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A nonparametric, data-driven methodology of monitoring for geotechnical structures subject to long-term environmental change
is discussed. Avoiding physical assumptions or excessive simplification of the monitored structures, the nonparametric monitoring
methodology presented in this paper provides reliable performance-related information particularly when the collection of sensor
data is limited. For the validation of the nonparametric methodology, a field case study was performed using a full-scale retaining
wall, which had been monitored for three years using three tilt gauges. Using the very limited sensor data, it is demonstrated
that important performance-related information, such as drainage performance and sensor damage, could be disentangled
from significant daily, seasonal and multiyear environmental variations. Extensive literature review on recent developments of
parametric and nonparametric data processing techniques for geotechnical applications is also presented.

1. Introduction

Restoring and improving urban infrastructure is recognized
by the National Academy of Engineering as one of the
fourteen grand challenges for engineering (NAE, [1]), and
according to the 2009 ASCE Report Cards for Americas Civil
Infrastructure, the current condition of U.S. infrastructure is
rated “D” [2]. Aging civil infrastructure including bridges,
levees, and dams in the US is calling for urgent measures
focusing on maintenance, repair, and renovation. Geotechni-
cal structures, compared to other types of civil infrastructure,
are more vulnerable to nature and human-induced hazards.
For example, Landslides in the Pacific Coast, the Rocky
Mountains, the Appalachian Mountains, Hawaii, and Puerto
Rico regions cause fatalities of 25 to 50 per year and
direct/indirect economic losses up to $3 billion per year [3].

Structural health monitoring (SHM) is an emerging
technique for the assessment of structural condition, haz-
ards, and risks, consisting of three major components: sens-
ing and instrumentation, data communication and archiv-
ing, and data analysis and interpretation. With the advent
of todays powerful digital media and Internet, the needs

for the first two components have been readily filled in
many cases, but serious technical challenges still exist on
the third component; how to process voluminous sensor
data to obtain critical information for decision making?
The research community is caught overwhelmed with the
complex and extensive nature of field data associated with
various factors of geotechnical phenomena. Some important
challenges in processing field measurements are as follows.

(1) How can performance-related information (e.g.,
condition of drainage systems) be disentangled from
the causes of various environmental factors (e.g., di-
urnal and seasonal temperature change)?

(2) Field measurements are expensive and technically
difficult, especially when the monitoring is long term.
How can one perform reliable estimation with insuf-
ficient sensor data without sacrificing the accuracy?

(3) Extensive modeling efforts are required in current
structural health monitoring practices for geotech-
nical structures. How can one reduce modeling ef-
forts for geotechnical structures, whose material and
structural characteristics are various?
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(4) How can one deal with unavoidable and unpredicta-
ble sensor/instrument network problems and loss of
subsets of sensor data, which are commonly encoun-
tered in field data collection?

This paper discusses reliable monitoring methodology
for geotechnical structures that is subject to long-term envi-
ronmental change with very limited sensor measurements.
The objective of the methodology is to provide the infor-
mation of when, where, and how confidently field engineers
should be deployed to the monitoring site for potential
hazards on structural performance. The methodology should
be robust enough to deal with unavoidable malfunctioning of
instrumentation devices during data collection.

This paper is organized as follows: some definitions and
dilemma in current monitoring practices are discussed in
Section 2. Sensing and modeling strategies of monitoring
for complex geotechnical systems are discussed in Section 3.
Understanding system identification techniques is important
to develop reliable monitoring methodology. Recent devel-
opments of modeling and system identification techniques
have been discussed: parametric approaches in Section 4 and
nonparametric approaches in Section 5. A case study was
conducted to demonstrate how monitoring methodology
developed by the authors can be applied to realistic problems.
The analysis results for a full-scale retaining wall subject to
long-term environmental change are discussed in Section 6.

2. Some Definitions and Dilemma in
Current Monitoring Practices

Inverse analysis and system identification techniques are
necessary tools to evaluate current performance of civil
infrastructure systems using field measurement data. A sys-
tem in inverse analysis can be expressed with a cause-
response model, which consists of the causative force, sys-
tem characteristics function, and system response as shown
in Figure 1. The causative force is usually external forces
(e.g., soil pressure), and the system response is usually the
resulting deformation (e.g., displacement). The system char-
acteristic function determines system properties with linear
or nonlinear relationships between the system input and
output associated with spatial and temporal variation of soil
properties and highly variable soil conditions.

When earth structures are exposed to significant envi-
ronmental variation (e.g., temperature and precipitation),
system identification becomes more complicated because the
system response reflects the combined effects of loads and
environmental factors. This is where the conventional para-
metric approaches of system identification become difficult
to implement.

The nonparametric methods, on the other hand, are
data-driven identification techniques that do not require a
priori knowledge on physics of target systems. Consequently,
without relying on idealization and simplification in mod-
eling, the same data processing methodology is applicable
to different structure types. The nonparametric methods are
also advantageous in dealing with deteriorating structures
since nonparametric models are more flexible in dealing with

time-varying systems than the parametric ones, which are
modeled with physical assumptions and would not be valid
once target structures are damaged.

So far, system identification of geotechnical structures is
primarily done using the parametric methods. In long-term
monitoring of geotechnical systems, however, there could be
significant discrepancy between system behavior and corre-
sponding models for two reasons. First, soil conditions are
highly variable. Although high-fidelity models coupled with
complex soil behavior are already available (e.g., coupled
thermo-hydro-mechanical models), to collect all necessary
sensor data for parametric identification is very expensive
and it is usually not feasible. Due to insufficient data for
sophisticated models, simpler models are often employed,
which ignore many significant environmental factors. Con-
sequently, parameter estimation becomes inaccurate due to
oversimplification. Second, structures deteriorate over time.
A common challenge in modeling deteriorating systems is
that deterioration could result in not only changes in system
parameter values but also transformation of the monitored
system into different classes of nonlinear systems. Moreover,
the characteristics of the damaged systems are usually un-
known, so that the systems cannot be parametrically mod-
eled prior to the occurrence of actual damage.

