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To investigate the relationship between cyclist violation and waiting duration, the red-light run-
ning behavior of nonmotorized vehicles is examined at signalized intersections. Violation waiting
duration is collected by video cameras and it is assigned as censored and uncensored data to
distinguish between normal crossing and red-light running. A proportional hazard-based duration
model is introduced, and variables revealing personal characteristics and traffic conditions are
used to describe the effects of internal and external factors. Empirical results show that the red-
light running behavior of cyclist is time dependent. Cyclist’s violating behavior represents positive
duration dependence, that the longer the waiting time elapsed, the more likely cyclists would end
the wait soon. About 32% of cyclists are at high risk of violation and low waiting time to cross
the intersections. About 15% of all the cyclists are generally nonrisk takers who can obey the
traffic rules after waiting for 95 seconds. The human factors and external environment play an
important role in cyclists’ violation behavior. Minimizing the effects of unfavorable condition in
traffic planning and designing may be an effective measure to enhance traffic safety.

1. Introduction

Urban traffic problem is widely recognized as one of the main maladies of life in large cities.
Many scholars have paidmuch attention to the traffic problem [1, 2]. AMix of non-motorized
andmotorized vehicles is an important traffic type in China. Some surveys show that the non-
motorized vehicle is one of the most widely used traffic tools in Chinese daily travel activity
[3]. At present, cycling still has heavy proportion among all travel modes in China, and in
Tianjin, as large as over 60% [4]. Even in the developed countries, bicycle travel is recognized
as a low-energy consumption and as being healthy to the users and it does not damage the
health of others. Meanwhile, the electric bike (e-bike) has emerged as a popular mode of
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transportation in many large cities during recent years. E-bike use has rapidly expanded
in China, in the process changing the mode split of many cities. Currently, China produces
over 20 million e-bikes yearly, up from a few thousands a decade ago [5]. E-bikes in China
are defined as electric two-wheelers with relatively low speeds and weights compared to
a motorcycle. Both bicycle-style e-bikes (with functioning pedals) and scooter-style e-bikes
(with many features of gasoline scooters) are classified as bicycles and are given access to
bicycle infrastructure.

However, the growing popularity of cycling traffic also entails safety concerns as
observed in accident statistics. Accident analysis reveals that over 60% of fatal crashes
involving cyclists result from violation of traffic rules [6]. One typical type of rule violation
behavior is violation behavior at red period. Because of the poor law enforcement and peo-
ples’ low safety awareness, violation behavior at red period is rather prevalent and represents
a substantial safety problem in Chinese urban intersections. Especially, electric bicycles with
relatively high speed are likely to increase the risk of traffic incident.

Previous research on drivers and pedestrians also points to several variables of interest
regarding violation behaviors. Keegan and O’Mahony gave reports about pedestrians’ street-
crossing behavior influenced by travel distance and waiting time [7]. Other researchers paid
much attention to the influences of personal features on the street-crossing behavior [8–10].
Some useful reviews of the existing research on pedestrian street-crossing behavior in urban
areas can be found in Ishaque and Noland [11] and Papadimitriou et al. [12].

Unfortunately, only a few studies have investigated the violation behavior of cyclists.
Johnson et al. identified three distinct types of violated cyclists that are exposed to different
levels of risk: racers, impatients, and runners [13]. Johnson et al. used video recordings to
analyze urban commuter cyclists’ violation behaviors in Melbourne, VIC, Australia [14]. The
field observation approach was also used by researchers studying the influence of cycle paths
on accident numbers [15].

In this paper, a hazard-based duration approach is adopted to describe the cyclist
violation behavior at signalized intersections. The hazard-based duration models have been
used extensively in biometrics and reliability engineering for decades [16]. Duration models
can be used to determine causality in duration data and they are also useful tools in the field
of transportation [17–21]. These models represent a type of analytical methods to describe
the duration of a certain state and how various factors have affected the duration. More
importantly, duration models can deal with not only uncensored data but censored data.
For example, the exact waiting duration reflecting cyclist endurance cannot be observed if
cyclists could wait until the permission of traffic rules. However, most statistical models
are unable to analyze these uncensored data. Accordingly, cyclists’ waiting times are
modeled by a proportional hazard-based duration model. The covariates relevant to traffic
conditions and personal features are investigated to capture the influenced factors of cyclist
behavior. The results give the time when cyclists are easy to violate traffic rules and the
significantly influential factors on waiting behavior. The findings will imply some effective
countermeasures for improving the road safety of urban intersections.

