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Three-dimensional elastic-plastic contact of two nominally flat rough surfaces is considered. Equations governing the shoulder-
shoulder contact of asperities are derived based on the asperity constitutive relations from a finite element model of the elastic-
plastic interaction proposed by Kogut and Etsion (2002), in which asperity scale constitutive relations are derived using piecewise
approximate functions. An analytical fusion technique is developed to combine the piecewise asperity level constitutive relations.
Shoulder-shoulder asperity contact yields a slanted contact force consisting of two components, one in the normal direction and a
half-plane tangential component. Statistical summation of the asperity level contact force components and asperity level contact
area results in the total contact force and total contact area formulae between two rough surfaces. Approximate equations are
developed in closed form for contact force components and contact area.

1. Introduction

The GW theory [1] of contact between nominally flat rough
surfaces has been preferred by numerous researchers as it
benefits from relatively simple representation of a rough
surface. It is based on a statistical account of a rough
surface in which three parameters are identified. These
include (1) standard deviation of asperity height distribu-
tion, σ ; (2) average asperity summit radius of curvature, β;
(3) area asperity density, η. The GW model treats both elastic
and plastic contacts and it presumes that asperity contacts
occur independent of each other, that is, no influence from
adjacent local contacts on a given asperity contact. In the
treatment of elastic interaction, GW model relies on the
presumption of the Hertz contact. The GW model has
been followed by numerous other studies, as summarized
in the review paper by Adams and Nosonovsky [2], which
take into account various aspects of surface topography
such as contact between two rough surfaces, nonuniform
radii of the asperities, non-Gaussian distributions of the
asperity summit heights, anisotropy, and plasticity. The work
proposed by Greenwood and Tripp [3] extended the GW
model to contact between two rough surfaces. Greenwood

and Tripp (GT) demonstrated that the contact between two
rough surfaces could be treated as that between a flat and a
rough surface if the composite statistics of the two surfaces
are employed. Namely, Gaussian distribution of heights is
in terms of the height sum distribution of the surfaces and
the standard deviation of asperity height sum distribution is
employed in the formulation of contact. This simplification
required a modified function related to the interference of
asperities involving the integration of interference function
over the range of asperity tangential offset. McCool [4]
extended GW microcontact model to include skewness in
the distribution of surface summit heights and the presence
of a surface coating of prescribed thickness and compliance.
Recently, Sepehri and Farhang [5] developed an elastic model
for two nominally flat rough surfaces in which asperity
shoulder-shoulder contact was permitted to derive formulae
for elastic contact of two rough surfaces.

A major contribution to the modeling of nominally flat
rough surfaces is the work in 1987 by Chang et al. [6],
who proposed a method for treating elastic-plastic contact
of rough surfaces. This model, widely known as the CEB
model, is based on volume conservation of an asperity during
its plastic flow. The CEB model enjoys the simplicity of the
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Figure 1: Elastic-plastic contact of two rough surfaces-for wc2 < wc1, elastic-plastic behavior would be dominated by the Surface 2.

GW model while providing a predictive tool for contact
problems not amenable to an elastic contact assumption.
Many publications have appeared since the CEB model
that are based on the CEB or are inspired by the method
employed by the CEB model [7–35]. Many researchers have
employed statistical models for the elastic-plastic contact of
rough surfaces [7–17]. Others have advocated the use of
deterministic methods based on fractal characterization of
roughness [18–35].

Another approach is to use the finite element method
(FEM) to study the elastic-plastic contact of a single asperity
contact. Kogut and Etsion (KE) [36] performed such an FEM
analysis of an elastic-perfectly plastic spherical asperity in
contact with a rigid flat. The KE model was then used to
give empirical expressions for the contact area, the contact
force and the average contact pressure as functions of the
interference. Jackson and Green [37] also studied an elastic-
perfectly plastic hemisphere in frictionless contact with a
rigid flat using the FEM and with material yielding based
on the Von Mises criterion. This model went farther into
the elastic-plastic regime and also examined a wider range of
conditions. The finer meshes provided more accurate results
over the entire range of deformation. Etsion et al. [38] and
then Jackson et al. [39] analyzed different aspects of single
unloading of an elastic-plastically loaded sphere in contact
with a rigid flat for a wide range of sphere material properties
and radii. Jackson et al. [40] used a semianalytical model
and finite element model to generate empirical equations
describing the tangential and normal contact forces between
sliding elastic-plastic spheres.