One drawback of existing nonparametric approaches is
that physical interpretation on identification results is not as
straightforward as that of the parametric methods, whose
system parameters possess physical meaning (e.g., Youngs
modulus). Although some nonparametric approaches were
used in geotechnical applications, obtaining important per-
formance-related information for decision making in main-
tenance has been rarely emphasized in this class of methods.
For example, the nonparametric Artificial Neural Networks
technique that will be described in Section 5.3 has been
employed as an alternative approach to parametric regression
methods using soil constitutive models (e.g., elastoplastic
models) that will be described in Section 4.1, to identify
complex nonlinear stress-strain relationship of soil. When
soil strength is degraded, unlike the parametric methods, the
nonparametric method could detect the change in soil me-
chanical properties, but it would not be able to interpret
what types of physical change it is from the identification
results. In order to overcome the above dilemma in current
monitoring practices, it is desirable to take the advantages
from both sides: modeling flexibility from the nonparametric
methods and physical interpretation from the parametric
methods.

3. Sensing and Modeling Strategies

To reduce high costs of sensor data collection associated with
a high degree of spatial and temporal variability for geotech-
nical structures, the selection of what to be measured is a
critical issue. Three options are possible in sensing: causa-
tive forces, environmental factors, and system response in
Figure 1. The system response is desired to measure since
the other two do not contain the information of system
characteristics; the system response has the most abundant
information about the entire system containing the effects
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Ambient temperature,
rain, snow, humidity,

etc.

Thermal pressure, soil
weight, service loads,

etc.

Soil/rock type, soil-structure
interaction, freeze/thaw,

saturation level, vegetation, etc.

Displacement, velocity,
acceleration, strain, etc.

Environmental
effects

Causative forces System characteristic
function

System response

Figure 1: A schematic of the cause-response system model consisting of the causative forces, system response, environmental effects, and
system characteristic function [4].
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Figure 2: Procedures of conventional parametric approaches and proposed nonparametric approaches. Using output-only (or response-
only) data in modeling, the proposed approach does not require defining explicit relationships between the system input, environmental
effects, and the system output, which are required in conventional parametric approaches.

of all components of causative forces, environment and
system characteristics function. Using data that contain
the information of the system characteristics is particularly
important when one deals with deteriorating structures.

A challenge, however, in dealing with the system response
data is that it is usually difficult to interpret raw sensor data
directly due to interrelated effects of the components in the
system. Thus, some kind of disentanglement techniques will
be needed to decompose the data into more easily managea-
ble and physically understandable forms.

To explain modeling strategies, Figure 2 summarizes the
differences in system identification between parametric and
nonparametric methods.

In nonparametric methods, response-only (or output-
only) data are processed to find mathematical relationships
embedded in the data. In order to deal with complicated
raw system response (or system output) data, some disen-
tanglement techniques will be used prior to modeling. Once
the system response data are processed, additional data of

the causative forces (or system input) and/or environmental
factors can be used as a posteriori information for physical
interpretation. In model construction, therefore, the mon-
itoring methodology does not require explicit relationships
between the system input, environment and system output,
which are generally not known in geotechnical applications.

The above sensing and modeling methodology has sev-
eral important advantages over existing (parametric) ap-
proaches, particularly in monitoring applications.

(1) Oversimplification problems can be avoided especial-
ly when actual systems are complex and data are in-
sufficient for sophisticated (parametric) input-out-
put models since the modeling process is solely data
driven using response-only data.

(2) Modeling time and effort can be reduced significantly
by using the same data processing procedures for
different structure types since the proposed approach
is not limited to a specific type of structure (i.e.,
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the model is not based on physical assumptions). For
the same reason, the same procedures can be used for
different sensor types.

(3) The proposed approach is more advantageous than
conventional parametric approaches in dealing with
deteriorating structures often associated with un-
known time-varying system characteristics.

4. Review of Parametric Approaches

In this section, recent developments of the parametric ap-
proaches have been reviewed to provide background of para-
metric modeling, estimation, and optimization techniques.

4.1. Modeling. Two parametric modeling approaches for ge-
otechnical systems are discussed: soil constitutive model and
coupled thermo-hydro-mechanical models.

4.1.1. Soil Constitutive Models. There exist various soil con-
stitutive models. In elastic model as the simplest constitutive
model, the strain is assumed to be sustained under the
applied load. Thus, the elastic strain is reversible, and if
applied load is removed, the material springs back to its un-
deformed condition. Using elastoplastic models, the level of
model complexity increases by adding the effects of irre-
versible plastic strains, and the soil is assumed to sustain both
elastic and plastic strain. Therefore, if the load is removed,
the soil sustains permanent plastic deformation, whereas
elastic strain is recovered. Consequently, a key issue in the
elastoplastic modeling exists in describing the material plas-
ticity. A branch of plastic modeling is based on the concept
of perfect plasticity [5]. Some examples include the Tresca
model and the von Mises model for perfect plasticity in cohe-
sive soils, Mohr-Coulomb model, Drucker-Prager model,
Lade-Duncan model, Matsuoka-Nakai model, and Hoek-
Brown model for perfect plasticity in frictional material.

Another branch of plasticity modeling adopts the concept
of critical states. In this modeling approach, the soil is char-
acterized with three major parameters: the mean effective
stress, shear stress, and soil volume (or void ratio) [6]. The
original Cam clay model and the modified Cam clay model
belongs to this category. The original Cam clay model was
developed by researchers at Cambridge University as the first
critical-state models that predict unlimited soil deformations
without change in stress or volume when the critical state
is reached in soft soil [7]. The modified Cam clay model
assumes that the voids between the solid particles are only
filled with water (i.e., fully saturated). The modified Cam
clay models are formulated based on plasticity theory; when
the soil is loaded, saturated water is expelled from the voids
between the solid particles, and, consequently, significant
irreversible plastic volume change occurs. Some limitations
of the Cam clay models are described in Yu [5]. General
descriptions on soil constitutive models can be found in Yu
[5], Ling et al. [8], and Hicher and Shao [9].