2. Method

2.1. Duration Model

The variable of interest in durationmodel is the survival time that elapsed from the beginning
of an event until its end. The waiting time of a cyclist at red light can be regarded as
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the waiting duration that starts when a cyclist arrives at the intersection at the red period
and ends when the cyclist begins to cross the intersection.

Let T be a nonnegative variable representing the waiting duration of a cyclist at
a signalized intersection. Let f(t) denote the probability density function of T and the
cumulative distribution be

F(t) = Pr(T ≤ t) =
∫ t

0
f(u)du. (2.1)

Let S(t) denote the probability that the waiting duration does not end prior to t

S(t) = 1 − F(t) = Pr(T > t) =
∫∞

t

f(u)du. (2.2)

S(t) is called survival function or survivor probability. The survival function is defined to be
the probability that the waiting time of a cyclist at a red light is longer than some specific
time, t.

In the survival analysis, T can be characterized by a hazard function, h(t). The hazard
function under study is the instantaneous rate at which the waiting duration will end in an
infinitesimally small time period, Δt, after time t, given that the duration time has lasted to
time t

h(t) = lim
Δt→ 0

Pr(t ≤ T < t + Δt | T ≥ t)
Δt

= lim
Δt→ 0

P(t ≤ T < t + Δt)
Δt × Pr(T ≥ t)

=
f(t)
S(t)

=
−d lnS(t)

dt
. (2.3)

Note that the waiting time of a cyclist is influenced by various factors. The influential
factors can be defined as a vector of explanatory variables, x = (x1, x2, . . . , xp)

′. To
accommodate the effects of these influential factors is a main objective of this paper. Thus the
proportional hazard form is introduced, which specifies the effects of explanatory variables
to be multiplicative on a hazard function

h(t) = h0(t)g(x,β), (2.4)

where h0(t) is called the baseline hazard function and can be interpreted as the hazard
function when all covariates are ignored. g(·) is a known function to represent the effects
of explanatory variables, β = (β1, β2, . . . , βp) is a vector of estimable coefficients for x. In this
paper, a typical specification with g(x,β) = exp(βx), which was proposed by Cox [22], is
used. The specification is convenient since it guarantees the positivity of the hazard function
without placing constraints on the signs of the elements of β. The Cox proportional hazard
model is

h(t) = h0(t) exp(βx). (2.5)



4 Discrete Dynamics in Nature and Society

Combining (2.3) and (2.5), the survival function can be written as

S(t) = exp

[
−
∫ t

0
h(w)dw

]
=

{
exp

[
−
∫ t

0
h0(w)dw

]}exp(βx)

=
{
exp[−H0(t)]

}exp(βx)
, (2.6)

where H0(t) =
∫ t
0 h0(w)dw represents the baseline cumulative hazard function. Thus, the

covariates can be incorporated into the survival function.

2.2. Model Estimation

The main interest of this paper is to identify from the p covariates a subset of variables
that affects the hazard more significantly, and consequently, the waiting duration time at a
signalized intersection. We are concerned with the regression coefficients. If βi is zero, the
corresponding covariate is not related to the waiting time. If βi is not zero, it represents
the magnitude of the effect of xi on hazard when the other covariates are considered
simultaneously.