The FEM based models can be used as building blocks
to study multi-asperity contacts with mixed elastic-plastic
deformation. Kogut and Etsion [41] and Jackson and Green
[42] used the FE models in [36, 37] in conjunction with the
GW methodology [1] to present an elastic-plastic model for
the contact of rough surfaces. Similarly, Kucharski et al. [43]
investigated elastic-plastic contact between a hemisphere and
a rigid plane using the FEM and combined the resulting
relations with a statistical description of rough surfaces.

In this paper, we consider elastic-plastic contact of nom-
inally flat rough surfaces. Equations governing the shoulder-
shoulder contact of asperities are derived based on the
asperity-asperity constitutive relations from a finite element
model of the elastic-plastic interaction proposed by Kogut
and Etsion [36]. Shoulder-shoulder asperity contact yields

a slanted contact force consisting of both tangential (parallel
to mean plane) and normal components. An analytical
fusion technique is developed to combine the piecewise
asperity level constitutive relations for contact force and
real contact area. Statistical summation of tangential contact
force component along an arbitrary tangential direction
yields the half-plane tangential contact force. Similarly,
statistical summation of contact force along the normal
direction obtains the elastic-plastic normal contact force
formulae for two rough surfaces. Approximate equations are
developed in closed form for contact force components and
contact area as a function of mean plane separation, sum of
curvature radii of asperity summits, and plasticity index.

2. Elastic-Plastic Contact

Consider the elastic-plastic contact of two nominally flat
rough surfaces. As shown in Figure 1, let wc1 and wc2 be the
critical interferences of the Surface 1 (S1) and the Surface
2 (S2), respectively. Note that the critical interference on
a surface defines the plastic asperities on that surface as
illustrated by the dashed curves in Figure 1.

Let wc2 < wc1, then elastic-plastic behavior would
be primarily by the asperities on S2. Hence, we consider
wc2 as the critical interference for the inception of plastic
deformation for the contact of the two rough surfaces. For
simplicity we denote the lower critical interference by wc. It
should be noted that prior to interference of S1 with plastic
asperities of S2 there is only elastic contribution. Any elastic-
plastic contribution would be due to the interference of the
asperities on S1 and the plastic asperities of S2.

Since in general asperities meet in a shoulder-to-shoulder
contact, a contact force between two asperities would be
slanted, giving rise to both normal and tangential force. This
is illustrated in Figure 2 wherein the interference between
shoulders of two asperities and the resulting contact force
are depicted. It can be shown by considering the geometry
of interference between surface asperities (Figure 2) that the
interference is [5]

w =
(
s− h− r2

2βs
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1 +
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Figure 2: Asperity contact: Overlap region showing normal and oblique interferences-Elastic-plastic force and its components.

where βs is the sum of curvature radii of asperity summits
and r the tangential offset of the mating asperities so that
when r = 0 the asperities interfere along the normal to
the mean planes. In (1) and (2) the parameters have been
normalized with respect to the standard deviation of asperity
height sum σ , so that s is (z1 + z2)/σ , h is d/σ and r and
βs are the normalized values using σ as the normalization
parameter.

Kogut and Etsion [36], using an FEA model, obtained the
following piecewise fits for contact load and area of contact
between a deformable sphere and a rigid flat:

Elastic Range: wcr = 0-1

Pcr(wcr) = (wcr)
3/2,

Acr(wcr) = wcr,
(3)

Elastic-Plastic Range (1): wcr = 1–6

Pcr(wcr) = 1.03(wcr)
1.425,

Acr(wcr) = 0.93(wcr)
1.136,

(4)