4.1.2. Coupled Thermo-Hydro-Mechanical (THM) Models.
Geotechnical systems subject to environmental change usu-
ally behave as complex coupled thermo-hydro-mechanical

(THM) systems. Researchers in geotechnical engineering
have developed a number of the THM models, including (1)
coupled models for heat, moisture, and/or air transfer [10–
20], (2) granular-level freezing process of pore water in soil-
like porous media [21–26], and (3) frost heaving in earth
structures [27–38].

The THM models express the sophisticated coupled
relationships of heat and moisture transfer in deformable
partially saturated soil [15]. The freezing process influenced
by the interactions between water, temperature, and stresses
in soil; water migrates to freezing fronts, and the frozen soil
can contain unfrozen water below the freezing temperature;
the water glaciation is influenced by the state of stress
[38]. The formulation usually involves interrelated PDEs of
thermoelasticity of solids (T-M) (interaction between the
stress/strain and temperature fields through thermal stress
and expansion) and poroelasticity theory (H-M) (interaction
between the deformability and permeability fields of porous
media). The conservation equations of mass, energy, and
momentum are usually obtained with Hooke’s law of
elasticity, Darcy’s law of flow in porous media, and Fourier’s
law of heat conduction [39]. The effects of precipitation to
the moisture content in the soil were studied by Troendle
and Reuss [40], D’Odorico et al. [41], and Longobardi [42].
For the numerical solution of the conservation equations, the
finite element method (FEM) is usually employed [39, 43].

4.2. Parameter Estimation. For parametric models, the
cause-response system can be expressed as

ŷk = (xk, xk−1, . . . , xk−1 | θ)k,

yk = ŷk + ηk + εk,

ỹk = yk − ŷk,

(1)

where yk: observed (or measured) system output at time step
k, in which the dimension of yk is (1 × m), and m is the
total number of observational points or number of sensors in
in-situ measurements; ŷk: estimated system output based on
employed geomaterial constitutive models. In geotechnical
engineering, the finite element method (FEM) is commonly
used for the numerical solution of the constitutive equations,
thus yielding ŷk; ỹk: residual between the observed output yk
and estimated output ŷk. The residual includes the modeling
error ηk and measurement error εk, which are combined
together and usually undistinguishable for field measure-
ments. In many applications, the residual is assumed to have
ỹk ∼ N(0;Σ ỹ), in which Σ ỹ is an (m×m) covariance matrix
of ỹk; hk: system function of given system parameter vector
θ. In the most general case, hk is stochastic, time-varying,
nonlinear dynamic function; θ: (p × 1) system parameter
vector to be estimated; x: known system input vector with
the memory of the l-th order. For static systems, l = 0.

The goal of system identification is to find the “best” esti-
mates of the system parameters θ that minimize the residual
ỹk. Many optimal estimation algorithms are available for
the best estimates, and they are usually classified into two
approaches: parameter estimation methods and state esti-
mation methods. The parameter estimation methods (also
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referred as the variational methods in some geotechnical
literatures) are described in this section, and the state estima-
tion methods (also referred to as sequential methods in some
geotechnical literatures) will be described in Section 4.3.

In parameter estimation, the most general objective func-
tion can be expressed as

min
θ
J
(

θ | β) = min
θ

{

Jo(θ) + βJp(θ)
}

, (2)

Jo(θ) =
n
∑

i=1

{

yk − ŷk(x | θ)
}T
W−1

o

{

yk − ŷk(x | θ)
}

, (3)

Jp(θ) = (θ − θP)W−1
p

(

θ − θp
)

, (4)

where Jo(θ): objective function for the observational (or
measurement) information of the system output; Jp(θ): ob-
jective function for the prior information of the system
parameters; β: a positive scalar parameter, which adjusts the
significance (weighting) between the observational informa-
tion Jo(θ) and the prior information Jp(θ); Wo: covariance
matrix of the measurement error whose dimension is (m ×
m); Wp: covariance matrix of the prior information error
involving system parameters whose dimension is (m × m);
θp: previously known means of the system parameters θ.

Three parameter estimation methods are usually em-
ployed in geotechnical applications: (1) least square estima-
tion, (2) maximum likelihood estimation, and (3) Bayesian
estimation.

4.2.1. The Least Square Estimation (LSE). The objective func-
tion of the LSE corresponds to the case in which the adjusting
scalar parameter β = 0 in (2), and the covariance matrix of
the measurement error W−1

o = I in (3), where I is an (m×m)
identity matrix, thus resulting in

JLSEθ =
n
∑

i=1

{

yk − ŷk(x | θ)
}T{

yk − ŷk(x | θ)
}

. (5)

With the condition of β = 0, no prior information of the
system parameters is used during the parameter estimation.
With the condition of W−1

o = I , all observation values are
weighted with the same significance. Thus, the LSE requires
the least amount of information among the parameter esti-
mation methods.

The LSE method would be the most widely used method
for geotechnical applications. Some examples of the applica-
tion of LSE in geomechanical applications include the work
of Gioda and Maier [44], Cividini et al. [45], Cividini et
al. [46], Arai et al. [47], Arai et al. [48], Arai et al. [49],
Gioda and Sakurai [50], Shoji et al. [51], Shoji et al. [52],
Anandarajah and Agarwal [53], Murakami et al. [54], Beck
and Woodbury [55], and Xiang et al. [56].

4.2.2. The Maximum Likelihood Estimation (MLE). In the
MLE method, the observational information of the mea-
surements is used, and the measurement data are weighted
according to their significance (i.e., W−1

o /= I), but no prior
information of system parameters is used in the parameter

estimation (i.e., β = 0). Therefore, the LSE can be seen as a
special case of the MLE. The objective function of the MLE
is

JMLEθ =
n
∑

i=1

{

yk − ŷk(x | θ)
}T
W−1

o

{

yk − ŷk(x | θ)
}

,

W−1
o /= I.