To estimate the coefficients, β1, β2, . . . , βp, a partial likelihood method is adopted.
Suppose that k of the duration times from n cyclists is observed and distinct. Let t(1) <
t(2) < · · · < t(k) be the ordered k distinct duration times with corresponding covariates
x(1), x(2), . . . , x(k). Let R(t(i)) be the risk set at time t(i). R(t(i)) consists of all cyclists whose
duration times are at least t(i). For the particular duration time t(i), conditionally on the risk
set R(t(i)), the probability is

exp
(∑p

j=1 bjxj(i)

)
∑

l∈R(t(i)) exp
(∑p

j=1 bjxjl

) =
exp

(
βx(i)

)
∑

l∈R(t(i)) exp(βxl)
. (2.7)

Each distinct duration time contributes a factor and hence the partial likelihood function is

L(β) =
k∏
i=1

exp
(∑p

j=1 bjxj(i)

)
∑

l∈R(t(i)) exp
(∑p

j=1 bjxjl

) =
k∏
i=1

exp
(
βx(i)

)
∑

l∈R(t(i)) exp(βxl)
(2.8)

and the log-partial likelihood is

l(β) = logL(β) =
k∑
i=1

⎧⎨
⎩βx(i) − log

⎡
⎣ ∑

l∈R(t(i))
exp(βxl)

⎤
⎦
⎫⎬
⎭. (2.9)

The overall goodness of fit of the model estimation is determined by the likelihood
ratio (LR) statistics, which is specified as

XL = −2
[
l
(
β0

) − l
(
β̂
)]

, (2.10)
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Table 1: Covariates selection and explanation.

Covariate Type Explanation

AG (age group) Binary indicator 1 if old (≥50), 0 otherwise
GEN (gender) Binary indicator 1 if male, 0 female
NT (nonmotor vehicle type) Binary indicator 1 if electric bike, 0 human-powered bike

WN (waiting number) Continuous variable The number of other cyclists that are waiting for a
green light when arrives

CN (crossing number) Continuous variable The number of other cyclists that are crossing
agiainst the red light when arrives

TC (twice crossing) Binary indicator 1 if twice crossing behavior, 0 otherwise

MV (motor vehicle volume) Continuous variable Average motor vehicle volume per lane per min on
red-light phase when the cyclist arrives

TT (travel time) Binary indicator 1 if a cyclist travels in peak hour, 0 otherwise

where l(β0) is the log-partial likelihood for null model with all the regression coefficients are
set as zero and l(β̂) is the log-partial likelihood at convergence with p regression coefficients.
The Cox proportional hazard model has been widely cited in the literature. For the estimation
ofH0(t) and other detailed discussion of this model see, Lee and Wang [16] and Bhat [17].

2.3. Covariate Selection

The covariate selection takes into account the previous research [13, 14] and arguments
regarding the effects of the exogenous variables on cyclist crossing behavior. The practical
effects on waiting behavior and the feasibility of data acquisition are considered in the
covariate selection. Two broad sets of variables are considered as covariates: personal
characteristics and traffic conditions. Personal characteristics involve age and gender. The
selected covariates of traffic conditions can determine the effects on the waiting time and
traffic volume. The following covariates, as shown in Table 1, are adopted to construct the
duration model.

3. Survey and Data

3.1. Site Survey Design

To record cyclists’ waiting durations, the whole red-light period of a signal cycle was
observed as a data collection unit. Only the cyclists who arrived in the red-light period
were defined as a valid sample. The waiting duration was from the time a cyclist arrived
at the crossing location to the time he/she began to cross. It can be classified into two kinds:
uncensored data and censored data. The uncensored datawas defined as thewaiting duration
which endedwithin the red-light period (violating crossing). Otherwise, thewaiting duration
was called as the censored data as long as it ended within the green-light period (normal
crossing). For the censored data, it is unknown about the exact waiting duration which can
reflect the endurance of waiting time for cyclists.

The site survey was conducted at three selected signalized intersections near Jiaotong
University in Beijing, China. Data collections were done by placing video cameras at each
location. The survey periods included peak hour (7:30 a.m.–9:30 a.m.) and offpeak hour
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Table 2: Estimation in waiting duration model.