Elastic-Plastic Range (2): wcr = 6–110

Pcr(wcr) = 1.40(wcr)
1.263,

Acr(wcr) = 0.94(wcr)
1.146,

(5)

where wcr is the ratio of interference to the critical interfer-
ence

wcr = w

wc
, (6)

and the critical interference is that corresponding to the onset
of plastic flow proposed by Greenwood and Williamson [1]

wc = β
(
πKH

2E′

)2

, (7a)

where β = β1β2/βs is the equivalent radius of curvature of
asperity summit and H is hardness of softer material, that
is, Surface 2. The hardness coefficient, K , is related to the
Poisson ratio by K = 0.454 + 0.41ν and the hardness is
assumed H = 2.8Sy . Alternatively, from the Jackson and
Green model [37]

wc = β

(
πCSy
2E′

)2

, (7b)

where C is related to the Poisson ratio by C =
1.295 exp(0.736ν). E′ in (7a) and (7b) is the combined
Young’s modulus for the two surfaces

1
E′
= 1− ν2

1

E1
+

1− ν2
2

E2
, (8)

where E1,E2 and ν1, ν2 are Young’s Moduli and Poisson ratios
of two contacting materials, respectively. Pcr in (3)–(5) is the
ratio of contact load to the load at critical interference, P/Pc.
Likewise, Acr is the ratio of contact area to the contact area at
critical interference, A/Ac; where Pc and Ac are, respectively,

Pc = 4
3
E′β1/2(wc)

3/2, (9)

Ac = πβwc. (10)

Here we propose, the following continuous form of the (3)–
(5).

Pcr(wcr) =
5
[

1 + (wcr)
2
]

[
8 + 5(wcr)

2 − 3(wcr)
0.2
][

1 + (2wcr/13)4
]

×
[

1.03(wcr)
1.425 + 1.40

(
2wcr

13

)4

(wcr)
1.263

]
,

(11)
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Figure 3: Comparison of the continuous functions for asperity
contact force and area obtained through fusion ((11) and (12)) with
the piecewise ((3), (4), and (5)).
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(12)

Equations (11) and (12) were obtained by fusing the
piecewise equations (3) to (5) for asperity scale contact force
and area, using appropriate sets of analytical filters, and by
optimizing the cutoff points. Figure 3 depicts the percent
error between the continuous functions in (11) and (12) and
the piecewise equations (3) to (5). As shown in the figure, the
accuracy is within 3 percent of the piecewise functions for the
entire domain of wcr.

The asperity contact force in (11) is directed along the
normal to the contact patch. It yields two components as
shown in Figure 2. Denoting fN and ft the components of
the asperity contact force along the normal and tangential
(parallel to the mean plane) direction, respectively, we find,
with the help of (2) and (9),

fN = 4
3
E′β1/2(wc)

3/2Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

,

ft = 4
3
E′β1/2(wc)

3/2Pcr(wcr)

(
1 +

r2

β2
s

)−1/2
r

βs
.

(13)

The asperity contact area with the help of (10) can be found
as

As = πβwcAcr(wcr). (14)

3. Normal Force

The normal components of various contact forces are parallel
and can be algebraically summed by statistical means to
obtain the total normal force of one surface on another.
Statistical summation of asperity normal force components
yields the total normal contact force between the two rough
surfaces as follows:

FN
(
h,βs,wc

) = 8
3
√

2π
πE′η1η2Anβ

1/2(wc)
3/2σ4IN

(
h,βs,wc

)
,

(15)

where η1 and η2 are the number of asperity per unit nominal
area on S1 and S2, respectively, and An is the nominal area.
IN is the statistical integral. For a Gaussian distribution of
asperity height sum it is

IN
(
h,βs,wc

)

=
∫∞
h

∫√2βs(s−h)

0
Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

e−s
2/2r dr ds.

(16)

It is noteworthy to mention that in (15) and (16) the
parameters are normalized with respect to the standard
deviation of asperity height sum, σ , so that s is z/σ , h is d/σ ,
and r, β,βs, and wc are the normalized values using σ as the
normalization parameter.

4. Tangential Force

The tangential components due to various interactions can-
not be algebraically added as they are projections of contact
force onto the mean plane and depend on circumferential
position of asperities on surface S2 (Figure 4). In considering
the tangential component of contact force, we seek the
components of the tangential contact force along an axis of
interest, for instance tangential force component along the
x-axis, depicted in Figure 4. We are interested in formulating
the cumulative effect of x-component of tangential force
along the positive x direction (as shown in Figure 4).
Hereafter, as we generate result for the x-component of the
tangential force due to positive contact slope, we will refer
to this as the “tangential force” and denote by the force
component Fx. The goal here is to account for the tangential
force of an asperity that would be experienced on each side,
and therefore accumulation or summation of such forces
would establish the tangential load on a surface from each
side, that is, due to all contacts at positive slope.

