cues. Either airborne or substrate cues given
off by the body of the armadillo, as opposed to feces,
could provide a more efficient warning source, and future
experiments should test whether these cues are detected by
salamanders.

Interestingly, there also was an effect of individual subject
on responses to the stimuli. Therefore, individuals that had
relatively low-level responses to one cue tended to have
relatively low-level responses to the other cues, and vice
versa. Movement time (general activity) and edge time (a
presumed escape activity) were individually consistent for
substrate cues, and flat time was consistent for individuals
for airborne cues. Similar individual differences in general
activity and antipredator activity have been seen for a
variety of species, including crabs (Heterozius rotundifrons)
[37], European house crickets (Acheta domesticus) [38], and
smallmouth bass (Micropterus dolomieu) [39]. Individual
consistencies in behavior across more than one context
(“behavioral syndromes”) may have important implications
for evolutionary ecology, including the maintenance of
behavioral variation, the occurrence of behaviors that are
apparently maladaptive, and characteristics of species such
as the propensity to be invasive [40].

Overall, salamander responses to the armadillo cues
were consistent with antipredator responses, but the nature
of the response differed for volatile and nonvolatile cues.
Salamanders responded to substrate cues from armadillos
with increases in activity (Experiment 1), edge behavior
(Experiment 1), and oxygen consumption (Experiment 3).
Therefore, it appears that the primary antipredator strategy
when substrate cues are detected is escape. Increased edge
behavior has been reported for plethodontid salamanders in
response to alarm/distress chemicals from conspecifics and
has been interpreted as attempts to escape the chamber or to
find crevices to serve as refuges [23, 31]. Increases in general
(nonforaging) activity have also been reported in response to
snake kairomones (e.g., [41]). Numerous other species (e.g.,
[42, 43]), including some salamanders (e.g., [32, 44]), have
shown the opposite responses of freezing or reduced activity,
which presumably increases the probability that the prey
will escape detection by visual predators. The tactic (flight
versus freezing) chosen by prey is likely due in part to the
type of foraging mode used by predators. Armadillos forage
by digging or probing the ground with the nose [45], so
freezing or reduced activity would be ineffective antipredator
behaviors. Substrate cues may indicate that the armadillo is
(or has recently been) in close proximity and so represents an
immediate threat.

In contrast, salamanders exposed to airborne cues from
armadillos did not increase their movement time or edge
time, but instead spent more time performing the flat
posture (Experiment 2). Although not statistically signifi-
cant, activity tended to decrease in response to airborne
cues from armadillos, which was opposite to the response
to substrate cues in Experiment 1. Airborne cues may
indicate that an armadillo is in the general vicinity, but
not necessarily an immediate threat; in this case, flight
might be a dangerous strategy that could result in the
salamander drawing the predator’s attention or bringing it
into the predator’s perceptual field. Alternatively, airborne
cues may not provide sufficient information for salamanders
to determine the precise nature of the threat. In any case, the
response to airborne cues appears to be primarily a reduction
in conspicuous behavior.

What is the mechanism by which Ozark zigzag sala-
manders discriminate between armadillo and deer stimuli?
The salamanders may have detected armadillos specifically
as a predator, perhaps through previous experience with
armadillos, or they may have simply detected cues associated
with the diet of the armadillo. Another small terrestrial
salamander, the redback salamander (P. cinereus), is known
to be sensitive to dietary cues associated with snake predators
[41, 46]. Any predator that consumes invertebrate prey from
the leaf litter is likely a threat to small terrestrial salamanders,
so avoiding cues produced as metabolic byproducts of
digestion of these prey is likely to be a good antipredator
tactic. Furthermore, there may have been general chemical
differences between feces from an herbivore such as deer and
a carnivore such as armadillo. One potential way to address
this question would be to test salamanders from more
northeasterly populations (outside the range of armadillos).
Because those salamanders would lack evolutionary history
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with armadillos, a response comparable to those in our
experiments would suggest the recognition of diet-related
cues, rather than to non-diet-related scents associated with
the armadillo. Similarly, a lack of response by northeasterly
populations would suggest that the responses we observed in
our study were not solely based on diet cues. If the latter case
is correct, populations of armadillo-naı̈ve salamanders may
face some initial vulnerability to armadillo expansion, but
if so, it appears that the ability to recognize armadillo cues
is either learned (e.g., [47]) or evolves (e.g., [48]) relatively
quickly.
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