(6)

Some examples of using the MLE for geotechnical engi-
neering applications are Ledesma et al. [57], Honjo and
Darmawan [58], Ledesma et al. [59], Ledesma et al. [60], and
Gens et al. [61].

4.2.3. The Conventional Bayesian Estimation (BE) and Ex-
tended Bayesian Estimation (EBE). In the BE method, the
system parameters are estimated using both the observa-
tional information of measurements and the prior informa-
tion of the system parameters, with the same significance
between these two information (i.e., β = 1) as

JBE(θ) = Jo(θ) + Jp(θ). (7)

The objective function of the EBE is more general than that of
the BE, with the nonunit positive scalar adjusting parameter
β as

JEBE(θ) = Jo(θ) + βJ p(θ), β /= 1, β > 0. (8)

If the adjusting parameter β is small, the prior information
of θp has less contribution in the parameter estimation of
θ, and vice versa. Optimal values of the adjusting parameter
β can be determined, for example, with the cross-validation
method [62], ridge regression method [63], and the Akaike
Information Criterion (AIC) [64–66].

Some application examples of the conventional BE and
EBE in geotechnical engineering include Cividini et al. [46],
Gioda and Sakurai [50], Arai et al. [67], Honjo et al. [64],
Honjo et al. [65], and Xiang et al. [56].

The conventional BE and EBE methods are more sophis-
ticated than other estimation methods, while the Bayesian
methods require more amounts of information on both ob-
servational measurements and prior knowledge of system pa-
rameters. Therefore, the availability of necessary information
is important to apply the Bayesian methods.

4.3. State Estimation. In state estimation methods, the system
can be identified by estimating its state at each time step
using so called filters. Therefore, the state estimation method
is also referred to as the sequential estimation method. Among
numerous types of filters, the Kalman filter-based algorithms
would be most widely used in geotechnical applications,
including (1) the linear Kalman filter method and (2) the
extended Kalman filter method. Some application examples
of the Kalman filter methods for geotechnical applications
are given in the work of Murakami and Hasegawa [68], Kim
and Lee [69], and Zheng et al. [70]. More general descrip-
tions and details concerning the Kalman filter can be found
in Mendel [71].
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4.3.1. The Linear Kalman Filter. The underlying system
model of the linear Kalman filter is based on the assumption
of a recursive linear dynamic system discretized in the time
domain as

zk = Akzk−1 + Bkxk + wk, (9)

where zk: true internal state at time step k, which is evolved
from the previous state zk−1; xk: known system input state
at time step k; wk: stochastic process of noise with a zero-
mean, multivariate normal distribution of wk ∼ N(0,Σwk);
Ak: linear state transition matrix, which is applied to the
previous state zk−1; Bk: input matrix, which is applied to the
current system input xk.

The observational (or measured) state of the system out-
put can be expressed as

yk = Ckzk + vk, (10)

where yk: observational system output; Ck: observational
matrix, which maps the true state space of zk into the ob-
served space of yk; vk: stochastic process of observational
noise with zero mean Gaussian white noise of vk ∼ N(0,
Σvk).

Using this underlying system model, the estimate of the
state and error covariance matrix of the estimated state can
be determined as

ẑk|k = ẑk|k−1 + Kk ỹk, (11)

Pk|k = (I − KkCk)Pk|k−1, (12)

where ẑk|k: updated state at time step k given observations up
to and including time step k; Pk|k: updated error covariance
matrix of ẑk|k; ẑk|k−1: predicted state at time step k given
observations up to and including time step k − 1. ẑk|k−1 =
Akẑk−1|k−1 + Bk−1xk−1; Pk|k−1: predicted error covariance
matrix of ẑk|k−1. Pk|k−1 = AkPk−1|k−1A

T
k + Σwk ; ỹk: measure-

ment residual; ỹk = yk − Ckẑk|k−1; Sk: residual covariance
matrix; = CkPk|k−1C

T
k + Σwk ; Kk: optimal Kalman gain. Kk =

Pk|k−1C
T
k Sk.

The Kalman filter shown in (11) is an optimal estimator
of minimum mean-square error zk − ẑk|k.

4.3.2. Extended Kalman Filter (EKF). In the EKF, the under-
lying linear dynamic models are extended to nonlinear mod-
els as

zk = f (zk−1, xk + wk), yk = h(zk) + vk, (13)

where f and h are nonlinear functions. Instead of Ak and
Ck in the linear Kalman filter method, and, in the EKE, the
Jacobian matrices of ∂ f /∂z and ∂h/∂z are used.

In summary, the system in the state estimation can be
identified by estimating its state at each time step using filters.
Using the Kalman filter methods, it is possible to incorporate
prior information in the observation data during the state
estimation. Since the underlying system model of the linear
Kalman filter method is a linear dynamic system, this method
is usually not applicable to nonlinear geotechnical systems.
The extended Kalman filter method can be used to identify
such nonlinear systems.

4.4. Optimization. Once an objective function with respect
to unknown system parameters is constructed as shown in
Section 4.2, the solution procedure uses standard optimiza-
tion techniques to find the optimal values of the system
parameters. Numerous optimization algorithms have been
developed and used for general purposes of optimization in
every field of science and engineering. General descriptions
of optimization algorithms can be found in Bertsekas [72].

In geotechnical applications, the aim of the optimization
process is usually to calibrate geotechnical models by finding
a set of optimal values of the model parameters. The op-
timal values of the model parameters can be found, using
various optimization algorithms by minimizing the residuals
between the measurement data (usually obtained from field
or laboratory testing) and the synthetic data (usually ob-
tained from the finite element analysis for the numerical so-
lutions of the geotechnical models). In many geotechnical
applications, however, the optimization surface contains
many local minima and sometime is nonconvex due to the
complexity of material behaviors and coupled effects of tem-
perature, moisture, and loads.