Tangential force due to all asperities at height z2 confined
in area dA and at radial distance r can be found as

(dFt)z1

= 4
3
E′η2

β1/2

βs
(wc)

3/2Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

φ2(z2)r2drdz2dθ,

(17)

where φ2(z2) is the density function associated with asperity
heights on the surface S2 and η2, the number of asperities per
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Figure 4: Schematic showing the tangential components of contact force exerted by asperities of S2 on an asperity on S1.

unit nominal area on S2. The component of this force along
+x is

(dFx)z1
= 4

3
E′η2

β1/2

βs
(wc)

3/2Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

φ2(z2)

× r2drdz2 cos θdθ.
(18)

By considering Figure 4, the force due to all asperities in the
+x half plane at height z2 and distance r would be obtained
by integration of (18) over θ = −π/2 to π/2, resulting in

(dFx)z1
= 8

3
E′η2

β1/2

βs
(wc)

3/2Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

φ2(z2)

× r2drdz2.
(19)

Using (19), accounting for the contribution of all
asperities and considering a Gaussian distribution of asperity
height sum, it can be shown that the component of the
tangential force between surfaces S1 and S2, along +x, may
be found using the following equation:

Fx
(
h,βs,wc

) = 8
3
√

2π
E′η1η2An

β1/2

βs
(wc)

3/2σ4Ix
(
h,βs,wc

)
,

(20)

where

Ix
(
h,βs,wc

)

=
∫∞
h

∫√2βs(s−h)

0
Pcr(wcr)

(
1 +

r2

β2
s

)−1/2

e−s
2/2r2dr ds.

(21)

5. Contact Area

All the asperity contact areas can be algebraically summed
by statistical means to obtain the total contact area of one
surface on another. Statistical summation of asperity contact
area yields the total contact area between the two rough
surfaces as follows:

A
(
h,βs,wc

) = 2π2
√

2π
η1η2Anβwcσ

4IA
(
h,βs,wc

)
, (22)

where, η1 and η2 are the number of asperity per unit nominal
area on S1 and S2, respectively, and An is the nominal area.
For a Gaussian distribution of asperity height sum so that

IA
(
h,βs,wc

) =
∫∞
h

∫√2βs(s−h)

0
Acr(wcr)e−s

2/2r dr ds. (23)

6. Approximate Equations

In this section we introduce approximate equations for the
integral functions of normal and tangential forces as well as
contact area. Based on the dominant physical interaction, we
define three ranges for critical interference or corresponding
plasticity index (ψ = 1/

√
wc) to be able to find the most

accurate fitting functions.

Elastic Range: wc = 2.75–200, or ψ = 0.07–0.6,

Elastic-Plastic Range (1): wc = 0.16–2.75, or ψ = 0.6–2.5,

Elastic-Plastic Range (2): wc = 0.0156–0.16, or ψ = 2.5–8.

The approximate function for each integral is denoted
using an additional letter “a” in the subscript to signify
approximation. For instance, the approximations to dimen-
sionless normal contact force component, IN , is denoted INa
and is given as follows:

INa
(
h,βs,wc

) = α1
(
βs,wc

)
eα2(wc)hα3(wc )

. (24)

Elastic Range: wc = 2.75–200 or ψ = 0.07–0.6

α1
(
βs,wc

) = 2.82550× 10−1(wc)
−1.48175(βs)1.00460,

α2(wc) = −1.35000,

α3(wc) = 1.55700.

(25)
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Figure 5: IN (h,βs) for wc = 100 (ψ = 0.1), Elastic Range.
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Figure 6: IN (h,βs) for wc = 1 (ψ = 1), Elastic-Plastic Range (1).

Elastic-Plastic Range (1): wc = 0.16–2.75 or ψ = 0.6–2.5

α1
(
βs,wc

) = 2.90330× 10−1(wc)
−1.45649(βs)1.00295,

α2(wc) = −1.34779(wc)
7.81366×10−3

,

α3(wc) = 1.55821(wc)
−2.23723×10−3

.