Variable Coefficient (β) Standard error Wald statistic Exp (β) P value
AG −0.673 0.395 2.905 0.510 0.088
GEN 0.325 0.227 2.053 1.383 0.152
NT 0.471 0.193 5.953 1.601 0.015
WN −0.129 0.031 17.106 0.879 <0.001
CN 0.342 0.071 23.418 1.408 <0.001
TC 0.853 0.217 15.453 2.346 <0.001
MV −0.170 0.065 6.876 0.844 0.009
TT 0.365 0.124 8.595 1.440 0.003

(10:00 a.m.–4:00 p.m.). The survey area covered the zebra crossing and a part of traffic lanes so
that the cyclist crossing behavior and the corresponding traffic conditions can be monitored
clearly. Some additional explanations are needed for the site survey.

(a) The signals were old traditional person heads so that the influence of type of signals
could be neglected [7]. The selected sites had similar characteristics involved
geometric, and traffic conditions, traffic control.

(b) The survey was conducted in good weather and the absence of pointsmen. Cyclists
were unobtrusively observed.

3.2. Descriptive Statistics

Of the 459 valid observations, 295 (64.27%) cyclists violated the traffic regulations. The
average waiting time of all samples was 25.16 seconds, with a standard deviation of 27.13
seconds. The average waiting time of the violating crossing was 15.71 seconds while the
average waiting time of the normal crossing is 43.14 seconds. Themaximumwaiting duration
was 116 seconds while the minimum was 0 second. The latter means people cross the street
without any wait. This descriptive statistic cannot reflect the exact waiting behavior due to
the neglect of the censored data. The estimation of the waiting duration with censored data
will be discussed later.

4. Empirical Results

The results are discussed in two sections. The overall results are presented in the first section
including model fit statistics and survival probability estimation. The second subsection
presents the effects of covariates.

4.1. Overall Results

(1) Model fit statistics: the LR statistic of the estimated model clearly indicates the overall
goodness of fit (the LR statistic is 3201.0, which is greater than the chi-squared statistic
with 8 degrees of freedom at any reasonable level of significance). The significant level
corresponding to each covariate is given by P value in Table 2. From the results, most of
the included covariates are statistically significant at the 0.10 level of significance. It means
that these covariates are significantly related to violation behavior. Only gender has relative
low significant level. It is partly because that the female rate (24.2%) in the sample is relative
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Figure 1: Survival probabilities versus waiting duration.

low. The significance level of each covariate suggests that the importance of covariate should
be interpreted carefully.

(2) Survival probability: Figure 1 gives the survival probability calculated by the
duration model, which represents the probability of complying with the traffic rules while
waiting at the signalized intersections. The survival probability for estimated model presents
a general decline trend with elapsed waiting duration. The survival probability can be
divided into three parts according to the gradient. Firstly, a sharp decline for the short
duration indicates that there are a number of cyclists would violate to cross without any delay.
Especially, about 32 percent of cyclists can be defined as risk takers since they show high
violation inclination and very low waiting endurance (<3 seconds). Then, the probability
decreases smoothly from 3 seconds to 95 seconds. This steady reduction reflects that the
number of cyclist violations is increasing continuously. The declining trend of the survival
probability indicates that the red-light running behavior of most cyclists is time dependent.
It means that cyclists are easy to end waiting duration and violate the traffic rules with the
elapsed duration. Note that about half of the observed cyclists cannot endure 29 seconds
or longer. Finally, there are 15 percent of cyclists who wait and wait longer, and they are
generally non-risk takers.

(3) Figure 1 also gives the comparison between the estimated survival probability
and the observed survival probability. Here, the estimated results are calculated by the Cox
proportional hazard model; while the observed results are calculated by the nonparametric
approach in which the covariate effects are not considered. The detailed discussion of the
non-parametric approach can refer to the work of Lee and Wang [16]. The results show that
there are some differences between them though the general shape is the same between the
two results. Specifically, compared to the estimated results, the observed survival probability
is smaller until about 24.0 s, larger thereafter. This difference is expected to be the covariate
effects, at least partly. The observed results indicate the waiting time under the specific
condition for individual sample, while the estimated results indicate the waiting time under
the average condition for all the samples. The estimated survival probability reflects the
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characteristics of the waiting time which has an average value for every variable. Any change
of the variables could influence the estimated results. The effects of variables are discussed in
the next subsection.