Some examples of optimization algorithms used in ge-
otechnical studies include the Newton method [73], quasi-
Newton method [53], Gauss-Newton method [56, 73], con-
jugation gradient method [47], simplex method [45, 54],
complex method [74], random search method [75, 76], and
more recently evolutionary algorithms, such as the genetic
algorithm [77–80] and the particle swarm optimization
method [81].

5. Review of Nonparametric Approaches

Nonparametric approaches have been also applied in dif-
ferent geotechnical problems. In this section, recent devel-
opments of nonparametric data processing techniques for
geotechnical systems have been reviewed.

5.1. Time Series Analysis. In time series analysis, the dynamic
response of target systems can be analyzed with a discrete
time series expansion model of the system input and output.
One kind of time series models is called an autoregressive-
moving average (ARMA) model that can be formulated as

yk =
nb
∑

i=0

bixk−i −
na
∑

j=0

ai yk−i + e, (14)

where xk: observed (or measured) system input at time step
k; yk: observed (or measured) system output at time step k;

na: order of the moving average (MA) as
∑nb

i=0 bixk−i; nb: or-

der of the autoregression (AR) as
∑nb

i=0 ai yk−i; e: white, exog-
enous noise.

Using the ARMA model, the characteristics of the meas-
urement time histories of the system input and output
can be determined from the identification of the expansion
coefficients (a’s and b’s) based on the measured system input
and output. The optimal coefficient values can be deter-
mined, using various optimization algorithms as discussed
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in Sections 4.2 and 4.4. A general description of time series
analysis methods can be found in Box and Jenkins [82].

Some application examples of the time series analysis
methods for geotechnical systems include Glaser [83], Glaser
and Leeds [84], Glaser and Baise [85], Baise et al. [86],
and Glaser [87]. In Glaser and Baise [85], a technique for
mapping the identified time series coefficients to relevant soil
physical properties was discussed that is considered to be a
parametric approach in their paper.

5.2. Time-Frequency Analysis

5.2.1. The Empirical Mode Decomposition and the Hilbert-
Huang Transform. The empirical mode decomposition (EMD)
and Hilbert-Huang transform (HHT) methods are nonpara-
metric data processing techniques pioneered by Huang et al.
[88, 89] and Huang and Attoh-Okine [90]. One advantage of
using these techniques is in dealing with long-term natural
processes, which are commonly observed nonlinear and non-
stationary. The EMD and HHT are widely used in various
fields of science and engineering: meteorology and atmo-
spheric physics [91–96], earthquake engineering, structural
health monitoring (SHM), and control for civil structures
[97–102].

For any arbitrary time series x(t), an analytical signal z(t)
can be obtained using the Hilbert transform. Let y(t) be the
Hilbert transform of x(t)

y(t) = 1
π
P
∫∞

−∞
x(τ)
t − τ

dτ, (15)

where P is the Cauchy principal value, and

z(t) = x(t) + iy(t) = a(t)eiθ(t), (16)

where

a(t) =
√

x2(t) + y2t, θ(t) = tan−1 y(t)
x(t)

. (17)

In (15), it should be noted that the Hilbert transform is
the convolution of x(t) with 1/t, which emphasizes the local
properties of x(t). In addition, (17) provides the best local
fit of x(t) using-time dependent functions of a(t) and θ(t).
Finally, the instantaneous frequency is defined as

ω(t) = dθ(t)
dt

. (18)

In order to obtain physically meaningful instantaneous fre-
quencies (IMF), Huang et al. [88] suggested the decomposi-
tion of a complex original time series into multiple so-called
intrinsic mode functions that represents the oscillatory modes
embedded in the original signal, and the instantaneous
frequencies are determined for the decomposed IMFs. The
signal x(t) can be expressed using the series of IMFs as

x(t) =
m
∑

k=1

IMFk + r(t), (19)

where the IMFk is the k-th intrinsic mode function, m is the
number of the IMFs, and r(t) is the residual.

The IMF is defined to have the properties of local zero
means and the same numbers of zero crossings and extrema
throughout the time series for the IMF to be only one mode
of oscillation without complex riding waves. A difference
from the Fourier-based signal processing methods is that the
IMF is not restricted to be single banded and can be non-
stationary. Several EMD algorithms have been developed
using the so-called sifting process [104, 105].

The HHT is a time-frequency analysis technique; com-
bined with the EMD, a time-frequency plot can be obtained
for each IMF to visualize frequency change over time. The
HHT is similar to the wavelet transform (WT) as a non-
stationary data processing technique, but the HHT is not
limited by the underlying basis functions as the WT is.

5.3. Black-Box Methods. One technical difficulty in the iden-
tification of complex (nonlinear) geotechnical systems is
that the system characteristic function in Figure 1 is usually
unknown beforehand, so that it is not possible to establish
exclusive relationships between the system input and sys-
tem output. This case is often encountered when systems
identified are under field condition subject to various en-
vironmental effects, or systems are evolved into a different
class of nonlinearity after unpredictable unknown structural
damage. The black-box methods can be used when the phys-
ical relationships between the system input and the system
output are unknown.

The Artificial Neural Networks (ANNs) technique, in-
spired by biological neural networks, has been shown to be
a powerful tool for developing model-free representation of
nonlinear systems. The ANNs consist of an interconnected
group of artificial neurons that forms the input layer, hidden
layers, and output layer for arbitrary multiinput multi-
output (MIMO) systems in Figure 3. Employing various op-
timization algorithms, the input-output relationships could
be determined by finding the optimal values of the weights
and biases of the artificial neurons. Detailed description of
the ANN method can be found in Fausett [106] and Gurney
[107].

The ANN techniques have been used in a wide range
of geotechnical applications including pile capacity, settle-
ment of foundations, characterization of soil properties and
behavior, liquefaction, site characterization, earth retaining
structures, slope stability, tunnels, and underground open-
ings [103]. Some technical challenges for the ANN modeling
in geotechnical engineering are discussed in Jaksa et al. [108].