(26)

Elastic-Plastic Range (2): wc = 0.0156–0.16 or ψ = 2.5–8

α1
(
βs,wc

) = 4.02510× 10−1(wc)
−1.26820(βs)1.00230,

α2(wc) = −5.53530× 10−1(wc)
1.66900 − 1.30000,

α3(wc) = −3.87770× 10−1(wc − 3.20000× 10−2)2

+ 1.57160.
(27)
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Figure 7: IN (h,βs) for wc = 0.04 (ψ = 5), Elastic-Plastic Range
(2).

Figures 5, 6, and 7 illustrate IN over h = 1 to 4 and βs = 100
to 2000 for the values of plasticity index of 0.1 in the elastic
range, 1 in the elastic-plastic range (1), and 5 in the elastic-
plastic range (2), respectively. To assess the accuracy of the
approximation in (24), we define the following error between
the dimensionless normal contact force component and its
approximation in percent error form

EN
(
h,βs,wc

) = IN
(
h,βs,wc

)− INa(h,βs,wc
)

IN
(
h,βs,wc

) × 100. (28)

The approximate function in (24) yields accuracy to within 7
percent (7%) over the entire domain of h,βs, and wc.

The approximate equation for the dimensionless tangen-
tial contact force component, Ix, is

Ixa
(
h,βs,wc

) = α1
(
βs,wc

)
eα2(wc)hα3(wc )

, (29)

where for the elastic range

α1
(
βs,wc

) = 2.42720× 10−1(wc)
−1.48021(βs)1.50570,

α2(wc) = −1.45000,

α3(wc) = 1.53100,

(30)

for the elastic-plastic range (1)

α1
(
βs,wc

) = 2.50300× 10−1(wc)
−1.45916(βs)1.50435,

α2(wc) = −1.45046(wc)
6.76706×10−3

,

α3(wc) = 1.53092(wc)
−1.92673×10−3

,

(31)

and for the elastic-plastic range (2)

α1
(
βs,wc

) = 3.50250× 10−1(wc)
−1.26946(βs)1.50320,

α2(wc) = −5.75910× 10−1(wc)
1.65700 − 1.40369,

α3(wc) = −3.83420× 10−1(wc − 3× 10−2)2
+ 1.54278.

(32)
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Figure 8 illustrates Ix over h = 1 to 4 and βs = 100 to 2000
for the values of plasticity index of 0.1. A similar observation
applies to the results relevant to the elastic-plastic ranges.
Assess the accuracy of the approximation in (29) by defining
the following error between the dimensionless load compo-
nent and its approximation:

Ex
(
h,βs,wc

) = Ix
(
h,βs,wc

)− Ixa(h,βs,wc
)

Ix
(
h,βs,wc

) × 100. (33)

Similar accuracy (7%) is obtained by (29) for the half-plane
tangential force component.

In the same way, we find the approximate equation for
the dimensionless contact area, IA, as follows

IAa
(
h,βs,wc

) = α1
(
βs,wc

)
eα2(wc)hα3(wc )

, (34)

where for the elastic range

α1
(
βs,wc

) = 3.29230× 10−1(wc)
−1.03048(βs)9.99650×10−1

,

α2(wc) = −1.23087(wc)
6.26624×10−3

,

α3(wc) = 1.59327(wc)
−1.56574×10−3

,
(35)

for the elastic-plastic range (1)

α1
(
βs,wc

) = 3.10750× 10−1(wc)
−1.06230(βs)1.00350,

α2(wc) = −1.24888(wc)
−1.13200×10−2

,

α3(wc) = 1.58657(wc)
3.07496×10−3

,

(36)

and for the elastic-plastic range (2)

α1
(
βs,wc

) = 2.79650× 10−1(wc)
−1.14807(βs)1.00210,

α2(wc) = −1.27700

α3(wc) = 1.57850.

(37)

Figure 9 depicts IA over h = 1 to 4 and βs = 100 to 2000 for
the values of plasticity index of 0.1. Define the percent error
as follows:

EA
(
h,βs,wc

) = IA
(
h,βs,wc

)− IAa(h,βs,wc
)

IA
(
h,βs,wc

) × 100. (38)

Using the above, we find that the approximate function in
(34) yields accuracy to within 8 percent (8%) over the entire
domain of h,βs, and wc.