4.2. Analysis of Covariate Effects

According to (2.5), the effects of the explanatory variables can be interpreted by the signs of
the coefficients in a rather straightforward fashion. If the coefficient is negative, it implies that
an increase in the corresponding variable decreases the hazard rate, or equivalently, increases
the waiting duration. With regard to the magnitude of the variable effects, when a variable
changes by one unit, the hazard would change by [exp(β) − 1] × 100%.

To assess the effects of the explanatory variables on the duration time, a function of
hazard ratio (HR) can be obtained by dividing both sides of (2.5) by h0(t), yield

log
hi(t)
h0(t)

= βxi = β1x1i + β2x2i + · · · + βpxpi, (4.1)

where the x’s are covariates for the ith cyclist; β = (β1, β2, . . . , βp) is a vector of the coefficients
which has been estimated by using the Cox proportional hazard model. The left side of (4.1)
is a function of hazard ratio (HR) and the right side is a linear function of the covariates and
their respective coefficients. The HR can represent the multiple relations between the hazard
under the covariate effects and the hazard when all variables are ignored.

If the covariates are standardized about the mean and the model used is

log
hi(t)
h0(t)

= β(xi − x) = β1(x1i − x1) + β2(x2i − x2) + · · · + βp
(
xpi − xp

)
, (4.2)

where x = (x1, x2, . . . , xp)
′ and xj is the average of the jth covariate for all cyclists, the left side

of (4.2) is the logarithm of the relative hazard ratio (RHR). RHR represents the hazard ratio
for a cyclist with a given set of values to that for a cyclist which has an average value for
every covariate. If RHR is more than one, it means that the covariate effects can increase the
hazard and so the variables are favorable. That is to say, the waiting time in such a favorable
condition is less than the average level of the survey sample. On the contrary, the unfavorable
variable corresponds to a low hazard. Therefore, a cyclist in the unfavorable condition would
have longer waiting time than that in the favorable condition.

In order to make a quantitative analysis on the effects of covariates, the relative hazard
for each variable is calculated by considering favorable or unfavorable values of that variable,
assuming that other variables are at their average value. The favorable or unfavorable values
of that variable are given on the basis of the hazard with the value of the variable. The value
of the variable with the low hazard is regarded as the favorable condition. Take the age as
an example, old people are defined as the favorable condition since old people have lower
violation risk than young people. The assumed conditions and corresponding RHRs andHRs
are shown in Table 3. The RHRs for three continuous covariates are shown in Figure 2.

The effect of age (AG) indicates that older cyclists have longer waiting time. This is
partly because older cyclists have stronger risk consciousness of traffic violations. In addition,
older cyclists’ trip purposes are seldom related to work or school so they are not in a hurry.
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Table 3: Estimation of RHRs and HRs for assumed covariates.

Variable Mean Variables value Relative hazard ratio
Hazard ratioFavorable Unfavorable Low hazard High hazard

AG 0.758 1 0 0.85 1.67 1.96
GEN 0.075 0 1 0.98 1.35 1.38
NT 0.535 0 1 0.78 1.24 1.60
WN 1.913 8 0 0.35 1.28 2.81
CN 0.235 0 4 0.92 3.62 3.93
TC 0.059 0 1 0.95 2.23 2.35
MV 6.610 8 1 0.79 2.60 3.29
TT 0.501 0 1 0.83 1.20 1.44

Note that this conclusion is a statistical result; traffic violations involved older cyclists are
also common sometimes.

The effect of gender (GEN) indicates that male cyclists have shorter waiting time and
higher tendency to disobey the traffic rules. They are 1.38 times more likely than females to
have shorter waiting times. Hamed reported that male pedestrians are 2.61 times more likely
than females to have shorter waiting times [23], and other qualitatively similar results were
obtained by Tiwari et al. [24].

The effect of covariate nonmotor vehicle type (NT) indicates that cyclists of electric
bike have shorter waiting time and higher tendency to disobey the traffic rules. They are 1.60
times more likely than human-powered bicyclists to have shorter waiting times.