5.4. Response-Only Models. Response-only methods are de-
fined as the methods that use no system information in their
data processing procedures. The blind source separation (BSS)
is classified as one of these kinds. The BSS method is a multi-
variate, nonparametric techniques, which separate unknown
system input (or “sources”), based on observed system
output (or “response”) without (or with little) information
of the system input or system function. BSS includes several
response-only techniques, such as the principal component
analysis (PCA) for statistically uncorrelated multivariate
system input, and the independent component analysis
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Figure 3: A schematic of typical structure of the Artificial Neural Networks (modified from Shahin et al. [103]).

(ICA) for statistically independent multivariate system input.
General descriptions of the PCA and ICA methods can be
found in Hyvärinen et al. [109].

The principal component analysis (PCA) method, also
known as the proper orthogonal decomposition (POD) or
the Karhunen-Loève transform, is a multivariate statistical
technique [110]. Two algebraic solutions of the PCA are
commonly used including (1) the eigenvector decomposition
of the covariance matrix and (2) the singular value decom-
position approach. The first solution will be described in this
section. For an (m×n) observation data set X = [x1; . . . ; xm],
where xi is an (n×1) vector associated with sensor i, the goal
of the algebraic solution is to find the orthonormal matrix of
the principal components P, where

Y = PX , (20)

which renders the covariance matrix CY diagonal. The cova-
riance matrix can be determined from

CY = 1
n− 1

YYT = 1
n− 1

PAPT , (21)

such that

A = XXT = VλVT , (22)

where A is an (m ×m) symmetric matrix, V is the (m ×m)
matrix of eigenvectors arranged as column, λ is the (m×m)
diagonal matrix of the eigenvalues. The PCA is limited by its
global linearity because the PCA removes linear correlations
among the observed data and is only sensitive to second-
order statistics [111, 112].

Some geotechnical applications of the PCA include Dai
and Lee [113], Komac [114], Folle et al. [115].

6. Case Study: Monitoring for Full-Scale
Retaining Walls Subject to Long-Term
Environmental Change

In order to demonstrate the benefits of the nonparametric
methodologies discussed in Section 2, a case study was con-
ducted using a full-scale reinforced concrete retaining wall
with the height of 13.59 m. Because the wall was placed only
9.5 m away from a high-rise residential apartment building,
the collapse of the wall would result in a catastrophic disaster.

The backfilled soil characteristics were not known, and
the soil behavior (e.g., pore water pressure or soil temper-
ature) was not monitored. The material properties of the
reinforced concrete were also unknown, and the plan of the
retaining wall was not available. The retaining wall was mon-
itored for three years with three tilt sensors located at the
upper, middle, and lower locations of the wall (13.14 m,
6.55 m, and 1.68 m from the ground). At the same locations
of the tilt gauges, the surface temperatures were also meas-
ured. Therefore, a total six sensors (i.e., three tilt gauges and
three surface temperature sensors) were used and wired to
a data logger, equipped with a digitizer and local storage
device. The sensor readings were sampled at once every hour
(1 sample/hr) for all channels. Consequently, due to the lack
of information in terms of measurement types, temporal and
spatial resolution of measurements, and information on the
monitored structure, conventional parametric identification
approaches could not be used in this study. Furthermore,
although the wall surface temperature data were collected,
only tilt data were used in this analysis to demonstrate that
important performance-related information on the retaining
wall can be obtained using response-only data without rely-
ing on additional data of the causative force and environment
in the data processing procedures. As described in Section 3,
since the inverse analysis using response-only data is not
based on explicit relationships of system input output, which
cannot be accurately determined due to limited information
of structural characteristics and sensor measurements, the
oversimplification problem often observed in conventional
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Figure 4: A full-scale retaining wall used in this study. The wall is an L-type cantilever reinforced concrete wall 13.59 m high. The retaining
wall is subject to long-term environmental variations [4].
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Figure 5: Three-year tilt time histories in microradian (positive toward the apartment side) measured at three locations: the upper (13.44 m),
middle (6.55 m), and lower (1.68 m) of the wall. The figure illustrates the lack of data available for the complexity of the given problem, which
is commonly encountered in many geotechnical applications.

parametric approaches would be avoidable. Environmental
measurements will be used a posteriori information for
physical interpretation of the inverse analysis results, which
is commonly not straightforward in other nonparametric
approaches. If this approach was successful, the expensive
data collection cost could also be reduced (Figure 4).

The tilt time histories measured from the retaining wall
are shown in Figure 5. The slope is in microradian, and the
plus sign is for the slope towards the apartment side. The
slope signals at all three locations were significantly affected
by seasonal and daily variation: decreasing during summer
and increasing during winter, and decreasing during days
and increasing during nights as reflected in daily trends (not
clearly shown in the figure due to scale). During this three-
year monitoring period, the wall behavior was affected by
temperature change in addition to rain and snow falls, freeze
thaw of backfilled soil, soil-structure interaction, and so on.

Figure 5 also shows that the collected sensor data are
partially incomplete. The lower sensor failed in Q1 2006
(approximately after one year). There were “missing” data

for all sensors in Q4, 2006, for about three months due
to instrument failure. These unavoidable and unpredictable
sensor and instrumentation problems are frequently encoun-
tered in long-term field measurements, and the proposed
nonparametric methodology should be robust to handle
these kinds of problems. Therefore, the figure illustrates the
lack of data available for the complexity of the given problem,
which is commonly encountered in many geotechnical
applications.

Three nonparametric data processing techniques were
used: the empirical mode decomposition (EMD), the
Hilbert-Huang transform (HHT) for single-channel (or
Univariate) analysis, and the principal component analysis
(PCA) for multichannel (or multivariate) analysis. A sum-
mary of the proposed nonparametric data processing ap-
proaches is provided in Table 1.