7. Comparison with CEB-Based Model

The model based on CEB [17] extended the CEB model
to handle the oblique contact of asperities on two rough
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Figure 8: Ix(h,βs) for wc = 100 (ψ = 0.1), Elastic Range.

surfaces in contact. From extension to CEB model [17] we
have

FN-CEB
(
h,βs,wc

) = CN-CEBIN-CEB
(
h,βs,wc

)
, (39)

where

CN-CEB = 8
3
√

2π
πE′η1η2Anβ

1/2σ4,

IN-CEB
(
h,βs,wc

)
= INe

(
h,βs

)− INec(h,βs,wc
)

+ 3(wc)
1/2INep1

(
h,βs,wc

)

− 3
2

(wc)
3/2INep2

(
h,βs,wc

)
,

INe
(
h,βs

)

=
∫∞
h

∫√2βs(s−h)

0

(
s− h− r2

2βs

)3/2(
1 +

r2

β2
s

)−1/2

e−s
2/2rdrds,

INec
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
s− h− r2

2βs

)3/2(
1 +

r2

β2
s

)−1/2

e−s
2/2rdrds,

INep1
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
s− h− r2

2βs

)(
1 +

r2

β2
s

)1/2

e−s
2/2r dr ds,

INep2
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
1 +

r2

β2
s

)
e−s

2/2r dr ds,

(40)

Fx-CEB
(
h,βs,wc

) = Cx-CEBIx-CEB
(
h,βs,wc

)
, (41)
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where

Cx-CEB = 8
3
√

2π
E′η1η2An

β1/2

βs
σ4,

Ix-CEB
(
h,βs,wc

)

= Ixe
(
h,βs

)− Ixec(h,βs,wc
)

+ 3(wc)
1/2Ixep1

(
h,βs,wc

)

− 3
2

(wc)
3/2Ixep2

(
h,βs,wc

)
,

Ixe
(
h,βs

)

=
∫∞
h

∫√2βs(s−h)

0

(
s− h− r2

2βs

)3/2(
1 +

r2

β2
s

)−1/2

e−s
2/2r2dr ds,

Ixec
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
s− h− r2

2βs

)3/2(
1 +

r2

β2
s

)−1/2

e−s
2/2r2dr ds,

Ixep1
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
s− h− r2

2βs

)(
1 +

r2

β2
s

)1/2

e−s
2/2r2dr ds,

Ixep2
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
1 +

r2

β2
s

)
e−s

2/2r2dr ds, (42)

ACEB
(
h,βs,wc

) = CA-CEBIA-CEB
(
h,βs,wc

)
, (43)

where

CA-CEB = 2π2
√

2π
η1η2Anβσ

4,

IA-CEB
(
h,βs,wc

)
= IAe

(
h,βs

)
+ IAep1

(
h,βs,wc

)−wcIAep2
(
h,βs,wc

)
,

IAe
(
h,βs

)

=
∫∞
h

∫√2βs(s−h)

0

(
s− h− r2

2βs

)(
1 +

r2

β2
s

)
e−s

2/2rdr ds,

IAep1
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
s− h− r2

2βs

)(
1 +

r2

β2
s

)
e−s

2/2rdr ds,

IAep2
(
h,βs,wc

)

=
∫∞
h+wc

∫√2βs(s−h)

0

(
1 +

r2

β2
s

)3/2

e−s
2/2rdr ds.

(44)
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Figure 9: IA(h,βs) for wc = 100 (ψ = 0.1), Elastic Range.

We define

EN-CEB(h,wc)

= IN
(
h,βs,wc

)
(wc)

3/2 − IN-CEB
(
h,βs,wc

)
IN
(
h,βs,wc

)
(wc)

3/2 100,

Ex-CEB(h,wc)

= Ix
(
h,βs,wc

)
(wc)

3/2 − Ix-CEB
(
h,βs,wc

)
Ix
(
h,βs,wc

)
(wc)

3/2 100,

EA-CEB(h,wc)

= IA
(
h,βs,wc

)
wc − IA-CEB

(
h,βs,wc

)
IA
(
h,βs,wc

)
wc

100.