The waiting time of cyclists would increase with the bigger number of other cyclists
that are waiting for a green, (WN) when arrives (see Figure 2(a)). Otherwise, the waiting
time decreases with the bigger number of other cyclists that are crossing against the red
light (CN) when arrives (see Figure 2(b)). This is caused by two reasons. First, many people
may consider that the more people cross together, the safer they would be. They take it for
granted that drivers must yield to a group of people more often than one person. Second, the
conformity psychology would work well in dense cyclist environments.

The effect of covariate TC (twice crossing) shows that the cyclists of twice crossing
have higher hazard and shorter waiting time. Cyclists who are apt to twice crossing behavior
have little or no patience to wait at a red light. They are 2.35 times more likely than one-time
crossing cyclists to have shorter waiting times.

The effect of covariate MV (motor vehicle volume) indicates that heavy traffic can
increase waiting time or decrease the risk of cyclist violations (see Figure 2(c)).This is because
that the larger motor vehicle volume is, the smaller the average time gap between successive
cars is.

The characteristics of travel time also have impacts on cyclists’ red-light running
behavior. It indicates that cyclists are at high risk level of traffic violation in peak hour. The
cyclists who travel in peak hour are 1.44 times more than those who travel in offpeak hour to
end waiting duration and cross illegally. In peak hour period, both cyclists and drivers are in
a hurry to the destination related to work or school, so the heavy mixed traffic with impatient
cyclists and drivers would cause traffic accidents easily.

5. Conclusions

This paper applies a proportional hazard-based duration model to study the cyclist crossing
behavior at signalized intersections by using data acquired in Beijing, China. The crossing
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Figure 2: Relative hazard ratios for three continuous variables.

behavior is examined by modeling the duration between the arrival at survey area and the
start to cross the intersection. If cyclists violate the traffic rules to cross the intersection,
their waiting times are recorded as uncensored data, while the waiting durations of normal
crossing are recorded as censored data.

The paper provides several important insights into the determinants of the regularity
and frequency of cyclist crossing behavior, especially the relation between violation behavior
and waiting duration. First, the results indicate that the crossing behavior of cyclists is time
dependent, as well as the risk of traffic violation. Cyclists’ crossing behavior presents positive
duration dependence, which also implies a “snowballing” effect. It means the longer the
time has elapsed since the start of the waiting duration, the more likely cyclists will end
the wait soon. Such positive duration dependence also indicates that longer waiting time
would increase the risk of cyclist violation. Second, some crucial time points deserve our
concern: 3 seconds and 95 seconds. The 3 seconds indicate cyclists who are at high risk of
violating crossing the street and low waiting time, and they account for 32% of the sample in
the study. The duration of 95 seconds reflects the cyclists’ endurance. About 15 percent of all
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the cyclists can obey the traffic rules after waiting for 95 seconds. These people are generally
non-risk takers. Third, the human factors and the external environment play an important
role in red-light running behavior. Various factors in the unfavorable condition could increase
the risk of traffic violation, as well as traffic accidents. The effects of covariates can help
to modify cyclists’ crossing behavior. Specifically, rational traffic planning and designing
should fully consider cyclist behavioral characteristics. More importantly, minimizing the
effects of unfavorable condition involved human factors may be an effective measure to
obtain conscious cooperation and behavioral changes of cyclists. Finally, it is noted that, for
different cities, the model should be estimated by using the specified field data. Additionally,
the explanatory variables can be chosen flexibly according to the research aim and the traffic
reality.

In terms of the future work, more parameters under different situations should be
taken into account. Next, some engineering solutions should be proposed to improve the safe
crossing behavior of cyclists in urban traffic environment. In addition, from the viewpoint
of cyclist prevention, the interaction between cyclists and motor vehicles could be analyzed
based on such crossing behavior. Findings from this paper may partly supplement previous
research which helps us in inspiration. It is also hoped that these findings may give better
understanding of cyclist behavioral characteristics at signalized intersections and help to plan
and design proper facilities for non-motorized vehicles.
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