A brief description of the EMD-HHT was given in
Section 5.2, and the analysis procedures of the EMD-HHT
are summarized in Figure 6. Due to the complexity of the
geotechnical system coupled with long-term environmental
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Table 1: A summary of the nonparametric identification approaches employed in the case study for a full-scale retaining wall, subjected to
long-term environmental variations.

Methods Data type Purposes

Empirical mode
decomposition (EMD)

Univariate
To decompose nonlinear and nonstationary environmental variations of daily, seasonal
and long-term trends from raw sensor measurements

To decompose complex raw measurements into simpler and physically “well-behaving”
intrinsic mode functions for better understanding of the system

Hilbert-Huang transform
(HHT)

Univariate
To obtain the instantaneous frequencies for nonlinear, non-stationary, time-varying
systems

The obtained instantaneous frequencies could be used to detect changes in “abnormal”
system characteristics in time

Principal component
analysis (PCA)

Multivariate

To find interchannel relationships with multi-input data (note that the EMD and HHT
are single-channel data processing techniques)

To visualize the mode shapes of the system decomposed by the corresponding orthogonal
principal components

To quantify the energy of inter-channel motions for each mode shape and find the
dominant one

variation, the raw sensor data shown in Figure 6 are usually
too complicated to be interpreted for performance assess-
ment. Thus, a daily trend was disentangled using the EMD
based on its period of one day out of the raw signal even
with missing data for three months in the second year, and
a sample result is shown in Figure 6(b). The disentangled
daily trend of the slope is mostly influenced by the daily
fluctuation of the wall surface temperature (i.e., the wall
inclined toward the apartment during daytime and toward
the backfill during night time). Once the daily trend was
disentangled, the instantaneous frequency of the daily trend
was obtained using the HHT as shown in the time-frequency
plot of Figure 6(c).

The time history of the daily trend has a period of one
day, and the corresponding instantaneous frequency has a
baseline frequency of one per day as shown in Figures 6(b)
and 6(c). Occasional amplitude reduction is observed in the
time history (e.g., 3/11, 3/15, 3/21, and 4/5 through 4/9)
in Figure 6(b), and during these times, the corresponding
instantaneous frequencies become significantly larger than
the baseline frequency. Hourly precipitation records col-
lected separately at the nearest weather station to the wall site
are plotted in Figure 6(d). The precipitation data were not
used in our analysis. Interestingly, the comparison with the
instantaneous frequency in Figure 6(c) shows that the peaks
of the instantaneous frequency concur with precipitation
events, and the frequency decreases back to the baseline
frequency (i.e., one day) when the precipitation stops.

These results demonstrate an important advantage of
the nonparametric techniques over conventional paramet-
ric methods in monitoring applications. Without a priori
information, physical assumptions and oversimplification of
the monitored structure, the daily trend can be disentangled
from a complicated raw slope signal. With the occurrence
of the precipitation, the normal pattern in a slope signal
(i.e., the system response in Figure 1) is “disturbed” due to
the change of the structural characteristics with increased
water content in the backfills (i.e., the system characteristics
function). Consequently, the pattern of the disentangled

daily trend is also disturbed in its amplitude and frequency.
After the precipitation stops, the pattern in the raw slope time
history returned to the normal condition with a working
drainage system, which drain away excessive water in the soil,
and so does the patter of the disentangled daily trend. After
the precipitation stops, if the pattern of the disentangled
signal did not go back to normal (i.e., the instantaneous
frequency in Figure 6(c) did not go back to the baseline
frequency), it could be concluded that the drainage system
is not working properly. A critical difference between using
the raw and the processed signals is that the raw signal is
too complicated to recognize the precipitation effect because
it is overshadowed by other dominant non-performance-
related effects, such as temperature as shown in Figure 6(a);
the important drainage-related information can be extracted
using the disentangled signal as shown in Figure 6(c).

The principal component analysis (PCA) technique was
used as a multi-sensor analysis method.

The brief description of the PCA was provided in
Section 5.4. In order to find the optimal window size, the
statistics of the first PCA mode shape, which is associated
with the largest contribution to the energy of the total wall
motion, were calculated. Figure 7 shows the mean values of
the eigenvectors in dashed lines with one-standard deviation
(1 − σ) uncertainty in the shaded areas. The statistics were
calculated with different window sizes (i.e., numbers of days)
up to 60 days, and the window size of one-day duration
includes 24 data points for the given sampling rate of 1
sample/hr. In the figures, since the expectation of the PCA
mode shape begins statistically unbiased after 14 days (i.e.,
the mean and deviation values begin saturated), the window
size of two week was selected for the PCA in this study.

Figure 8 shows the PCA mode shapes with the error bars
of one-standard deviation (1 − σ). In the figure, the mode
shapes of the wall slopes were converted to the displacements
using the known heights of the sensor location. The μ and σ
in the parenthesis are the mean and standard deviation of the
eigenvalue corresponding to each mode that is normalized
to the sum of the eigenvalues of all modes. Although no
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Figure 6: The procedures of the single sensor analysis using the empirical mode decomposition (EMD) and the Hilbert-Huang transform
(HHT) compared with the precipitation records that are separately measured at a weather station near the retaining wall site. Note that
the precipitation data were not used in the time-frequency analysis. (a) The one-month-long raw tilt time history shows the dominant
daily trend mixed with various nonlinear, non-stationary events due to unknown factors over time. The material properties of reinforced
concrete and backfilled soil were unknown. The raw sensor data are too complicated to understand what happens to the wall. (b) The daily
trend was disentangled from the complex raw signal using the EMD. (c) The disentangled daily trend was processed using the HHT to
obtain instantaneous frequencies over time. The baseline frequency remains at one per day, but some peaks were observed occasionally.
(d) Precipitation records measured separately at a weather station near the wall site were compared in the same time scale. Concurrence
was observed between the peaks in the instantaneous frequencies and precipitation records. The peak of the instantaneous frequency
increased when precipitation began and decreased when precipitation stopped, which implies that the drainage system is performing
satisfactorily.

physical characteristics information was used, Figures 8(a)–
8(c) illustrates that the PCA mode shapes agree to the
first, second, and third bending modes of a cantilever. The
PCA eigenvalues show that the motion of the first mode
is dominant: 97.3% of the entire motion energy with the
standard deviation of 2.1%. This dominant motion is clearly
due to the significant daily and seasonal trends shown in
Figure 5 that could be mostly due to diurnal and seasonal
temperature variation. For the purpose of structural health
monitoring, this dominant low-order mode is less interesting
since important information of condition assessment is
performance related, not environment related. In addition,
structural damage is usually localized phenomena, so that
higher modes would have a better spatial resolution to
detect.