(45)

As shown in Figures 10, 11, and 12, for elastic contact (wc > 3
or ψ < 0.6), both the present and the extension to CEB
models yield identical results as would be expected. However,
large differences (of up to 45% in the contact load and
contact area for a given separation) are found for wc < 1 or
ψ > 1. It is interesting to note from Figures 9 to 11 that error
between the two models does not depend on asperity summit
radius of curvature sum, βs.

8. Concluding Remarks

The asperity level constitutive equations were presented
based on the work by Kogut and Etsion [36]. Kogut and
Etsion [36] developed a finite element model of an elastic
plastic sphere in contact with a rigid flat. Based on the
FEA results, they established the relation between contact
force and interference and contact area and interference for
different ranges of interference ratio.

This paper developed continuous constitutive asperity
equations relating (1) the asperity contact force to interfer-
ence and (2) asperity area of contact to the interference.
This was accomplished by devising an analytical fusion
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Figure 10: EN-CEB(h,wc) for βs = 500.
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Figure 11: Ex-CEB(h,wc) for βs = 500.

technique to combine the piecewise equations of Kogut
and Etsion. The resulting continuous function was accurate
to within 3 percent of the piecewise functions. Therefore,
the analytical fusion technique successfully removed the
discontinuity presented in [36] and thereby facilitated the
ensuing development that included the derivation of the
normal and tangential contact force components and contact
area between two rough surfaces in a three-dimensional
account of elastic-plastic contact. It should be noted that
asperities experiencing interference larger than 110 times
the critical interference would introduce error due to the
limitation of the KE model.

Consideration of shoulder-shoulder asperity contact
yielded contact force in a slanted orientation due to contact
slope. Thereby, giving rise to both normal and tangential
contact force components. Statistical summation of +x
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Figure 12: EA-CEB(h,wc) for βs = 500.

half-plane tangential contact force component resulted in
the formulation of the tangential force impinged upon one
surface by the other due to the cumulative effect of interac-
tions in a half plane. In the absence of an applied tangential
force the net tangential force transferred between the two
surfaces is zero due to symmetry of interactions about
an asperity. Similarly, statistical summation of the asperity
contact force along the normal direction and asperity contact
area, respectively, yielded the total normal contact force and
contact area formula for two rough surfaces.

Approximate equations were forwarded for the integral
functions of contact force components and contact area.
These equations were shown to provide accuracy within
seven and eight percent, respectively, for contact force
components and contact area over ranges of mean plane
separation, asperity summit radius of curvature sum, and
plasticity index. The approximate equations greatly simplify
solution of problems involving elastic-plastic contact of
rough surfaces.

A comparison with the approximate elastic-plastic CEB
model showed identical results for elastic contacts having
plasticity index values below 0.6 but substantial differ-
ences for elastic-plastic contacts with plasticity index values
above 1.

Nomenclature

w: Dimensionless interference
w1: Dimensionless interference defined in GT [3]
α: Contact angle between two asperities
r: Dimensionless asperity tangential offset
An: Nominal area
E′: Combined Young’s modulus
H : Hardness of the softer material (= H2)
K : Maximum contact pressure factor
σ : Standard deviation of asperity height sum
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h: Dimensionless mean separation
z1, z2: Heights of asperities on the surfaces 1 and 2

measured from the mean asperity heights
s: Dimensionless asperity heights sum
β1,β2: Dimensionless average summit radius of

asperities on the surfaces 1 and 2
β: Combined asperity summit radius of curvature
βs: Dimensionless asperity summit radius of

curvature sum
d: Mean separation
wc: Smaller dimensionless critical interference
ψ: Plasticity index
wcr: Ratio of interference to the interference for onset

of plastic flow
Sy : Yield strength
η1,η2: Asperity areal density for the surfaces 1 and 2
Pcr: Dimensionless contact load in KE [36]
Acr: Dimensionless contact area in KE [36]
E1,2: Young’s moduli
ν1,2: Poisson ratios
Pc: Contact load at critical interference
Ac: Contact area at critical interference
fN : Component of the asperity contact force along

the normal direction
ft: Component of the asperity contact force along

the tangential direction
As: Asperity contact area
FN : Total normal contact force
IN : Dimensionless total normal contact force
Fx: Total half-plane tangential contact force
Ix: Dimensionless total half-plane tangential

contact force
A: Total contact area
IA: Dimensionless total contact area
INa: Approximate function for IN
Ixa: Approximate function for Ix
IAa: Approximate function for IA
E(): Percent error between I() and I( )a.