Figures 8(a)–8(c) were created using the data in year 2005
before the bottom tilt gauge was damaged.The same PCA
procedures were applied using the data after the tilt gauge
was permanently damaged in year 2006 Q1, and the results
are compared in Figures 8(d)–8(f). The first mode after the
damage in Figure 8(d) was realized similar to the one before
the damage in Figure 8(a) except the deviation of the mode
shape increased after the damage. The comparison of Figures
8(b) and 8(e) shows that an excessive amount of the move-
ment was realized after the damage of the bottom sensor that
is unusual for the cantilever type of the wall structure. The
mean contribution of the first mode to the total energy of
the wall motion was reduced from 97.3% (with the standard
deviation of 2.1%) to 82.3% (with the standard deviation of
14.3%) and that of the second mode increased from 2.3%
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Figure 7: The statistics of the first eigenvector of the PCA mode shapes for different window sizes (i.e., number of days). The statistics were
obtained using the data in year 2005 (before the lower tilt gauge was damaged).

(with the standard deviation of 2.0%) to 14% (with the
standard deviation of 14.4%), while the energy contribution
and shape of the third mode remained similar as shown in
Figures 8(c) and 8(f).

Figure 9 shows the time histories of the PCA eigenvalues.
In the figure, the time history of the first mode is shown in
the solid line (black), the second mode in the dashed line
(red), and the third mode in the dash-dot line (blue). The
realized eigenvalues of Modes 1 and 2 significantly changed
from March, 2006, the same time when the bottom sensor
was damaged.

Based on the single-channel and multi-channel analyses
results discussed in Section 6, the following important facts
can be concluded for the general monitoring applications of
geotechnical structures.

(i) From the time histories of Figures 6(c) and 9, when
abnormal behaviors of the wall occur can be deter-
mined. These abnormal behaviors are related to the
performance of the structure, which are commonly
overshaded by the significant effects of environmen-
tal variation. The disentanglement techniques, such
as the EMD and the PCA, allow filtering out the
environment-related information and focusing on the
performance-related information.

(ii) From the mode shapes of the lower senor in Figures
8(d)–8(f) (particularly Figure 8(e) for the PCA or
using the information of the upper sensor location

Table 2: Cross-correlation coefficients of the PCA eigenvalues
between different modes.

Mode 1 Mode 2 Mode 3

Mode 1 1.0 0.5783 0.6404

Mode 2 0.5783 1.0 0.5620

Mode 3 0.6404 0.5620 1.0

in the EMD-HHT in Figure 6), where the abnormal
behaviors occur can be also determined.

(iii) Using the statistics (e.g., error bars) of the eigenvalues
and eigenvectors of the PCA modes in Figure 8, the
confidence levels of detecting abnormal behaviors
can be quantified combining with the standard sta-
tistical hypothesis test or classification techniques. It
should be noted that since the PCA modes are statisti-
cally uncorrelated (or statistically independent for the
independent component analysis), uncertainty quan-
tification can be done with three times of integral
(for three slope measurements) for statistical tests,
not triple integral. For example, it was observed that
the cross-correlation values of the PCA eigenvalues
between different modes are very low (less than
0.6404) as summarized in Table 2. This property is
particularly important when a large number of sen-
sors are used.
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Figure 8: The PCA mode shapes with the error bars of one standard deviation before and after the damage of the bottom tilt gauge. The
μ and σ are the mean and standard deviation of the corresponding eigenvalue, which is normalized to the summation of the eigenvalues of
all modes. (a)–(c) shows the mode shapes before the bottom tilt gauge was permanently damaged in 2006 Q1, and (d)–(f) shows the mode
shapes after the sensor was damaged.

7. Summary and Conclusions

The modeling procedures of the nonparametric methods
are data driven, not based on a priori physical knowledge
of the monitored structure. Therefore, the methodology
developed by the authors is not limited to a specific type of
structure, but it could be applicable to a wide range of mon-
itoring applications for different geotechnical structures. For
the diversity of the characteristics of geotechnical structures,
the nonparametric methodology could reduce modeling

efforts significantly in various monitoring applications that
has been technical barrier using conventional parametric
approaches.

The important performance-related information (e.g.,
effects of drainage or malfunctioning sensors) could be
obtained using a very limited amount of the response-only
sensor data (i.e., three tilt time histories). The decomposition
techniques used in this study could disentangle the response
deformation data of the complex system subject to long-
term environmental variations without the information of
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Figure 9: Time histories of the PCA eigenvalues normalized to the
sum of the eigenvalues of all modes. The time history of the first
mode is shown in the solid line (black), the second mode in the
dashed line (red), and the third mode in the dash-dot line (blue).

the causative force, environment or structural characteristics.
For example, since the precipitation records were not used in
the EMD-HHT, it was demonstrated that oversimplification
problems could be avoided using the response-only analysis
techniques that is not based on exclusive input-output
relationships. Therefore, the nonparametric methodology
discussed in this paper could provide the important infor-
mation of when, where, and how confidently engineers should
be deployed to the site for potential performance hazards
of monitored structures using a very little amount of infor-
mation without sacrificing accuracy of the inverse analysis.
The common practical problems of the unpredictable sen-
sor/instrument network malfunctioning problems could be
also effectively dealt with the nonparametric methodology.
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