References

[1] J. A. Greenwood and J. B. P. Williamson, “Contact of
nominally flat surfaces,” Proceedings of the Royal Society of
London, vol. 295, no. 1442, pp. 300–319, 1966.

[2] G. G. Adams and M. Nosonovsky, “Contact modeling-forces,”
Tribology International, vol. 33, no. 5, pp. 431–442, 2000.

[3] J. A. Greenwood and J. H. Tripp, “The contact of two
nominally flat rough surfaces,” Proceedings of the Institution of
Mechanical Engineers, vol. 185, pp. 625–633, 1970.

[4] J. I. McCool, “Extending the capability of the Greenwood
Williamson microcontact model,” Journal of Tribology, vol.
122, no. 3, pp. 496–502, 2000.

[5] A. Sepehri and K. Farhang, “On elastic interaction of nomi-
nally flat rough surfaces,” Journal of Tribology, vol. 130, no. 1,
Article ID 011014, 5 pages, 2008.

[6] W. R. Chang, I. Etsion, and D. B. Bogy, “An elastic-plastic
model for the contact of rough surfaces,” Journal of Tribology,
vol. 109, no. 2, pp. 257–263, 1987.

[7] J. I. McCool, “Non-Gaussian effects in micro contact,” Interna-
tional Journal of Machine Tools and Manufacture, vol. 32, no. 1,
pp. 115–123, 1992.

[8] A. A. Polycarpou and I. Etsion, “Analytical approximations in
modeling contacting rough surfaces,” Journal of Tribology, vol.
121, no. 2, pp. 234–239, 1999.

[9] N. Yu and A. A. Polycarpou, “Contact of rough surfaces
with asymmetric distribution of asperity heights,” Journal of
Tribology, vol. 124, no. 2, pp. 367–376, 2002.

[10] N. Yu and A. A. Polycarpou, “Combining and contacting of
two rough surfaces with asymmetric distribution of asperity
heights,” Journal of Tribology, vol. 126, no. 2, pp. 225–232,
2004.

[11] J. Halling, R. D. Arnell, and K. A. Nuri, “The elastic-plastic
contact of rough surfaces and its relevance in the study of
wear,” Proceedings of the Institution of Mechanical Engineers,
Part C, vol. 202, no. 1988, pp. 269–274, 1988.

[12] H. So and D. C. Liu, “An elastic-plastic model for the contact
of anisotropic rough surfaces,” Wear, vol. 146, no. 2, pp. 201–
218, 1991.

[13] J. Abdo and K. Farhang, “Elastic-plastic contact model for
rough surfaces based on plastic asperity concept,” Interna-
tional Journal of Non-Linear Mechanics, vol. 40, no. 4, pp. 495–
506, 2005.

[14] A. Hariri, J. W. Zu, and R. Ben Mrad, “Modeling of
elastic/plastic contact between nominally flat rough surfaces
using an n-point asperity model,” Journal of Tribology, vol.
128, no. 4, pp. 876–885, 2006.

[15] Y. R. Jeng and S. R. Peng, “Elastic-plastic contact behavior
considering asperity interactions for surfaces with various
height distributions,” Journal of Tribology, vol. 128, no. 2, pp.
245–251, 2006.

[16] O. Cohen, Y. Kligerman, and I. Etsion, “A model for contact
and static friction of nominally flat rough surfaces under full
stick contact condition,” Journal of Tribology, vol. 130, no. 3,
Article ID 031401, 9 pages, 2008.

[17] A. Sepehri and K. Farhang, “Closed-form equations for three
dimensional elastic-plastic contact of nominally flat rough
surfaces,” Journal of Tribology, vol. 131, no. 4, Article ID
041402, 8 pages, 2009.

[18] T. Liu, G. Liu, Q. Xie, and Q. J. Wang, “Two-dimensional
adaptive-surface elasto-plastic asperity contact model,” Jour-
nal of Tribology, vol. 128, no. 4, pp. 898–903, 2006.

[19] L. P. Lin and J. F. Lin, “A new method for elastic-plastic contact
analysis of a deformable sphere and a rigid flat,” Journal of
Tribology, vol. 128, no. 2, pp. 221–229, 2006.
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